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Abstract
In this paper, we establish several new existence theorems for positive solutions of
systems of (2n, 2m)-order of two p-Laplacian equations. The results are based on the
Krasnosel’skii fixed point theorem and mainly complement those of Djebali,
Moussaoui, and Precup.
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1 Introduction
Quasilinear elliptic systems have been used in a great variety of applications, and exis-
tence results and a priori estimates of positive solutions for quasilinear elliptic systems
have been broadly investigated. For instance, D’Ambrosio and Mitidieri [1] studied Liou-
ville theorems for a class of possibly singular quasilinear elliptic equations and inequalities
in the framework of Carnot groups, and their results are new even in the canonical Eu-
clidean setting. In [2] the authors proved a priori estimates for the solutions of elliptic
systems involving quasilinear operators in divergence form in an open set Ω ⊂ RN and,
as a consequence, obtained theorems on nonexistence of positive solutions in the case
Ω = RN . More related results can be found in [3–5]. Equations of the p-Laplacian form
occur in the study of non-Newtonian fluid theory and the turbulent flow of a gas in a
porous medium. To our best knowledge, there are many papers devoted to the study of
differential equations with p-Laplacian. We refer the readers to [6] (one-dimensional p-
Laplacian), [7–10] (fourth-order p-Laplacian), and [11] (2nd-order p-Laplacian). Most of
these results are based upon the quadrature method, topological degree, the fixed point
theorem on a cone, or the lower and upper solution method. Especially, Djebali et al.
[12] have shown some existence results for the fourth-order p-Laplacian nonlinear sys-
tem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[ϕp(u′′)]′′ = h1(u, v), t ∈ (0, 1),

[ϕp(v′′)]′′ = h2(u, v), t ∈ (0, 1),

u(2i)(0) = u(2i)(1) = 0, i = 0, 1,

v(2j)(0) = v(2j)(1) = 0, j = 0, 1.
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The first existence result is obtained via the classical Krasnosel’skii fixed point the-
orem of cone compression and expansion under the following notation and assump-
tions.

(H1) For i = 1, 2, there exist nonnegative constants h0
i and h∞

i defined as

h0
i = lim

u+v→0

hi(u, v)
(u + v)p–1 and h∞

i = lim
u+v→∞

hi(u, v)
(u + v)p–1 .

The second existence result is obtained via the vector versions of the Krasnosel’skii fixed
point theorem [13] under the following notation and assumptions.

(H2) For λ = 0 or λ = +∞, there exist nonnegative constants Hλ
1 and Hλ

2 defined as

Hλ
1 = lim

u→λ

h1(u, v)
up–1 uniformly with respect to v on compact subsets of R+,

Hλ
2 = lim

v→λ

h2(u, v)
vp–1 uniformly with respect to u on compact subsets of R+.

A comparison of the obtained results to those from the literature is provided.
In addition, there are some papers concerned with the existence and multiplicity of pos-

itive solutions of systems of (2n, 2m)th-order equations under assumption (H1); see [14–
17]. The proof is based on the classical Krasnosel’skii fixed point theorem of cone com-
pression and expansion [14, 15, 17], fixed point index arguments and upper and lower
solutions method [16]. However, in [12, 14–17] the uniqueness of positive solutions is not
considered. Therefore, via the classical Krasnosel’skii fixed point theorem of cone com-
pression and expansion, the results we are going to present reveal how the behavior of the
functions fi (i = 1, 2) at zero and infinity have a profound effect on the existence, unique-
ness, and multiplicity of a positive solution of the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(–1)n[ϕp(u(2n1))](2n2) = f1(t, v), t ∈ (0, 1),

(–1)m[ϕp(v(2m1))](2m2) = f2(t, u), t ∈ (0, 1),

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, . . . , n – 1,

v(2j)(0) = v(2j)(1) = 0, j = 0, 1, . . . , m – 1,

(1.1)

where n1 + n2 = n, m1 + m2 = m, n, m ∈ N, n, m ≥ 2. Here ϕp(s) = s|s|p–2 (p > 1) refers to the
p-Laplacian, and fi : [0, 1] × R+ → R+ are continuous (i = 1, 2) with f2(t, 0) = 0.

Furthermore, in Sect. 4, we consider the existence of positive solutions of the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(–1)n[ϕp(u(2n1))](2n2) = f (u, v), t ∈ (0, 1),

(–1)m[ϕp(v(2m1))](2m2) = g(u, v), t ∈ (0, 1),

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, . . . , n – 1,

v(2j)(0) = v(2j)(1) = 0, j = 0, 1, . . . , m – 1,

(1.2)

under the following assumption:
(H3) there exist two pairs of nonnegative functions F1, F2 and G1, G2 such that

⎧
⎨

⎩

F1(v) ≤ f (u, v) ≤ F2(v) for all u ∈ [0, +∞],

G1(u) ≤ g(u, v) ≤ G2(u) for all v ∈ [0, +∞],
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or
(H̃3) there exist two pairs of nonnegative functions F1, F2 and G1, G2 such that

⎧
⎨

⎩

F1(u) ≤ f (u, v) ≤ F2(u), for all v ∈ [0, +∞],

G1(v) ≤ g(u, v) ≤ G2(v), for all u ∈ [0, +∞].

At the end of Sect. 4, we also give examples where f (u, v) and g(u, v) satisfying assumption
(H3) do not satisfy assumptions (H1) and (H2).

2 Preliminaries
Let Gn(t, s) be the Green function of the linear boundary value problem

⎧
⎨

⎩

(–1)(n)ω(2n)(t) = 0, t ∈ [0, 1],

ω(2i)(0) = ω(2i)(1) = 0, 0 ≤ i ≤ n – 1.

By induction the Green function Gn(t, s) can be expressed as (see[15])

Gi(t, s) =
∫ 1

0
G(t, ξ )Gi–1(ξ , s) dξ , 2 ≤ i ≤ n,

where

G1(t, s) = G(t, s) =

⎧
⎨

⎩

t(1 – s), 0 ≤ t ≤ s ≤ 1,

s(1 – t), 0 ≤ s ≤ t ≤ 1.

Lemma 2.1 ([15]) The function Gn(t, s) has the following properties:
(1) Gn(t, s) > 0, (t, s) ∈ (0, 1) × (0, 1).
(2) For any (t, s) ∈ [0, 1] × [0, 1], Gn(t, s) ≤ 1

6n–1 s(1 – s).
(3) If δ ∈ (0, 1

2 ), then for any (t, s) ∈ [δ, 1 – δ] × [0, 1],

Gn(t, s) ≥ δn
(

4δ3 – 6δ2 + 1
6

)n–1

s(1 – s)

≥ 6n–1δn
(

4δ3 – 6δ2 + 1
6

)n–1

max
0≤t≤1

Gn(t, s).

Lemma 2.2 For any m, n ∈ N+ and h ∈ C[0, 1] with h(t) ≥ 0, the solution of the boundary
value problem

⎧
⎨

⎩

(–1)n[ϕp(u(2n))](2m) = h(t), t ∈ (0, 1),

u(2i)(0) = u(2i)(1) = 0, 0 ≤ i ≤ n – 1,

can be expressed by u(t) =
∫ 1

0 Gn(t, s)ϕq(
∫ 1

0 Gm(s, τ )h(τ ) dτ ) ds, where ϕq stands for the in-
verse function ϕq = ϕ–1

p with conjugates p, q, that is, 1
p + 1

q = 1. Moreover, the solution satis-
fies the estimate

min
t∈[δ,1–δ]

u(t) ≥ 6n–1δn
(

4δ3 – 6δ2 + 1
6

)n–1

‖u‖,

where ‖u‖ = maxt∈[0,1] |u(t)|, the norm of C[0, 1].
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Proof For t ∈ [δ, 1 – δ], we have

u(t) =
∫ 1

0
Gn(t, s)ϕq

(∫ 1

0
Gm(s, τ )h(τ ) dτ

)

ds

≥ max
t∈[0,1]

∫ 1

0
6n–1δn

(
4δ3 – 6δ2 + 1

6

)n–1

Gn(t, s)ϕq

(∫ 1

0
Gm(s, τ )h(τ ) dτ

)

ds

≥ 6n–1δn
(

4δ3 – 6δ2 + 1
6

)n–1

max
t∈[0,1]

∫ 1

0
Gn(t, s)ϕq

(∫ 1

0
Gm(s, τ )h(τ ) dτ

)

ds

= 6n–1δn
(

4δ3 – 6δ2 + 1
6

)n–1

‖u‖. �

Definition 2.3 Let K be a cone in a real Banach space X. With some positive u0 ∈ K\{0},
A : K → K is called u0-sublinear if

(a) for any x > 0, there exist θ1 > 0 and θ2 > 0 such that θ1u0 ≤ Ax ≤ θ2u0;
(b) for any θ1u0 ≤ x ≤ θ2u0 and t ∈ (0, 1), there exists η = η(x, t) > 0 such that

A(tx) ≥ (1 + η)tAx.

Lemma 2.4 ([14], Theorem 2.2.2) An increasing and u0-sublinear operator A has at most
one positive fixed point.

Lemma 2.5 ([18]) Let E be a Banach space, and let K ⊂ E be a cone in E. Let Ω1 and Ω2 be
open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2, and let A : K ∩ (Ω2 \Ω1) → K be a completely
continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \ Ω1).

At the end of this section, for any αi, α̃i, βi, β̃i ∈ R+ (i = 1, 2), we give some notations:

ϕ0
i = lim inf

c→0+
min

t∈[δ,1–δ]

fi(t, c)
cαi

, ϕ0
i = lim sup

c→0+
max
t∈[0,1]

fi(t, c)
cαi

,

ψ∞
i = lim inf

c→∞ min
t∈[δ,1–δ]

fi(t, c)
cβi

, ψ
∞
i = lim sup

c→∞
max
t∈[0,1]

fi(t, c)
cβi

,

F0
1 = lim inf

c→0+

F1(c)
cα1

, F∞
2 = lim sup

c→+∞
F2(c)
cβ1

,

G0
1 = lim inf

d→0+

G1(d)
dα2

, G∞
2 = lim sup

d→+∞
G2(d)

dβ2
,

F∞
1 = lim inf

c→+∞
F1(c)
cα̃1

, F0
2 = lim sup

c→0+

F2(c)
cβ̃1

,

G∞
1 = lim inf

d→+∞
G1(d)

dα̃2
, G0

2 = lim sup
d→0+

G2(d)
dβ̃2

.

For any α,β ,σ ∈ R+ and m, n, l ∈ N+, let

Γ =
∫ 1–δ

δ

t(1 – t) dt, θn(δ) = δn
(

4δ3 – 6δ2 + 1
6

)n–1

,
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σ (n) = 6n–1θn(δ), L(m, n) =
1

6m
1

6n(q–1) ,

S(m, n, l,α) = θm(δ)θq–1
n (δ)σ (l)α(q–1)Γ q.

3 Main results of Problem (1.1)
Define the mapping A : C[0, 1] → C[0, 1] by

A(u)(t) = A1 ◦ A2(u)(t),

where

A1(v)(t) =
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , v(τ )

)
dτ

)

ds,

A2(u)(t) =
∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )f2

(
τ , u(τ )

)
dτ

)

ds.

Let P = {u ∈ C[0, 1], u ≥ 0}. The pair (u, v) ∈ C[0, 1] × C[0, 1] is a positive solution of (1.1)
if and only if (u, v) belongs to P \ {0} × P \ {0} and satisfies u = A1v, v = A2u. If u ∈ P \ {0}
is a fixed point of A, then define v = A2u. Then v ∈ P \ {0}, so that (u, v) ∈ C[0, 1] × C[0, 1]
solves (1.1). So our main goal is to look for nonzero fixed points of A in the subcone

K =
{

u(t) ∈ P : min
δ≤t≤1–δ

u(t) ≥ σ (n1)‖u‖
}

.

Since u(t) ∈ K with u(t) ≥ 0, this means that the corresponding solutions of (1.1) are non-
negative.

For any given r > 0, let

Ωr =
{

u ∈ C[0, 1] : ‖u‖ < r
}

,

∂Ωr =
{

u ∈ C[0, 1] : ‖u‖ = r
}

.

Lemma 3.1 For any 0 < r < R, the operator A : K ∩(ΩR \Ωr) → K is completely continuous.

Proof For any u(t) ∈ K ∩ (ΩR \ Ωr), by Lemma 2.2 we get

min
t∈[δ,1–δ]

A(u)(t) =
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds

≥ 6n1–1δn1

(
4δ3 – 6δ2 + 1

6

)n1–1

× max
t∈[0,1]

∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds

= σ (n1)
∥
∥A(u)(t)

∥
∥,

which implies that A : K ∩ (ΩR \ Ωr) → K .
Now, we verify that A is completely continuous.
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First, for the continuity of A, we only need to prove that ‖A(un) – A(u)‖ → 0 if un → u
as n → ∞. Let us consider

∣
∣A(un)(t) – A(u)(t)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(un)(τ )

)
dτ

)

ds

–
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤
∫ 1

0
Gn1 (t, s)

∣
∣
∣
∣ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(un)(τ )

)
dτ

)

– ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)∣
∣
∣
∣ds.

From the continuity of f1 and f2 it follows that ‖A(un) – A(u)‖ → 0 as n → ∞.
Second, we show that the operator A is uniformly bounded. For any u(t) ∈ K ∩ (ΩR \Ωr),

by Lemma 2.1(2) we have

∣
∣A(u)(t)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ 1

0

1
6n1–1 s(1 – s)ϕq

(∫ 1

0

1
6n2–1 τ (1 – τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds
∣
∣
∣
∣.

Since f1 and f2 are continuous, it is clear that A(u)(t) is uniformly bounded on K ∩
(ΩR \ Ωr).

Finally, we show the equicontinuity of the operator A. From the expression of G(t, s) we
easily obtain that

∂G(t, τ )
∂t

=

⎧
⎨

⎩

1 – s, 0 ≤ t ≤ s ≤ 1,

–s, 0 ≤ s ≤ t ≤ 1,

which implies that | ∂G(t,τ )
∂t | is bounded. There exists a constant M > 0 such that | ∂G(t,τ )

∂t | < M.
For any u(t) ∈ K ∩ (ΩR \ Ωr), t1, t2 ∈ [0, 1], we have

∣
∣A(u)(t2) – A(u)(t1)

∣
∣

=
∣
∣
∣
∣

∫ 1

0
Gn1 (t2, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds

–
∫ 1

0
Gn1 (t1, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0
Gn1 (t2, ξ )

[∫ 1

0
Gn1–1(ξ , s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds
]

dξ

–
∫ 1

0
Gn1 (t1, ξ )

[∫ 1

0
Gn1–1(ξ , s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds
]

dξ

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0

∂G(t, τ )
∂t

(t2 – t1)
[∫ 1

0
Gn1–1(ξ , s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds
]

dξ ]
∣
∣
∣
∣

≤ K
∫ 1

0

[∫ 1

0
Gn1–1(ξ , s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds
]

dξ ]|t2 – t1|,
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which implies that A is equicontinuous. By the Arzelà–Ascoli theorem we get that A :
K ∩ (ΩR \ Ωr) → K is compact. Consequently, it follows that A : K ∩ (ΩR \ Ωr) → K is
completely continuous. �

Theorem 3.2 Assume that αi,βi > 0 (i = 1, 2) with

α1α2 ≥ (p – 1)2, β1β2 ≥ (p – 1)2.

In addition, let the functions fi (i = 1, 2) satisfy the following assumptions:

ϕ0
1 < +∞, ϕ0

2 = 0, ψ∞
1 > 0, ψ∞

2 = +∞.

Then (1.1) has at least one positive solution.

Proof On one hand, from the assumption ϕ0
1 < +∞ we have that there exist ε > 0 and

r̂ ∈ (0, 1) such that

f1(t, v) ≤ (
ϕ0

1 + ε
)
vα1 for t ∈ [0, 1], v ∈ [0, r̂].

Furthermore, from the assumption ϕ0
2 = 0 we have that there exist ε1 > 0 and r ∈ (0, r̂) such

that

f2(t, u) ≤ ε1uα2 for t ∈ [0, 1], u ∈ [0, r],

where ε1 satisfies

ε
q–1
1 L(m1, m2) ≤ r̂,

ε
α1(q–1)2

1 Lα1(q–1)(m1, m2)L(n1, n2)
(
ϕ0

1 + ε
)q–1 ≤ r̂.

Set r = r̄. Then for any u ∈ K ∩ ∂Ωr , we have

v(t) = A2(u)(t) =
∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )f2(τ , u) dτ

)

ds

≤ 1
6m1

ϕq

(
1

6m2

)

ϕq
(
ε1‖u‖α2

)

= ε
q–1
1 L(m1, m2)‖u‖α2(q–1) ≤ 1.

Furthermore, we have

A1(v)(t) =
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1(τ , v) dτ

)

ds

≤
∫ 1

0

1
6n1–1 s(1 – s)ϕq

(∫ 1

0

1
6n2–1 τ (1 – τ )

(
ϕ0

1 + ε
)
vα1 (τ ) dτ

)

ds

≤ (
ϕ0

1 + ε
)q–1 1

6n1
ϕq

(
1

6n2

)

ϕq
(‖v‖α1

)



Wang and Ru Boundary Value Problems          (2019) 2019:9 Page 8 of 24

≤ (
ϕ0

1 + ε
)q–1L(n1, n2)

∥
∥ε

q–1
1 L(m1, m2)‖u‖α2(q–1)∥∥α1(q–1)

= ε
α1(q–1)2

1 Lα1(q–1)(m1, m2)L(n1, n2)
(
ϕ0

1 + ε
)q–1‖u‖α1α2(q–1)2

≤ ‖u‖α1α2(q–1)2 ≤ ‖u‖,

that is, ‖A(u)(t)‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ωr .
On the other hand, from the assumptions ψ∞

1 > 0 and ψ∞
2 = +∞ it follows that there

exist C1 > 0 and R > 1 such that

f1(t, v) ≥ (
ψ∞

1 – ε
)
vβ1 for t ∈ [0, 1], v ≥ R,

f2(t, u) ≥ C1uβ2 for t ∈ [0, 1], u ≥ R,

where C1 satisfies

Cq–1
1 S(m1, m2, n1,β2) ≥ 1,

Cβ1(q–1)2

1
(
ψ∞

1 – ε
)q–1S(n1, n2, m1,β1)Sβ1(q–1)(m1, m2, n1,β2) ≥ 1.

Set R = max{ R
σ

, R
1

β1(q–1) }. Then for any u ∈ K ∩ ∂ΩR, we have u(t) ≥ σR ≥ σ R
σ

= R for
t ∈ [δ, 1 – δ], and

v(t) = A2(u)(t) =
∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )f2(τ , u) dτ

)

ds

≥
∫ 1–δ

δ

θm1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θm2 (δ)τ (1 – τ )C1σ
β2 (n1)‖u‖β2 dτ

)

ds

≥ Cq–1
1 S(m1, m2, n1,β2)‖u‖β2(q–1)

≥ ‖u‖β2(q–1) = Rβ2(q–1) ≥ R.

Furthermore, for t ∈ [δ, 1 – δ], we also get

A1(v)(t) =
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1(τ , v) dτ

)

ds

≥
∫ 1–δ

δ

θn1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θn2 (δ)τ (1 – τ )
(
ψ∞

1 – ε
)
σβ1 (m1)‖v‖β1 dτ

)

ds

≥ (
ψ∞

1 – ε
)q–1S(n1, n2, m1,β1)‖v‖β1(q–1).

Then from the above inequalities, for t ∈ [δ, 1 – δ], we have

A(u)(t) ≥ Cq–1
1 S(n1, n2, n1,β1)Γ q∥∥Cq–1

2 S(m1, m2, n1,β2)Γ q‖u‖β2(q–1)∥∥β1(q–1)

= Cβ1(q–1)2

1
(
ψ∞

1 – ε
)q–1S(n1, n2, m1,β1)Sβ1(q–1)(m1, m2, n1,β2)‖u‖β1β2(q–1)2

≥ ‖u‖β1β2(q–1)2 ≥ ‖u‖,

which yields that ‖A(u)(t)‖ ≥ ‖u‖ for u ∈ K ∩ ∂ΩR.
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Therefore, by Lemma 2.5 the operator A has at least one fixed point in K ∩
(ΩR \ Ωr). �

Theorem 3.3 Assume that αi,βi > 0 (i = 1, 2) with

α1α2 ≤ (p – 1)2, β1β2 ≤ (p – 1)2.

In addition, let the functions fi (i = 1, 2) satisfy the following assumptions:

ϕ0
1 > 0, ϕ0

2 = +∞, ψ
∞
1 < +∞, ψ

∞
2 = 0.

Then (1.1) has at least one positive solution.

Proof On one hand, from the assumptions ϕ0
1 > 0 and ϕ0

2 = +∞ we have that there exist
C3 > 0 and 0 < r < 1 such that

f1(t, v) ≥ (
ϕ0

1 – ε
)
vα1 for t ∈ [0, 1], 0 ≤ v ≤ r,

f2(t, u) ≥ C3uα2 for t ∈ [0, 1], 0 ≤ u ≤ r,

where C3 satisfies

Cα1(q–1)2

3
(
ϕ0

1 – ε
)q–1S(n1, n2, n1,α1)Sα1(q–1)(m1, m2, n1,α2) ≥ 1.

Since f2 is continuous and f2(t, 0) = 0, there exists r̂ ∈ (0, r) such that

f2(t, u) ≤ rp–1 for t ∈ [0, 1], u ∈ [0, r̂].

Set r = r̂. For any u(t) ∈ K ∩ ∂Ωr , we have

v(t) = A2(u)(t) =
∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )f2(τ , u) dτ

)

ds

≤ L(m1, m2)ϕq
(
rp–1) ≤ r.

Then, for t ∈ [δ, 1 – δ], we obtain

A1(v)(t) =
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1(τ , v) dτ

)

ds

≥
∫ 1–δ

δ

θn1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θn2 (δ)τ (1 – τ )
(
ϕ0

1 – ε
)
σα1 (m1)‖v‖α1 dτ

)

ds

≥ (
ϕ0

1 – ε
)q–1S(n1, n2, m1,α1)‖v‖α1(q–1)

and

v(t) = A2(u)(t) =
∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )f2(τ , u) dτ

)

ds

≥
∫ 1–δ

δ

θm1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θm2 (δ)τ (1 – τ )C3σ
α2 (n1)‖u‖α2 dτ

)

ds

≥ Cq–1
3 S(m1, m2, n1,α2)‖u‖α2(q–1).
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From these inequalities we have

∥
∥A(u)(t)

∥
∥ ≥ A(u)(t)|t∈[δ,1–δ] ≥ ‖u‖α1α2(q–1)2 ≥ ‖u‖ for u(t) ∈ K ∩ ∂Ωr .

On the other hand, by the assumptions ψ
∞
1 < +∞ and ψ

∞
2 = 0 there exist ε2 > 0 and

R > 0 such that

f1(t, v) ≤ (
ψ

∞
1 + ε

)
vβ1 for t ∈ [0, 1], v ≥ R,

f2(t, u) ≤ ε2uβ2 for t ∈ [0, 1], u ≥ R,

where ε2 satisfies ε
β1(q–1)2

2 (ψ∞
1 + ε)q–1L(n1, n2)Lβ1(q–1)(m1, m2) < 1. Since fi is continuous,

let

N1 = max
{

f1(t, v) : 0 ≤ t ≤ 1, 0 ≤ v ≤ R
}

,

N2 = max
{

f2(t, u) : 0 ≤ t ≤ 1, 0 ≤ u ≤ R
}

.

Then we have the estimates

f1(t, v) ≤ (
ψ

∞
1 + ε

)
vβ1 + N1, f2(t, u) ≤ ε2uβ2 + N2.

Via some computations we obtain the inequalities

A(u)(t) = A1 ◦ A2(u)(t)

=
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds

≤
∫ 1

0

1
6n1–1 s(1 – s)ϕq

(∫ 1

0

1
6n2–1 τ (1 – τ )

[(
ψ

∞
1 + ε

)(
A2(u)(τ )

)β1 + N1
]

dτ

)

ds

= L(n1, n2)
((

ψ
∞
1 + ε

)(
A2(u)(τ )

)β1 + N1
)

and

A2(u)(t) =
∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )f2

(
τ , u(τ )

)
dτ

)

ds

≤
∫ 1

0

1
6m1–1 s(1 – s)ϕq

(∫ 1

0

1
6m2–1 τ (1 – τ )

[
ε2u(τ ))β2 + N2

]
dτ

)

ds

= L(m1, m2)ϕq
(
ε2uβ2 (τ ) + N2

)
.

It is clear that the term with the highest index is

ε
β1(q–1)2

2
(
ψ

∞
1 + ε

)q–1L(n1, n2)Lβ1(q–1)(m1, m2)uβ1β2(q–1)2
< uβ1β2(q–1)2

.

Thus there exists a sufficiently large R > 0 such that

∥
∥A(u)(t)

∥
∥ ≤ ‖u‖, u(t) ∈ K ∩ ∂ΩR.



Wang and Ru Boundary Value Problems          (2019) 2019:9 Page 11 of 24

Therefore by Lemma 2.5 the operator A has at least one fixed point in K ∩
(ΩR \ Ωr). �

Theorem 3.4 Assume that the functions fi (i = 1, 2) satisfy the following assumptions:
(i) fi(t, c) is nondecreasing on c uniformly for t ∈ [0, 1];

(ii) there exist four positive constants k1 < k2, l1 < l2 such that

k1vα1 ≤ f1(t, v) ≤ k2vα1 uniformly in t ∈ [0, 1], v ∈ [0, +∞);

l1uα2 ≤ f2(t, u) ≤ l2uα2 uniformly in t ∈ [0, 1], u ∈ [0, +∞).

(iii) there exist two positive constants α1, α2 with α1α2 < (p – 1)2 such that

fi(t, ξc) ≥ ξαi fi(t, c) for all ξ ∈ (0, 1).

Then (1.1) has a unique positive solution.

Proof First, we give the existence result. On one hand, for u ∈ K and t0 ∈ [δ, 1 –δ], we have

A1(v)(t0) =
∫ 1

0
Gn1 (t0, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , v(τ )

)
dτ

)

ds

≥
∫ 1–δ

δ

θn1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θn2 (δ)τ (1 – τ )kα1σα1 (m1)‖v‖α1 dτ

)

ds

≥ S(n1, n2, m1,α1)kα1(q–1)
1 ‖v‖α1(q–1).

In the similar way, we also have

∥
∥v(t)

∥
∥ ≥ A2(u)(t0) =

∫ 1

0
Gm1 (t0, s)ϕq

(∫ 1

0
Gm2 (s, τ )

)

f
(
τ , u(τ )

)
dτ ) ds

≥ S(m1, m2, n1,α2)lα2(q–1)
1 ‖u‖α2(q–1).

Combining these inequalities, for u ∈ K , we get

∥
∥A(u)(t)

∥
∥ ≥ S(n1, n2, m1,α1)Sα1(q–1)(m1, m2, n1,α2)kα1(q–1)

1 lα1α2(q–1)2

1 ‖u‖α1α2(q–1)2 .

Since α1α2 < (p – 1)2, there exists a sufficiently small r > 0 such that ‖A(u)(t)‖ > ‖u‖ for
u ∈ K ∩ ∂Ωr .

On the other hand, for u ∈ K ,

A1(v)(t) =
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , v(τ )

)
dτ

)

ds

≤
∫ 1

0

1
6n1–1 s(1 – s)ϕq

(∫ 1

0

1
6n2–1 τ (1 – τ )vα1 (τ ) dτ

)

ds

≤ 1
6n1

1
6n2(q–1) kα1(q–1)

2 ‖v‖α1(q–1).
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In a similar way, we have

∥
∥v(t)

∥
∥ =

∥
∥A2(u)(t)

∥
∥ = max

t∈[0,1]

∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )f2

(
τ , u(τ )

)
dτ

)

ds

≤ 1
6m1

1
6m2(q–1) lα2(q–1)

2 ‖u‖α2(q–1).

Combining these inequalities, for u ∈ K , we get

∥
∥A(u)(t)

∥
∥ ≤ L(n1, n2)Lα1(q–1)(m1, m2)kα1(q–1)

2 lα1α2(q–1)2

2 ‖u‖α1α2(q–1)2 .

Since α1α2 < (p – 1)2, there exists a sufficiently large R > 0 such that ‖A(u)(t)‖ < ‖u‖ for
u ∈ K ∩ ∂ΩR.

Therefore by Lemma 2.5 the operator A has at least one fixed point in K ∩ (ΩR \ Ωr).
Finally, we prove that A has at most one fixed point in P \ {0}. It is easy to see that A1 and
A2 are increasing operators with respect to the partial order induced by K . So is A = A1A2.
By Lemma 2.4 we only need to verify that A is u0-sublinear for some positive u0 ∈ C[0, 1].
Take u0 = t(1 – t). Set M = maxt∈[0,1] F(t), where

F(t) =
∫ 1

0
Gn1–1(t, s)ϕq

(∫ 1

0
Gn2 (s, τ )

f1

(

τ ,
∫ 1

0
Gm1 (τ ,ν)ϕq

(∫ 1

0
Gm2 (ν,μ)f2

(
,μ, u(μ)

)
dμ

)

dν

)

dτ

)

ds.

Then we have

A(u)(t) =
∫ 1

0
G(t, s)F(s) ds ≤ M

∫ 1

0
G(t, s) ds =

M
2

t(1 – t).

Furthermore, we have

A(u)(t) =
∫ 1

0
G(t, s)F(s) ds ≥

∫ 1

0
CG(t, t)G(s, s)F(s) ds =

∫ 1

0
CG(s, s)F(s) dsG(t, t).

So we can choose θ1 =
∫ 1

0 CG(s, s)F(s) ds and θ2 = M
2 .

From the above discussion we know that A = A1A2 satisfies (a) of Definition 2.3. The
proof is complete if A satisfies (b) of Definition 2.3. To this end, let θ1u0 ≤ u ≤ θ2u0, ξ ∈
(0, 1). Then a direct calculation gives A2(ξu) = ξ

α2
p–1 A2(u), A1(ξv) = ξ

α1
p–1 A1(v). Since ξ ∈

(0, 1) and α1α2 < (p – 1)2, we get A(ξu) = A1(ξ
α2

p–1 A2(u)) = ξ
α1α2

(p–1)2 A(u) ≥ (1 + η)ξA(x) for
some η > 0. �

Theorem 3.5 Assume that αi,βi > 0 (i = 1, 2) with

α1α2 ≤ (p – 1)2, β1β2 ≥ (p – 1)2.

In addition, let the functions fi (i = 1, 2) satisfy the following assumptions::
(i) ϕ0

1 > 0, ϕ0
2 = +∞, ψ∞

1 > 0, ψ∞
2 = +∞;
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(ii) there exists R̃ such that 1
6n1 ϕq( 1

6n2 )ϕq(N1
R̃) ≤ R̃, where

N1
R̃ = max

{
f1(t, v) : 0 ≤ t ≤ 1, 0 ≤ v ≤ L(m1, m2)ϕq

(
N2

R̃

)}
,

N2
R̃ = max

{
f2(t, u) : 0 ≤ t ≤ 1,σ (n1)̃R ≤ u ≤ R̃

}
.

Then (1.1) has at least two positive solutions.

Proof For any u ∈ K ∩ ∂ΩR̃, we have

v(t) = A2(u)(t) =
∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )f2

(
τ , u(τ )

)
dτ

)

ds

≤
∫ 1

0

1
6m1–1 s(1 – s)ϕq

(∫ 1

0

1
6m2–1 τ (1 – τ )f2

(
τ , u(τ )

)
dτ

)

dτ ) ds

= L(m1, m2)ϕq
(
N2

R̃

)
.

Furthermore, we get

A(u)(t) = A1 ◦ A2(u)(t)

=
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds

≤
∫ 1

0

1
6n1–1 s(1 – s)ϕq

(∫ 1

0

1
6n2–1 τ (1 – τ )N1

R̃ dτ

)

ds

= L(n1, n2)ϕq
(
N1

R̃

) ≤ R̃,

that is, ‖A(u)(t)‖ ≤ ‖u‖ for u ∈ K ∩ ∂ΩR̃.
Since α1α2 ≤ (p – 1)2, β1β2 ≥ (p – 1)2, ϕ0

1 > 0, ϕ0
2 = +∞, ψ∞

1 > 0, and ψ∞
2 = +∞, from

the proofs of Theorems 3.2 and 3.3 it follows that there exist r > 0 (sufficiently small) and
R > 0 (sufficiently large) such that ‖A(u)(t)‖ ≥ ‖u‖, u ∈ K ∩ ∂Ωr , and ‖A(u)(t)‖ ≥ ‖u‖,
u ∈ K ∩ ∂ΩR. Therefore by Lemma 2.5 the operator A has at least two fixed points in
K ∩ (Ω R̃ \ Ωr) and K ∩ (ΩR \ ΩR̃). �

Theorem 3.6 Assume that αi,βi > 0 (i = 1, 2) with

α1α2 ≥ (p – 1)2, β1β2 ≤ (p – 1)2.

In addition, let the functions fi (i = 1, 2) satisfy the following assumptions:
(i) ϕ0

1 < +∞, ϕ0
2 = 0, ψ∞

1 < ∞, ψ∞
2 = 0;

(ii) there exists R̂ such that S(n1, n2, m1, 0)ϕq(K1
R̂) ≥ R̂, where

K1
R̂ = min

{
f1(t, v) : δ ≤ t ≤ 1 – δ,

S(m1, m2, n1, 0)ϕq
(
K2

R̂

) ≤ v ≤ L(m1, m2)ϕq
(
N2

R̃

)}
,

N2
R̂ = max

{
f2(t, u) : 0 ≤ t ≤ 1,σ (n1)̃R ≤ u ≤ R̃

}
,

K2
R̂ = min

{
f2(t, u) : δ ≤ t ≤ 1 – δ,σ (n1)̃R ≤ u ≤ R̃

}
.

Then (1.1) has at least two positive solutions.
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Proof For any u ∈ K ∩ ∂ΩR̂, we have

v(t) = A2(u)(t) =
∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )f2

(
τ , u(τ )

)
dτ

)

ds

≤
∫ 1

0

1
6m1–1 s(1 – s)ϕq

(∫ 1

0

1
6m2–1 τ (1 – τ )f2

(
τ , u(τ )

)
dτ

)

dτ ) ds

= L(m1, m2)ϕq
(
N2

R̃

)
.

For t ∈ [δ, 1 – δ],

v(t) = A2(u)(t) =
∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )f2(τ , u) dτ

)

ds

≥
∫ 1–δ

δ

θm1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θm2 (δ)τ (1 – τ )f2(τ , u) dτ

)

ds

≥ S(m1, m2, n1, 0)Γ qϕq
(
K2

R̂

)
.

Thus, for t ∈ [δ, 1 – δ], we have the estimates

S(m1, m2, n1, 0)ϕq
(
K2

R̂

) ≤ v(t) ≤ L(m1, m2)ϕq
(
N2

R̃

)

and

A(u)(t) = A1 ◦ A2(u)(t)

=
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f1

(
τ , A2(u)(τ )

)
dτ

)

ds

≥
∫ 1–δ

δ

θn1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θn2 (δ)τ (1 – τ )f1(τ , v) dτ

)

ds

≥ S(n1, n2, m1, 0)ϕq
(
K1

R̂

)
,

that is, ‖A(u)(t)‖ ≥ ‖u‖ for u ∈ K ∩ ∂ΩR̃.
Since α1α2 ≥ (p – 1)2, β1β2 ≤ (p – 1)2, ϕ0

1 < +∞, ϕ0
2 = 0, ψ

∞
1 < ∞, and ψ

∞
2 = 0, from the

proof of Theorem 3.2 and Theorem 3.3 it follows that there exist r > 0 (sufficiently small)
and R > 0 (sufficiently large) such that ‖A(u)(t)‖ ≤ ‖u‖, u ∈ K ∩ ∂Ωr , and ‖A(u)(t)‖ ≤ ‖u‖,
u ∈ K ∩ ∂ΩR. Therefore by Lemma 2.5 the operator A has at least two fixed points in
K ∩ (Ω R̂ \ Ωr) and K ∩ (ΩR \ ΩR̂). �

Example 1 Assume that α,β > 0. Then for the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(–1)n[ϕp(u(2n1))](2n2) = vα(t), t ∈ (0, 1),

(–1)m[ϕp(v(2m1))](2m2) = uβ (t), t ∈ (0, 1),

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, . . . , n – 1,

v(2j)(0) = v(2j)(1) = 0, j = 0, 1, . . . , m – 1,

(3.1)

we have the following existence, uniqueness, and nonexistence results:
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(I) If αβ �= (p – 1)2, then (3.1) has at least a positive solution.
(II) If αβ < (p – 1)2, then (3.1) has a unique positive solution.

(III) If αβ = (p – 1)2, then (3.1) has no positive solutions.

Proof First, we give the proof of existence results.
(I), (II) On one hand, for u ∈ K and t0 ∈ [δ, 1 – δ], we have

A1(v)(t0) =
∫ 1

0
Gn1 (t0, s)ϕq

(∫ 1

0
Gn2 (s, τ )vα(τ ) dτ

)

ds

≥
∫ 1–δ

δ

θn1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θn2 (δ)τ (1 – τ )σα(m1)‖v‖α dτ

)

ds

≥ S(n1, n2, m1,α)‖v‖α(q–1).

In a similar way, we also have

∥
∥v(t)

∥
∥ ≥ A2(u)(t0) =

∫ 1

0
Gm1 (t0, s)ϕq

(∫ 1

0
Gm2 (s, τ )

)

uβ (τ ) dτ ) ds

≥ S(m1, m2, n1,β)‖u‖β(q–1).

Combining these inequalities, for u ∈ K , we get

∥
∥A(u)(t)

∥
∥ ≥ S(n1, n2, m1,α)Sα(q–1)(m1, m2, n1,β)‖u‖αβ(q–1)2

. (3.2)

On the other hand, for u ∈ K ,

A1(v)(t) =
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )vα(τ ) dτ

)

ds

≤
∫ 1

0

1
6n1–1 s(1 – s)ϕq

(∫ 1

0

1
6n2–1 τ (1 – τ )vα(τ ) dτ

)

ds

≤ 1
6n1

1
6n2(q–1) ‖v‖α(q–1).

In a similar way, we have

∥
∥v(t)

∥
∥ =

∥
∥A2(u)(t)

∥
∥ = max

t∈[0,1]

∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )uβ (τ ) dτ

)

ds

≤ 1
6m1

1
6m2(q–1) ‖u‖β(q–1).

Combining these inequalities, for u ∈ K , we get

∥
∥A(u)(t)

∥
∥ ≤ L(n1, n2)Lα(q–1)(m1, m2)‖u‖αβ(q–1)2 . (3.3)

We take into account the following two cases.
Case 1: If αβ < (p – 1)2, then from Theorem 3.4 it follows that (3.1) has only a positive

solution.
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Case 2: If αβ > (p – 1)2, then from (3.2) it follows that there exists R > 1 such that, for
any u ∈ K ∩ ∂ΩR,

∥
∥A(u)(t)

∥
∥ ≥ S(n1, n2, m1,α)Sα(q–1)(m1, m2, n1,β)‖u‖

αβ

(p–1)2 > ‖u‖.

By (3.3) there exists 0 < r < 1 such that, for any u ∈ K ∩ ∂Ωr

∥
∥A(u)(t)

∥
∥ ≤ L(n1, n2)Lα(q–1)(m1, m2)‖u‖

αβ

(p–1)2 < ‖u‖.

Therefore by Lemma 2.5 the operator A has at least one fixed point in K ∩ (ΩR \ Ωr).
(III) We only need to show that A has no positive fixed point in K . On the contrary, if A

has a positive fixed point u∗ ∈ K , then we have

∥
∥u∗∥∥ =

∥
∥A

(
u∗)(t)

∥
∥

≤ 1
6n1

1
6n2(q–1)

[
1

6m1

1
6m2(q–1)

∥
∥u∗∥∥β(q–1)

]α(q–1)

= L(n1, n2)Lα(q–1)(m1, m2)
∥
∥u∗∥∥

αβ

(p–1)2

<
∥
∥u∗∥∥

αβ

(p–1)2 =
∥
∥u∗∥∥,

which yields a contradiction. �

Example 2 If p = 3 and n1 = n2 = m1 = m2 = 1, then (1.1) is related to the fourth-order
system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[ϕ3(u′′(t))]′′ = f1(t, v), t ∈ (0, 1),

[ϕ3(v′′(t))]′′ = f2(t, u), t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

v(0) = v(1) = v′′(0) = v′′(1) = 0,

(3.4)

where f1(t, v) = tv2 and f2(t, u) = tu + tu3. Choosing α1 = 2, α2 = 3
2 , β1 = 2, β2 = 5

2 , and δ = 1
4 ,

it is easy to verify that

ϕ0
1 = lim inf

v→0+
min

t∈[ 1
4 , 3

4 ]

f1(t, v)
vα1

= lim inf
v→0+

1
4 v2

v2 = 1,

ϕ0
2 = lim inf

u→0+
min

t∈[ 1
4 , 3

4 ]

f2(t, u)
uα2

= lim inf
u→0+

1
4 (u + u3)

u 3
2

= +∞,

ψ∞
1 = lim inf

v→∞ min
t∈[ 1

4 , 3
4 ]

f1(t, v)
vβ1

= lim inf
v→∞

1
4 v2

v2 = 1,

ψ∞
2 = lim inf

u→+∞ min
t∈[ 1

4 , 3
4 ]

f2(t, u)
uβ2

= lim inf
u→+∞

1
4 (u + u3)

u 5
2

= +∞,

which implies that (i) of Theorem 3.5 holds.
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Choosing R̃ = 46,000, via some computations we can get

N2
R̃ = max

{
f2(t, u) : 0 ≤ t ≤ 1,σ R̃ ≤ u ≤ R̃

}
= R̃ + R̃3,

N1
R̃ = max

{

f1(t, v) : 0 ≤ t ≤ 1, 0 ≤ v ≤ 1
6
ϕ 3

2

(
1
6

)

ϕ 3
2

(
N2

R̃

)
}

=
(

1
6

)3(
R̃ + R̃3),

1
6
ϕ 3

2

(
1
6

)

ϕ 3
2

(
N1

R̃

)
=

(
1
6

)3(
R̃ + R̃3) 1

2 ≤ R̃,

which yields that (ii) of Theorem 3.5 holds. Therefore (3.4) has at least two positive solu-
tions.

Example 3 If p = 2, n1 = m1 = 1, and n2 = m2 = 1, then (1.1) is related to the second-order
system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(4)(t) = f1(t, v), t ∈ (0, 1),

v(4)(t) = f2(t, u), t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0,

v(0) = v(1) = v′′(0) = v′′(1) = 0,

(3.5)

where f1(t, v) = (t + 258·36

116 )v2 and

f2(t, u) =

⎧
⎨

⎩

tu3, 0 ≤ u ≤ 1;

tu 1
8 , 1 ≤ u.

Choosing α1 = 2, α2 = 3
2 , β1 = 2, β2 = 1

4 , and δ = 1
4 , it is easy to verify that

ϕ0
1 = lim sup

v→0+
max

t∈[ 1
4 , 3

4 ]

f1(t, v)
vα1

= lim sup
v→0+

( 3
4 + 258·36

116 )v2

v2 =
3
4

+
258 · 36

116 ,

ϕ0
2 = lim sup

u→0+
max

t∈[ 1
4 , 3

4 ]

f2(t, u)
uα2

= lim sup
u→0+

3
4 (u3)

u 3
2

= 0,

ψ
∞
1 = lim sup

v→∞
max

t∈[ 1
4 , 3

4 ]

f1(t, v)
vβ1

= lim sup
v→∞

( 3
4 + 258·36

116 )v2

v2 =
3
4

+
258 · 36

116 ,

ψ
∞
2 = lim sup

u→+∞
max

t∈[ 1
4 , 3

4 ]

f2(t, u)
uβ2

= lim sup
u→+∞

3
4 (u 1

8 )

u 1
4

= 0,

which implies that (i) of Theorem 3.6 holds.
Now, we will show that there exists a R̂ such that (ii) of Theorem 3.5 holds. For conve-

nience, choose R̂ < 1. Via some computations we can get

θn1 (δ) = θm1 (δ) =
1
4

, θq–1
n2 (δ) = θq–1

m2 (δ) =
1
4

, σ =
1
4

, Γ q =
(

11
96

)2

,

K2
R̂ = min

{
f2(t, u) : δ ≤ t ≤ 1 – δ,σ R̂ ≤ u ≤ R̂

}
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= min

{

f2(t, u) :
1
4

≤ t ≤ 3
4

,
1
4

R̂ ≤ u ≤ R̂
}

= min

{

tu3 :
1
4

≤ t ≤ 3
4

,
1
4

R̂ ≤ u ≤ R̂
}

=
(

1
4

)4

R̂3,

N2
R̂ = max

{
f2(t, u) : 0 ≤ t ≤ 1,σ R̂ ≤ u ≤ R̂

}

= max

{

f2(t, u) : 0 ≤ t ≤ 1,
1
4

R̂ ≤ u ≤ R̂
}

= max

{

tu3 : 0 ≤ t ≤ 1,
1
4

R̂ ≤ u ≤ R̂
}

= R̃3,

K1
R̂ = min

{

f1(t, v) : δ ≤ t ≤ 1 – δ, θm1 (δ)θq–1
m2 (δ)Γ qϕq

(
K2

R̂

) ≤ v ≤ 1
6m1

ϕq

(
1

6m2

)

ϕq
(
N2

R̂

)
}

= min

{

f1(t, v) :
1
4

≤ t ≤ 3
4

,
1
42

(
11
96

)2 1
44 R̂3 ≤ v ≤ 1

62 R̂3
}

= min

{(

t +
258 · 36

116

)

v2 :
1
4

≤ t ≤ 3
4

,
1
42

(
11
96

)2 1
44 R̂3 ≤ v ≤ 1

62 R̂3
}

=
(

1
4

+
258 · 36

116

)
1

412

(
11
96

)4

R̂6.

Choosing (
258 ·36

116
1
4 + 258 ·36

116
)

1
5 < R̂ < 1, we have

θn1 (δ)θq–1
n2 (δ)Γ qϕq

(
K1

R̂

)
=

1
42

(
11
96

)2(1
4

+
258 · 36

116

)
1

412

(
11
96

)4

R̂6

=
(

1
4

+
258 · 36

116

)
116

258 · 36 R̂6 ≥ R̂,

which yields that (ii) of Theorem 3.6 holds. Therefore (3.5) has at least two positive solu-
tions.

4 Main results of Problem (1.2)
Theorem 4.1 Assume that (H3) or (H̃3) holds. In addition, assume that the functions Fi,
Gi (i = 1, 2) satisfy the following condition:

there exist αi,βi > 0 (i = 1, 2) with αi ≤ (p – 1) and βi ≤ (p – 1) such that

F0
1 = G0

1 = +∞ and F∞
2 = G∞

2 = 0.

Then (1.2) has at least one positive solution.

Proof Let E denote the Banach space C[0, 1] × C[0, 1] with norm ‖(u, v)‖ = max{|u(t)|1,
|v(t)|1}, where |u|1 = maxt∈[0,1] |u(t)|. Define the mapping A : E → E by

A(u, v)(t) =
(
A1(u, v)(t), A2(u, v)(t)

)
,
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where

A1(u, v)(t) =
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f

(
u(τ ), v(τ )

)
dτ

)

ds,

A2(u, v)(t) =
∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )g

(
u(τ ), v(τ )

)
dτ

)

ds.

Let P = {u ∈ C[0, 1], u ≥ 0}, and let K be its subcone defined by

K =
{

u ∈ P : min
δ≤t≤1–δ

u(t) ≥ σ (n1)|u|1
}

×
{

v : min
δ≤t≤1–δ

v(t) ≥ σ (m1)|v|1
}

.

As in the proof of Lemma 3.1, it is clear that A : K → K is completely continuous.
On one hand, from the assumption F∞

2 = G∞
2 = 0 it follows that there exist ε > 0 and

R > 0 such that

F2(v) ≤ εvβ1 for v ≥ R and G2(u) ≤ εuβ2 for u ≥ R,

where ε satisfies

εq–1 max
{

L(n1, n2), L(m1, m2)
}

< 1.

For given R, let

N1 = max
0≤v≤R

F2(v), N2 = max
0≤u≤R

G2(u).

Then we have

f (u, v) ≤ F2(v) ≤ εvβ1 + N1, g(u, v) ≤ G2(u) ≤ εuβ2 + N2 for u, v ≥ 0.

Furthermore, we have the the estimates

A1(u, v)(t) =
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f

(
u(τ ), v(τ )

)
dτ

)

ds

≤
∫ 1

0

1
6n1–1 s(1 – s)ϕq

(∫ 1

0

1
6n2–1 τ (1 – τ )

[
εvβ1 (τ ) + N1

]
dτ

)

ds

= L(n1, n2)
(
ε|v|β1

1 + N1
)q–1

and

A2(u, v)(t) =
∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )g

(
u(τ ), v(τ )

)
dτ

)

ds

≤
∫ 1

0

1
6m1–1 s(1 – s)ϕq

(∫ 1

0

1
6m2–1 τ (1 – τ )

[
εuβ2 (τ ) + N2

]
dτ

)

ds

= L(m1, m2)
(
ε|u|β2

1 + N2
)q–1.
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Therefore, combining them with the assumption βi ≤ p – 1, we get that there exists a
sufficiently large R > 0 such that, for any (u, v) ∈ ∂ΩR ∩ K ,

∥
∥A(u, v)

∥
∥ ≤ max

{
L(n1, n2)

(
ε|v|β1

1 + N1
)q–1, L(m1, m2)

(
ε|u|β2

1 + N2
)q–1}

≤ max
{

L(n1, n2)
(
εRβ1 + N1

)q–1, L(m1, m2)
(
εRβ2 + N2

)q–1} ≤ R.

On the other hand, from the assumption F0
1 = G0

1 = +∞ it follows that there exist M > 0
and r < 1 such that

F1(v) ≥ Mvα1 for 0 ≤ v ≤ r and G1(u) ≥ Muα2 for 0 ≤ u ≤ r,

where M satisfies

M(q–1) min
{

S(n1, n2, m1,α1), S(m1, m2, n1,α2)
} ≥ 1.

Then for any (u, v) ∈ ∂Ωr ∩ K and t0 ∈ [δ, 1 – δ], we have

A1(u, v)(t0) =
∫ 1

0
Gn1 (t0, s)ϕq

(∫ 1

0
Gn2 (s, τ )f

(
u(τ ), v(τ )

)
dτ

)

ds

≥
∫ 1–δ

δ

θn1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θn2 (δ)τ (1 – τ )F1
(
v(τ )

)
dτ

)

ds

≥
∫ 1–δ

δ

θn1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θn2 (δ)τ (1 – τ )Mσα1 (m1)|v|α1
1 dτ

)

ds

≥ M(q–1)S(n1, n2, m1,α1)|v|α1(q–1)
1 > |v|α1(q–1)

1 .

In a similar way, we also have

A2(u, v)(t0) =
∫ 1

0
Gm1 (t0, s)ϕq

(∫ 1

0
Gm2 (s, τ )

)

g
(
u(τ ), v(τ )

)
dτ ) ds

≥ M(q–1)S(m1, m2, n1,α2)|u|α2(q–1)
1 > |u|α2(q–1)

1 .

Furthermore, we obtain

max
{

A1(u, v)(t0), A2(u, v)(t0)
}

> max
{|v|α1(q–1)

1 , |u|α2(q–1)
1

}

= max
{

rα1(q–1), rα2(q–1)} ≥ r.

Therefore, for any (u, v) ∈ ∂Ωr ∩ K , we have ‖A(u, v)‖ > ‖(u, v)‖.
Therefore by Lemma 2.5 the operator A has at least one fixed point in K ∩

(ΩR \ Ωr). �

Theorem 4.2 Assume that (H3) or (H̃3) holds. In addition, let the functions Fi, Gi (i = 1, 2)
satisfy the following assumption:

there exist α̃i, β̃i > 0 with α̃i ≥ (p – 1) and β̃i ≥ (p – 1) such that

F∞
1 = G∞

1 = +∞, F0
2 = G0

2 = 0.

Then (1.2) has at least one positive solution.
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Proof On one hand, from the assumption F0
2 = G0

2 = 0 it follows that there exist ε > 0 and
r < 1 such that

F2(v) ≤ εvβ̃1 for 0 ≤ v ≤ r and G2(u) ≤ εuβ̃2 for 0 ≤ u ≤ r,

where ε satisfies

εq–1 max
{

L(n1, n2), L(m1, m2)
}

< 1.

Then, for any (u, v) ∈ ∂Ωr ∩ K , we have

A1(u, v)(t) =
∫ 1

0
Gn1 (t, s)ϕq

(∫ 1

0
Gn2 (s, τ )f

(
u(τ ), v(τ )

)
dτ

)

ds

≤
∫ 1

0

1
6n1–1 s(1 – s)ϕq

(∫ 1

0

1
6n2–1 τ (1 – τ )

[
εvβ̃1 (τ )

]
dτ

)

ds

= L(n1, n2)
(
ε|v|β̃1

1
)q–1

and

A2(u, v)(t) =
∫ 1

0
Gm1 (t, s)ϕq

(∫ 1

0
Gm2 (s, τ )g

(
u(τ ), v(τ )

)
dτ

)

ds

≤
∫ 1

0

1
6m1–1 s(1 – s)ϕq

(∫ 1

0

1
6m2–1 τ (1 – τ )

[
εuβ̃2 (τ )

]
dτ

)

ds

= L(m1, m2)
(
ε|u|β̃2

1
)q–1.

Therefore, combining these inequalities with the assumption β̃i ≥ p – 1, we have

∥
∥A(u, v)

∥
∥ < max

{|v|β̃1(q–1)
1 , |u|β̃2(q–1)

1
} ≤ r.

On the other hand, from the assumption F∞
1 = G∞

1 = +∞ it follows that there exist M > 0
and R > r such that

F1(v) ≥ Mvα̃1 for v ≥ R and G1(u) ≥ Muα̃2 for u ≥ R,

where M satisfies

M(q–1) min
{

S(n1, n2, n1, α̃1), S(m1, m2, m1, α̃2)
} ≥ 1.

Set R = max{ R
σ (n1) + 1, R

σ (m1) + 1}. Let

D1 = min
0≤u≤R

F1
(
v(τ )

)
, D2 = min

0≤u≤R
G1

(
u(τ )

)
.

Then, for any (u, v) ∈ ∂ΩR ∩ K and t0 ∈ [δ, 1 – δ], we consider two cases.
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Case i: If ‖(u, v)‖ = |v|1 = R, then mint∈[δ,1–δ] v(t) ≥ σ (m1)|v|1 > R, and we have

A1(u, v)(t0) =
∫ 1

0
Gn1 (t0, s)ϕq

(∫ 1

0
Gn2 (s, τ )f

(
u(τ ), v(τ )

)
dτ

)

ds

≥
∫ 1–δ

δ

θn1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θn2 (δ)τ (1 – τ )F1
(
v(τ )

)
dτ

)

ds

≥
∫ 1–δ

δ

θn1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θn2 (δ)τ (1 – τ )Mσ α̃1 (m1)|v|α̃1
1 dτ

)

ds

≥ M(q–1)S(n1, n2, m1, α̃1)|v|α̃1(q–1)
1 > |v|α̃1(q–1)

1

and

A2(u, v)(t0) =
∫ 1

0
Gm1 (t0, s)ϕq

(∫ 1

0
Gm2 (s, τ )

)

g
(
u(τ ), v(τ )

)
dτ ) ds

≥
∫ 1

0
Gm1 (t0, s)ϕq

(∫ 1

0
Gm2 (s, τ )

)

G1
(
u(τ )

)
dτ ) ds

≥
∫ 1

0
Gm1 (t0, s)ϕq

(∫ 1

0
Gm2 (s, τ )

)

D2 dτ ) ds.

Furthermore, we obtain

max
{

A1(u, v)(t0), A2(u, v)(t0)
}

> max

{

|v|α̃1(q–1)
1 ,

∫ 1

0
Gm1 (t0, s)ϕq

(∫ 1

0
Gm2 (s, τ )

)

D2 dτ ) ds
}

≥ |v|α̃1(q–1)
1 = Rα̃1(q–1) ≥ R.

Case ii: If ‖(u, v)‖ = |u|1 = R, then mint∈[δ,1–δ] u(t) ≥ σ (n1)|u|1 > R, and we have

A1(u, v)(t0) =
∫ 1

0
Gmn1(t0, s)ϕq

(∫ 1

0
Gn2 (s, τ )

)

f
(
u(τ ), v(τ )

)
dτ ) ds

≥
∫ 1

0
Gn1 (t0, s)ϕq

(∫ 1

0
Gn2 (s, τ )

)

F1
(
v(τ )

)
dτ ) ds

≥
∫ 1

0
Gn1 (t0, s)ϕq

(∫ 1

0
Gn2 (s, τ )

)

D1 dτ ) ds

and

A2(u, v)(t0) =
∫ 1

0
Gm1 (t0, s)ϕq

(∫ 1

0
Gm2 (s, τ )g

(
u(τ ), v(τ )

)
dτ

)

ds

≥
∫ 1–δ

δ

θm1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θm2 (δ)τ (1 – τ )G1
(
u(τ )

)
dτ

)

ds

≥
∫ 1–δ

δ

θm1 (δ)s(1 – s)ϕq

(∫ 1–δ

δ

θm2 (δ)τ (1 – τ )Mσ α̃2 (n1)|u|α̃2
1 dτ

)

ds

≥ M(q–1)S(m1, m2, n1, α̃2)|u|α̃2(q–1)
1 > |u|α̃2(q–1)

1 .
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Furthermore, we obtain

max
{

A1(u, v)(t0), A2(u, v)(t0)
}

> max

{∫ 1

0
Gn1 (t0, s)ϕq

(∫ 1

0
Gn2 (s, τ )

)

D1 dτ ) ds, |u|α̃2(q–1)
1

}

≥ |u|α̃2(q–1)
1 = Rα̃2(q–1) ≥ R.

So, for any (u, v) ∈ ∂ΩR ∩ K , we have ‖A(u, v)‖ > ‖(u, v)‖.
Therefore by Lemma 2.5 the operator A has at least one fixed point in K ∩

(ΩR \ Ωr). �

Example 4 Let α,β > 0 and p = 4. Then, for the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(–1)n[ϕ4(u(2n1))](2n2) = (sin(u + v) + 1)vα(t), t ∈ (0, 1),

(–1)m[ϕ4(v(2m1))](2m2) = (e–v + arctan(u + 1))uβ (t), t ∈ (0, 1),

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, . . . , n – 1,

v(2j)(0) = v(2j)(1) = 0, j = 0, 1, . . . , m – 1,

it is obvious that

F1(v) = vα(t) ≤ f (u, v) =
(
sin(u + v) + 1

)
vα(t) ≤ F2(v) = 2vα(t),

G2(u) =
π

4
uβ (t) ≤ g(u, v) =

(
e–v + arctan(u + 1)

)
uβ (t) ≤ G2(u) =

(

1 +
π

2

)

uβ (t).

We choose α1 = α̃1 = 3, α2 = α̃2 = β+3
2 , β1 = β̃1 = 3α+3

4 , β2 = β̃2 = 4β+3
5 .

Case I. If α,β < 3, then it is easy to verify that

F0
1 = lim inf

v→0+

F1(v)
cα1

= lim inf
v→0+

vα

v3 = +∞,

F∞
2 = lim sup

v→+∞
F2(v)
vβ1

= lim sup
v→+∞

vα

v 3α+3
4

= 0,

G0
1 = lim inf

u→0+

G1(u)
uα2

= lim inf
u→0+

uβ

u
β+3

2
= +∞,

G∞
2 = lim sup

u→+∞
G2(u)

uβ2
= lim sup

u→+∞
uβ

u
4β+3

5
= 0.

So by Theorem 4.1 the problem has at least one positive solution.
Case II. If α,β > 3, then it is easy to verify that

F∞
1 = lim inf

v→+∞
F1(v)
vα̃1

= lim inf
v→+∞

vα

v3 = +∞,

F0
2 = lim sup

v→0+

F2(v)
vβ̃1

= lim sup
v→0+

vα

v 3α+3
4

= 0,
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G∞
1 = lim inf

u→+∞
G1(u)

uα̃2
= lim inf

u→+∞
uβ

u
β+3

2
= +∞,

G0
2 = lim sup

u→0+

G2(u)
uβ̃2

= lim sup
u→0+

uβ

u
4β+3

5
= 0.

So by Theorem 4.2 the problem has at least one positive solution.
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