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Abstract
By using variational methods, we obtain infinitely many nontrivial periodic solutions
for a class of damped vibration systems with superquadratic terms at infinity. By using
some weaker conditions, our results extend and improve some existing results in the
literature. Besides, some examples are given to illustrate our results.
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1 Introduction and the main result
In this paper, we study the existence of infinitely many nontrivial periodic solutions for
the following damped vibration system:

⎧
⎨

⎩

ü + (q(t)IN×N + B)u̇ + ( 1
2 Bq(t) – A(t))u + Fu(t, u) = 0, t ∈R,

u(0) – u(T) = u̇(0) – u̇(T) = 0, T > 0,
(1.1)

where u = u(t) ∈ C2(R,RN ), IN×N is the N × N identity matrix, q(t) ∈ L1(R;R) is T-
periodic and satisfies

∫ T
0 q(t) dt = 0, A(t) = [aij(t)] is a T-periodic symmetric N ×N matrix-

valued function with aij ∈ L∞(R;R) (∀i, j = 1, 2, . . . , N ), B = [bij] is an antisymmetric N ×N
constant matrix.

When B = 0 (zero matrix), the authors [6] studied the special case of (1.1) and ob-
tained the existence and multiplicity of periodic solutions. When B �= 0, the author [2]
obtained infinitely many periodic solutions of (1.1) with F(t, u) satisfying the asymptoti-
cally quadratic condition:

lim|u|→∞
F(t, u)
|u|2 = V (t) uniformly for t ∈ [0, T], where inf

t∈[0,T]
V (t) > 0, (1.2)
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the authors [4] obtained one existence result and two multiplicity results with F(t, u) sat-
isfying the superquadratic condition:

0 < μF(t, u) ≤ (
Fu(t, u), u

)
, ∀t ∈ [0, T],∀|u| ≥ r, (1.3)

where μ > 2 and r ≥ 0 are some constants, (·, ·) and | · | denote the inner product and
the associated norm in R

N; the author [3] used a more general superquadratic condition
(lim|u|→∞ F(t,u)

|u|2 = +∞ uniformly for t ∈ [0, T]) and obtained infinitely many periodic solu-
tions for (1.1).

By the more general superquadratic condition used in [3] and some weaker conditions,
we also obtain infinitely many periodic solutions for (1.1). Our main result reads as follows.

Theorem 1.1 System (1.1) has infinitely many nontrivial T-periodic solutions if F(t, u) is
T-periodic in t and even in u, and the following conditions hold:

(F1) F(t, u) is measurable in t for every u ∈ R
N and continuously differentiable in u for

a.e. t ∈ [0, T], and there exist a ∈ C(R+,R+), b ∈ L1([0, T];R+) such that

∣
∣F(t, u)

∣
∣ ≤ a

(|u|)b(t),
∣
∣Fu(t, u)

∣
∣ ≤ a

(|u|)b(t), ∀(t, u) ∈ [0, T] ×R
N .

(F2) F(t, u) ≥ 0, ∀(t, u) ∈ [0, T] ×R
N , and

lim|u|→∞
F(t, u)
|u|2 = +∞ uniformly for t ∈ [0, T].

(F3) There exists α > 2 such that

lim|u|→∞
Fu(t, u)
|u|α–1 < +∞ uniformly for t ∈ [0, T].

(F4) There are constants b > 0 and 1 ≤ β ∈ (α – 2, +∞) such that

lim|u|→∞ inf
(Fu(t, u), u) – 2F(t, u)

|u|β > b uniformly for t ∈ [0, T].

To compare our result with the most related result [3], we firstly describe the result in
[3].

Theorem 1.2 ([3]) System (1.1) has infinitely many nontrivial T-periodic solutions if F ∈
C1(R×R

N ,R) is T-periodic in t and even in u, and it satisfies the following conditions:
(SF1) F(t, 0) = 0, ∀t ∈ [0, T], and there are two constants d1 > 0 and α1 > 2 such that

∣
∣Fu(t, u)

∣
∣ ≤ d1

(
1 + |u|α1–1), ∀(t, u) ∈ [0, T] ×R

N .

(SF2) 1
2 (Fu(t, u), u) ≥ F(t, u) ≥ 0 for all (t, u) ∈ [0, T] ×R

N and

lim|u|→∞
F(t, u)
|u|2 = +∞ uniformly for t ∈ [0, T].
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(SF3) There is a constant b > 0 such that

lim|u|→∞ inf
(Fu(t, u), u) – 2F(t, u)

|u|α1
> b uniformly for t ∈ [0, T].

Remark 1.1 The method of Theorem 1.1 is based on the fountain theorem of Bartsch [1],
which is essentially different from the variant fountain theorem developed by Zou [7] used
in [3]. Our result extends and improves the result in [3]. The reasons are as follows:

(1) We only need F to satisfy (F1) rather than F ∈ C1(R×R
N ,R).

(2) We remove the condition 1
2 (Fu(t, u), u) ≥ F(t, u) for all (t, u) ∈ [0, T] ×R

N in (SF2).
(3) Condition (F3) is weaker than (SF1). Indeed, condition (SF1) implies

∣
∣F(t, u) – F(t, 0)

∣
∣ =

∣
∣
∣
∣

∫ 1

0

(
Fu(t, su), u

)
ds

∣
∣
∣
∣ ≤ d1

(|u|+ |u|α1
)
, ∀(t, u) ∈ [0, T]×R

N ,

it follows from the continuity of F(·, 0) that (for all α ≥ α1)

lim|u|→∞ sup
|F(t, u)|

|u|α

≤ lim|u|→∞ sup
d1(|u| + |u|α1 ) + maxt∈[0,T] |F(t, 0)|

|u|α < +∞ uniformly for t ∈ [0, T].

(4) The constant β in our condition (F4) is more general than α1 in (SF3).

Example 1.1 The following example is given to illustrate our result. Let

F(t, u) := h(t)|u|2 ln
(
1 + |u|2), u ∈R

N , t ∈ [0, T],

where h ∈ L∞(0, T ;R+) with inft∈[0,T] h(t) > 0. Then

Fu(t, u) = 2h(t) ln
(
1 + |u|2)u +

2h(t)|u|2u
1 + |u|2 .

It is not hard to check that the function satisfies our conditions (F1)–(F4).

The rest of our paper is organized as follows. In Sect. 2, we establish variational frame-
work associated with (1.1) and give some preliminary lemmas, which are useful in the
proof of our result, and then we give the detailed proof of our main result.

2 Variational frameworks and the proof of Theorem 1.1
Let ‖ · ‖p denote the norm of Lp([0, T];RN ) for any p ∈ [1,∞]. Let

W :=
{

u = u(t) : [0, T] →R
N |u is absolutely continuous, u(0) = u(T), and

u̇ ∈ L2([0, T];RN)}

with the inner product

(u, v)W :=
∫ T

0

[
(u, v) + (u̇, v̇)

]
dt, ∀u, v ∈ W .

The corresponding norm is defined by ‖u‖W = (u, u)1/2
W . Obviously, W is a Hilbert space.
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Let

Q(t) :=
∫ t

0
q(s) ds

and

‖u‖0 :=
(∫ T

0
eQ(t)(|u|2 + |u̇|2)dt

)1/2

, u ∈ W .

Obviously, the norm ‖ · ‖0 is equivalent to the usual one ‖ · ‖W on W . We denote by 〈·, ·〉0

the inner product corresponding to ‖ · ‖0 on W .
The corresponding functional for problem (1.1) is defined by

Φ(u) :=
1
2

∫ T

0
eQ(t)[|u̇|2 + (Bu, u̇) +

(
A(t)u, u

)]
dt –

∫ T

0
eQ(t)F(t, u) dt, u ∈ W . (2.1)

Let L : W → W ∗ (W ∗ is the dual space of W ) be an operator defined by

Lu(v) :=
∫ T

0
eQ(t)

[

(Bu̇, v) +
1
2

q(t)(Bu, v)
]

dt, ∀u, v ∈ W .

We can identify W ∗ with W by Riesz representation theorem, so Lu can be viewed as a
function belonging to W such that

Lu(v) = 〈Lu, v〉0, ∀u, v ∈ W .

It is not hard to check that L is a bounded linear operator on W . From the discussion in
[4], we get that L is self-adjoint and compact on W . Since B is an antisymmetric N × N
constant matrix, it follows from integration by parts that

〈Lu, u〉0 =
∫ T

0
eQ(t)

[

(Bu̇, u) +
1
2

q(t)(Bu, u)
]

dt =
∫ T

0
eQ(t)[(Bu̇, u)

]
dt.

We define an operator K : W → W ∗ by

〈Ku, v〉0 = 〈Lu, v〉0 +
∫ T

0
eQ(t)((IN×N – A(t)

)
u, v

)
dt, ∀u, v ∈ W .

Then it is easy to check that K is a bounded self-adjoint linear operator. Therefore, the
definitions of 〈·, ·〉0 and K imply that Φ defined in (2.1) can be rewritten as

Φ(u) =
1
2
〈
(I – K)u, u

〉

0 –
∫ T

0
eQ(t)F(t, u) dt, u ∈ W ,

where I denotes the identity operator.
By the classical spectral theory, we have the decomposition

W = W 0 ⊕ W – ⊕ W +,
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where W 0 := ker(I – K), W + and W – are the positive and negative spectral subspaces of
I – K in W , respectively. Besides, W – and W 0 are finite dimensional (see [4]). Obviously,
we can define a new equivalent inner product 〈·, ·〉 on W with corresponding norm ‖ · ‖
such that

〈
(I – K)u, u

〉

0 = ±‖u‖2, ∀u ∈ W ±.

Then we have

Φ(u) =
1
2
〈
(I – K)u, u

〉

0 – I(u)

=
1
2
(∥
∥u+∥

∥2 –
∥
∥u–∥

∥2) – I(u), u ∈ W ,

where I(u) :=
∫ T

0 eQ(t)F(t, u) dt. Then, by the assumptions of F , we know that I and Φ are
continuously differentiable and

Φ ′(u)v =
〈
u+, v+〉

–
〈
u–, v–〉

– I ′(u)v, I ′(u)v =
∫ T

0
eQ(t)(Fu(t, u), v

)
dt,

where u, v ∈ W = W – ⊕ W 0 ⊕ W + with u = u– + u0 + u+ and v = v– + v0 + v+; besides, the
T-periodic solutions of (1.1) are the critical points of the C1 functional Φ : W → R (see
[4]).

Since the embedding of W into C(0, T ;RN ) is compact, there exists a constant C > 0
such that

‖u‖∞ ≤ C‖u‖, ∀u ∈ W , (2.2)

where ‖u‖∞ = maxt∈[0,T] |u(t)|. Besides, by the Sobolev embedding theorem, we get di-
rectly the following lemma.

Lemma 2.1 W is compactly embedded in Lp([0, T];RN ), ∀p ∈ [1, +∞].

In order to prove Theorem 1.1, we state the fountain theorem of Bartsch (see [1, 5]). Let
W be a Banach space with the norm ‖ · ‖ and W :=

⊕
m∈N Xm with dim Xm < ∞ for any

m ∈N. Set

Yk :=
k⊕

m=1

Xm, Zk :=
∞⊕

m=k

Xm. (2.3)

Lemma 2.2 (Fountain theorem) We assume that Φ ∈ C1(X,R) satisfies the Cerami con-
dition, Φ(–u) = Φ(u). For almost every k ∈ N , there exist ρk > rk > 0 such that

(i) ak := infu∈Zk ,‖u‖=rk Φ(u) → +∞ as k → ∞.
(ii) bk := maxu∈Yk ,‖u‖=ρk Φ(u) ≤ 0.

Then Φ has a sequence of critical values tending to +∞.

Remark 2.1 Under the Palais–Smale (PS) condition, the fountain theorem is established in
[1, 5]. Because the deformation theorem holds true under the Cerami condition, we know
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the fountain theorem is still valid under the Cerami condition. Here, if any sequence un ⊂
X such that {Φ(un)} is bounded and ‖Φ ′(un)‖(1 + ‖un‖) → 0 as n → ∞ has a convergent
sequence, we say that Φ ∈ C1(X, R) satisfies the Cerami condition, such a subsequence is
then called a Cerami sequence.

Lemma 2.3 If assumptions (F1), (F3), and (F4) hold, then Φ satisfies the Cerami condi-
tion (C).

Proof We assume that, for any sequence {un} ⊂ W , {Φ(un)} is bounded and ‖Φ ′(un)‖×
(1 + ‖un‖) → 0.

Part 1. We firstly prove the boundedness of {un}. There is a constant M > 0 such that

∣
∣Φ(un)

∣
∣ ≤ M and

∥
∥Φ ′(un)

∥
∥
(
1 + ‖un‖

) ≤ M, ∀n ∈N
+. (2.4)

It follows from (F4) that there exist c1 > 0 and M1 > 1 such that

(
Fu(t, u), u

)
– 2F(t, u) ≥ c1|u|β , ∀|u| ≥ M1,∀t ∈ [0, T]. (2.5)

By (F1), one has that

∣
∣
(
Fu(t, u), u

)
– 2F(t, u)

∣
∣ ≤ c2b(t), ∀|u| ≤ M1,∀t ∈ [0, T], (2.6)

where c2 = (M1 + 2) maxs∈[0,M1] a(s). Combining (2.5) and (2.6), we get that

(
Fu(t, u), u

)
– 2F(t, u) ≥ c1|u|β – c1Mβ

1 – c2b(t), ∀|u| ∈R
N ,∀t ∈ [0, T]. (2.7)

It follows from eQ(t) ≥ d1 for some constant d1 > 0 (∀t ∈ [0, T]), (2.4), (2.7), the definitions
of Φ(u) and Φ ′(u) that

3M ≥ 2Φ(un) –
〈
Φ ′(un), un

〉

=
∫ T

0
eQ(t)[(Fu(t, un), un

)
– 2F(t, un)

]
dt

≥ d1c1

∫ T

0
|un|β dt – d1c1Mβ

1 T – d1c2

∫ T

0
b(t) dt, ∀n ∈N

+. (2.8)

By (2.8) and b ∈ L1([0, T];R+), we have

∫ T

0
|un|β dt ≤ D, ∀n ∈N

+ (2.9)

for some D > 0. Let Πn = {t ∈ [0, T] : |un| ≥ M1}, then we have
∫

Πn

|un|β dt ≤ D1, ∀n ∈ N
+

for some D1 > 0. Since β ≥ 1, we also have
∫

Πn

|un|dt ≤ D1, ∀n ∈N
+. (2.10)
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For any n ∈ N , let χn : R →R be the indicator of Πn, that is,

χn(t) :=

⎧
⎨

⎩

1, t ∈ Πn,

0, t /∈ Πn,
∀n ∈N

+.

Then, by the definition of Πn and (2.10), we have

∥
∥(1 – χn)un

∥
∥∞ ≤ M1 and ‖χnun‖1 ≤ D1, ∀n ∈N

+.

It follows from the equivalence of any two norms on a finite-dimensional space W 0 ⊕ W –

that
∥
∥u–

n
∥
∥2

2 =
(
u–

n , un
)

2

=
(
u–

n , (1 – χn)un
)

2 +
(
u–

n ,χnun
)

2

≤ ∥
∥(1 – χn)un

∥
∥∞ · ∥∥u–

n
∥
∥

1 +
∥
∥u–

n
∥
∥∞ · ‖χnun‖1

≤ (
h1

∥
∥(1 – χn)un

∥
∥∞ + h2‖χnun‖1

)∥
∥u–

n
∥
∥

2

≤ (h1M1 + h2D1)
∥
∥u–

n
∥
∥

2, ∀n ∈N
+

for some h1, h2 > 0. Therefore,

∥
∥u–

n
∥
∥

2 ≤ h1M1 + h2D1, ∀n ∈ N
+,

which together with the equivalence of any two norms on a finite-dimensional space W 0 ⊕
W – implies that

∥
∥u–

n
∥
∥ ≤ D2, ∀n ∈N

+ (2.11)

for some D2 > 0.
It follows from (F3) that there exist c3 > 0 and M2 > 0 such that

F(t, u) ≤ c3|u|α , ∀|u| ≥ M2,∀t ∈ [0, T].

By (F1), one has that

∣
∣F(t, u)

∣
∣ ≤ c4b(t), ∀|u| ≤ M2,∀t ∈ [0, T],

where c4 = maxs∈[0,M2] a(s). Hence, we obtain

F(t, u) ≤ c3|u|α + c4b(t), ∀|u| ∈R
N ,∀t ∈ [0, T]. (2.12)

By (2.4), (2.11), (2.12), and eQ(t) ≤ d2 for some constant d2 > 0 (∀t ∈ [0, T]), we have

1
2
‖un‖2 = Φ(un) +

∥
∥u–

n
∥
∥ +

∫ T

0
eQ(t)F(t, un) dt

≤ M + D2 + d2c3

∫ T

0
|un|α dt + d2c4

∫ T

0
b(t) dt, ∀n ∈N

+. (2.13)
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If β > α, Hölder’s inequality and (2.9) imply that

∫ T

0
|un|α dt ≤ T (β–α)/β

(∫ T

0
|un|β dt

)α/β

< +∞, ∀n ∈ N
+. (2.14)

It follows from (2.13), (2.14), and b ∈ L1([0, T];R+) that (un) is bounded.
If β ≤ α, using (2.2), we have that

∫ T

0
|un|α dt =

∫ T

0
|un|β |un|α–β dt

≤ ‖un‖α–β
∞

∫ T

0
|un|β dt

≤ Cα–β‖un‖α–β

∫ T

0
|un|β dt, ∀n ∈ N

+.

Noting the fact that α – β < 2, it follows from (2.9), (2.13), and b ∈ L1([0, T];R+) that (un)
is bounded.

Part 2. Then we prove that the sequence {un} has a convergent sequence. The bounded-
ness of {un} implies that un ⇀ u in W . First, we prove

∫ T

0
eQ(t)(Fu(t, un), un – u

)
dt → 0, n → ∞. (2.15)

Note that Lemma 2.1 implies that un → u in Lp and there is a constant c5 > 0, we have

‖un – u‖p → 0, ‖un‖p ≤ c5‖u‖, ∀1 ≤ p < ∞. (2.16)

If |u| ≥ M3, M3 > 0, it follows from (F3) that there exists c6 > 0 such that

Fu(t, u) ≤ c6|u|α–1, ∀|u| ≥ M3,∀t ∈ [0, T]. (2.17)

According to the boundedness of (un) and Lemma 2.1, we have ‖un‖ < ∞. It follows from
eQ(t) ≤ d2, (2.16), (2.17), and Hölder’s inequality that

∫ T

0
eQ(t)(Fu(t, un), un – u

)
dt

≤ d2

∫ T

0

(
c6|u|α–1)(un – u) dt

≤ c6d2‖un – u‖α · ‖un‖α–1
α

≤ cα–1
5 c6d2‖un – u‖α · ‖un‖α–1 → 0. (2.18)

If |u| ≤ M3, by (F1), one has that

∣
∣Fu(t, u)

∣
∣ ≤ c7b(t), ∀|u| ≤ M3,∀t ∈ [0, T], (2.19)
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where c7 = maxs∈[0,M3] a(s). By Lemma 2.1, (2.19), eQ(t) ≤ d2, and b ∈ L1([0, T];R+), we ob-
tain

∫ T

0
eQ(t)(Fu(t, un), un – u

)
dt

≤ d2

∫ T

0
c7b(t)(un – u) dt

≤ c7d2‖un – u‖∞
∫ T

0
b(t) dt → 0. (2.20)

Combining (2.18) and (2.20), we can see that (2.15) holds. Therefore, by (2.15), Φ ′(un) → 0,
un ⇀ u in W , and the definition of Φ ′, we have

0 = lim
n→∞

〈
Φ ′(un), un – u

〉

= lim
n→∞(un, un – u) – lim

n→∞

∫ T

0
eQ(t)(Fu(t, un), un – u

)
dt

= lim
n→∞‖un‖2 – ‖u‖2 – 0. (2.21)

That is,

lim
n→∞‖un‖ = ‖u‖. (2.22)

It follows from un ⇀ u in W that

‖un – u‖2 = (un – u, un – u) → 0,

so {un} has a convergent subsequence in W . Thus Φ satisfies the Cerami condition. �

Since dim W 0 and dim W – are finite, we can choose an orthonormal basis {em}k1
m=1 of

W 0, an orthonormal basis {em}k2
m=k1+1 of W –, and an orthonormal basis {em}∞m=k2+1 of W +,

where 1 ≤ k1 < k2 and k1 + 1 ≤ k2 < ∞. Then {em}∞m=1 is an orthonormal basis of W . Let
Xm := Rem, then Yk and Zk can be defined as (2.3).

Lemma 2.4 If Zk =
⊕

m≥k Xm, then

βk := sup
u∈Zk ,‖u‖=1

‖u‖∞ → 0 as k → ∞.

Proof It is clear that 0 < βk+1 ≤ βk , so βk → β ≥ 0, k → ∞. For every k ∈ N , there exists
uk ∈ Zk such that ‖uk‖ = 1 and ‖uk‖∞ > 1

2βk . By the definition of Zk , uk ⇀ 0 in W , then
by Lemma 2.1 in [3] and Rellich’s embedding theorem (see [5]), uk → 0 in Zk . Therefore,
we have β = 0, that is, βk → 0. �

Proof of Theorem 1.1 For the Hilbert space W , define Yk and Zk as in (2.3). According to
Lemma 2.3 and the evenness of F(t, ·), we know that Φ satisfies the Cerami condition (C)
and Φ(–u) = Φ(u). It remains to verify conditions (i) and (ii) of Lemma 2.2.
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Verification of (i). Taking rk = β–1
k , using Lemma 2.4, one has that

rk → +∞ as k → ∞.

Choose k large enough such that Zk ⊂ W + and

rk ≥
(

4 max
s∈[0,1]

a(s)
∫ T

0
eQ(t)b(t) dt

)1/2

.

Now, for u ∈ Zk with ‖u‖ = rk and (F1), we have that

Φ(u) =
1
2
‖u‖2 –

∫ T

0
eQ(t)F(t, u) dt

≥ 1
2
‖u‖2 – max

s∈[0,‖u‖∞]
a(s)

∫ T

0
eQ(t)b(t) dt

≥ 1
2
‖u‖2 – max

s∈[0,βk‖u‖]
a(s)

∫ T

0
eQ(t)b(t) dt

≥ 1
2
‖u‖2 – max

s∈[0,1]
a(s)

∫ T

0
eQ(t)b(t) dt

≥ r2
k
4

,

which implies that

ak = inf
u∈Zk ,‖u‖=rk

Φ(u) ≥ r2
k
4

→ +∞ as k → ∞.

Verification of (ii). Similar to Lemma 2.3 in [2], we get that, for a finite-dimensional sub-
space Yk ⊂ W , for any k ∈ N, there exists a constant εk > 0 such that

m
(
Λk

u
) ≥ εk , ∀u ∈ Yk \ {0}, (2.23)

where m(·) denotes the Lebesgue measure in R, Λk
u := {t ∈ [0, T] : |u| ≥ εk‖u‖}. Note that

eQ(t) ≥ d1 for some constant d1 > 0 (∀t ∈ [0, T]). By (F2), for any k ∈ N, there exists a con-
stant Sk > 0 such that

F(t, u) ≥ |u|2
d1ε

3
k

, ∀t ∈ [0, T],∀|u| ≥ Sk . (2.24)

Hence, using (2.23), (2.24), (F2), and eQ(t) ≥ d1, we have that, for any k ∈N and u ∈ Yk with
‖u‖ ≥ Sk/εk ,

Φ(u) ≤ 1
2
∥
∥u+∥

∥2 –
∫ T

0
eQ(t)F(t, u) dt

≤ 1
2
‖u‖2 –

(∫

[0,T]\Λk
u

eQ(t)F(t, u) dt +
∫

Λk
u

eQ(t)F(t, u) dt
)

≤ 1
2
‖u‖2 –

∫

Λk
u

eQ(t)F(t, u) dt



Li and Chen Boundary Value Problems        (2019) 2019:191 Page 11 of 12

≤ 1
2
‖u‖2 – d1

∫

Λk
u

|u|2
d1ε

3
k

dt

≤ 1
2
‖u‖2 –

d1ε
2
k ‖u‖2

d1ε
3
k

m
(
Λk

u
)

≤ 1
2
‖u‖2 – ‖u‖2

= –
1
2
‖u‖2. (2.25)

Now, for any k ∈N, if we choose

‖u‖ = ρk > max{γk , Sk/εk},

then (2.25) implies that

bk= max
u∈Yk ,‖u‖=ρk

Φ(u) ≤ –
1
2
ρ2

k ≤ 0, ∀k ∈N.

Consequently, by Lemma 2.2, system (1.1) has infinitely many nontrivial T-periodic so-
lutions. �

3 Conclusion
We obtain infinitely many nontrivial periodic solutions for a class of damped vibration sys-
tems with superquadratic terms at infinity. By using some weaker conditions, our results
extend and improve some existing results in the literature.
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