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1 Introduction

The purpose of this paper is to establish some new results on existence and asymptotic
analysis of positive solutions for the following singular fractional differential equation with
nonlocal boundary condition:

-Dx(t) =f(t,x(t), Ds x(t)), O0<i<l, w1

D7 x(0) = D7 %(0)=0,  Dix(1) = [} Dix(s) dX(s), '
where 2 <a <3withO<y < u<a -2, %" is defined as the Riemann-Liouville deriva-
tive, fol D" x(s)d X (s) denotes a linear functional involving the Riemann-Stieltjes inte-
grals, X is a function of bounded variation with a changing-sign measure dX’, f : (0,1) x
(0, +00) x (0, +00) — [0, +00) is continuous, and f (¢, x1,%,) may be singular at £ = 0,1 and
x1=%x2=0.

In describing viscoelasticity, Heymans and Kitagawa [1] pointed out that the accuracy
and success of the model are their abilities to describe natural phenomena including mem-
ory effects in polymers. However, in many dynamic process, the influence of memory is
often persistent, even if the factors affecting the process have disappeared, such as ob-

served in stress relaxation after a nonmonotonous loading program. Thus in order to im-
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prove the accuracy of the model, based on the non-locality of fractional order derivative,
one can choose a noninteger order differential equation to describe this type of physical
phenomena with memory effects. In addition, fractional calculus also has many other ap-
plications in various fields of science and engineering, such as a HIV model [2, 3] and a
fluid model [4—8]. Recently, Heymans and Podlubny [9] gave some physical interpretation
for the fractional spring—pot model, the Zener model, the Maxwell model and the Voigt
model. In [10], Abdon introduced a new concept of differentiation and integration com-
bining fractal differentiation and fractional differentiation, which can explain the memory
effect of heterogeneity, and elasco-viscosity of the medium and also the fractal geome-
try of the dynamic system. Using the time-scale fractional calculus, Nadia et al. [11] gave
some applications of the fractional derivatives with arbitrary time scales in white noise
from signal processing.

In the aspect of mathematical theory and application, to obtain further information of
the relative natural phenomena, many authors are interested in the existence and proper-
ties of solutions for fractional differential models [12—-27] and many analytical techniques
and methods have been developed to solve various differential equations, such as iterative
methods [28-37], the Mawhin continuation theorem for resonance [38—40], the topo-
logical degree method [41, 42], the fixed point theorem [43-55], the variational method
[56-73] and the upper and lower solution method [74, 75].

Inspired by the above work, in this paper, we mainly focus on the analytic results for
Eq. (1.1). Our strategy is firstly introducing an accurate cone of Banach space and then
constructing a couple of suitable upper and lower solutions, and finally establishing some
new results on existence and asymptotic behavior of positive solutions for the equation
by using the fixed point theorem. It is noteworthy that our approach and technique can
solve the singularity of nonlinear term f at the space variables without the need of the
complicated supremum and limit condition such as

(A) feC((0,1) x (0,+00) x (0, +00), [0,+00)) and for any 0 < r < R < +00,

lim  sup / a)(s)f(s,x(s), y(s)) ds=0,
N—>+00 ye p e(n)

T(B+1)
yeKR\Kr

where e(n) = [0, %] U [’%1, 1].
This is applied by Zhang et al. [14] for the spectral and singularity analysis for a fractional
differential equation with signed measure. The main contributions of this work are as fol-
lows:
(i) We present exact cone and suitable growth condition to overcome the difficulty due
to the singularity of the nonlinear term f at the space variables.

(ii) We establish a sufficient condition for the existence of positive solutions and give
the estimation of the positive solution and asymptotic behavior of the derivative of
positive solutions at the

(iii) Nonsingular cases for the nonlinear term f at the time and space variables are
discussed and some new results are established.
The rest of this paper is organized as follows. In Sect. 2, some preliminaries and lemmas

are presented for subsequent developments. The main results are presented in Sect. 3.
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2 Preliminaries and lemmas

For the convenience of the reader, we only present here some necessary properties from
fractional calculus theory in the sense of Riemann—-Liouville, and the corresponding def-
initions can be found in [76] or [12-25].

Proposition 2.1 ([76])
(1) Ifx,y:(0,+00) — R with order a > 0, then

D" (1) + y(2)) = D x(t) + D" y(2).
(2) Ifx € L'(0,1), v >y >0 and m is a positive integer, then

I"I"x(t) = 1" x(¢), DY I"x(t) = IV x(¢),
D17 x(t) = x(2), D" (2 x(0)) = D" x(2).

(3) Ifa>0,y >0, then

- I'(y) e
apy-1 _ y—a-1
Dt 41“(;/—0[)': .

(4) Suppose y >0, and g(x) is integrable, then
"D g(x) =gx) + c1x” L+ o’ 2 4+ ",
where c; € R (i=1,2,...,n), n is the smallest integer greater than or equal to .

In the rest of this paper, all discussions are based on the assumption 2 <o — y < 3. We

first give the following lemma.

Lemma 2.1 Let x(t) = I”z(t), z(¢t) € C[0,1], then Eq. (1.1) is equivalent to the following

boundary value problem:

=27 2(t) = f (6,17 2(1), 2(1)),

1 2.1)
2(0)=2(0)=0, D" 7z(1) = [; D" 2(s)dX(s).

Proof Firstly, let x(t) = I z(t) and z(¢) € C[0, 1]. It follows from Proposition 2.1(2) that
DY x(t) = D7 IV 2(¢) = z(¢). (2.2)

On the other hand, 2<o¢ <3 and 0<y < pu <o —2yield @ - y,a — u € (2,3). Conse-
quently, by the definition of the Riemann-Liouville derivative and integral and Proposi-
tion 2.1(2), one has

DV x(t) = D 2(8) = 2 (),
a3 a3 d?
Dx(0) = (14 0) = S (77 2(0) = S (P 2(0) (2.3)

=D, 77 2(¢).



He et al. Boundary Value Problems (2018) 2018:189 Page 4 of 17

It follows from (1.1), (2.2) and (2.3) that —2;*7 z(¢) = f (¢, 1" z(¢), z(t)) with boundary con-
ditions

1
z(0) = 2, x(0) = 0, Z(0) = 2,"*1x(0) = 0, D" 72(1) = / D" z(s)d X (s).
0

Thus, Eq. (1.1) is turned into the boundary value problem (2.1).
Conversely, if z € C([0, 1], [0, +00)) is a solution for the problem (2.1). Then letting x(¢) =
I”z(t) and using (2.2) and (2.3), we get
~D°x(t) = =D 7 2(t) = f (6, " 2(0), 2(t)) = f (6:%(0), D" %()), O<t<],

with boundary conditions
1
2" x(0) = z(0) = 0, 2" 'x(0) =7 (0) = 0, D" x(1) = / D" x(s)dX(s).
0

Consequently, the boundary value problem (2.1) is turned into Eq. (1.1). d
The following lemma is standard according to Proposition 2.1, and we omit the proof.

Lemma 2.2 Given h € L*(0,1), then the boundary value problem

D 7Vz(t)+h(t) =0, O0<t<]l,

(2.4)
z(0)=2(0)=0, D+ 7z(1)=0,
has the unique solution
1
z(t) = / G(t,s)h(s) ds,
0
where G(t,s) is the Green function of the boundary value problem (2.4) and
ta—y—l(l_s)u—u.—l_(t_s)a—y—l O <s<ft< 1
_ =) » U=s=E=b
G(6:8) = amyo1q_gant 0fesel (2.5)
I(a-y) ? - ="=

On the other hand, by Proposition 2.1, we know that the unique solution of the boundary
value problem

D% 7z(t)=0, O0<t<l1,
z(0)=2(0)=0, D#7z(1)=1,

is ?EZ ’;;t"‘ 7=1 Let

F(Of /'L) £ -1 _ F(ot—,u)
€= / Ta-p)' 40 B=Torayy 26)
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and define
1
Gx6)- [ G(ts)dx (o)
0
Following the strategy in [24], the Green function for the boundary value problem (2.1) is
W (t,s) = Bt* 7" 'Gx(s) + G(t,s). (2.7)

Thus we have the following lemma.

Lemma 2.3 Let p € L'[0,1] and 2 <o <3 with 0 <y < u < a — 2. Then the fractional

differential equation

-2 7 2(t) = p(t),
20)=2(0)=0, D 7z(1) = [} D" 2(s)dX(s),

has the unique solution

1
z(t) = / W (¢,s)p(s) ds,
0

where W (t,s) is defined by (2.7).

In order to guarantee the nonnegativity of the Green function, the following condition
is necessary.
(FO) X is a function of bounded variation satisfying Gx(s) > 0,s € [0,1] and C € [0, 1).

Lemma 2.4 Assume (F0) is satisfied, then for the Green function in (2.7) one has the fol-
lowing estimation:

(1) W(t,s)>0forall0<t,s<1.

(2)

Bt“ 7Gx (s) < W(t,s) < c(s)t* 77, (2.8)

where

(1 —s)xnl

C(S) = T—‘}/) + BgX(S)

Proof The conclusion of (1) is clear. In what follows, we prove the conclusion (2). Using
(2.5) and (2.7), one gets

W(t,s) = Bt* 7 Gx(s) + G(t,s) < BGx(s) + G(t,5)

toz—y—l (1 _ S)oz—/t—l

Ty + Bt Gy (s) = c(s)t* 7!

and

W (t,s) = Bt* 7Gx (s) + G(t,5) > Bt* 7 1Gx(s). O

Page 5of 17
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It follows from Lemma 2.3 that we have the following.

Lemma 2.5 [fz € C([0,1],R) satisfies
1
z(0)=2(0)=0, 2" 7z(1) = / D"V 2(s)d X (s),
0

and D7 z(t) < 0 forall t € (0,1), then z(¢) > 0, ¢ € [0, 1].

3 Singular cases

In this section, we first give the definition of upper and lower solution on the boundary
value problem (2.1), and then introduce some theories of function space and give our main
results.

Definition 3.1 We call a continuous function ¥ () as a lower solution for the boundary
value problem (2.1), if

~ DY) < TP (E), ¥ (D)),
¥(0)=0,4(0)=0, D7 y(1) > [o D7 (s)dX(s).

Definition 3.2 We call a continuous function ¢(¢) as a upper solution for the boundary
value problem (2.1), if

~D () > f( 1 d(8), (),
$(0)<0,8'(0) <0, D" 7P(1) < [ D" p(s)dX(s).

Let

_ ga-y-1 _F(Ol—)/) a-1
e(t) =t*7", k(t) = 7]“(0{) t

, telo,1],
and define our work space E = C[0, 1] and a subset P, of E,

P, = {z € E : there exist two positive numbers 0 < /, < 1 < L, such that

Le(t) < z(t) < L.e(t),t € [0,1]}. (3.1)

Clearly, P, is nonempty since e(t) € P,. For any z € P,, define an operator B by

1
(Bz)(t) :/ W(t,s)f(s,lyz(s),z(s)) ds. (3.2)
0

To overcome the difficulties of the singularity at the space variables, we introduce the
following growth conditions for f:
(F1) f € C((0,1) x (0,00) x (0,00), [0, +00)), and f(¢,x1,%3) is decreasing in x; > O for
i=1,2.
(F2) Foranyt >0, f(t, ﬁt}’,r) #0, and

1
0< / c(s)f (s, T (s), Te(s)) ds < +oo0.
0

Page 6 of 17
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Lemma 3.1 Assume (FO) (F1) and (F2) are satisfied, then B(P,) C P, and B is well defined.

Proof For any z € P,, it follows from the definition of P, that there exist two numbers
0 <1, <1< L, such that Le(t) < z(t) < L,e(¢) for any ¢ € [0,1]. Notice that «(¢) = [ e(¢),
then by (2.8) and (F1)—(F2), one gets

(Bz)(t) = /1 W(t,s)f(s,]yz(s),z(s)) ds
0
1
5/ c(s)f(s,]y (lze(s)),lze(s)) ds
0

< / 1 c(s)f (5,12 (s), Le(s)) ds
0

< +00. (3.3)

Take T = maxjo,1) 2(2), it follows from (F2) that, for any s € [0, 1],

s’
gX(S)f(S, m, T> #£0.

Consequently, from the continuity of f, one has
1 1714
/(; gX(S)f(S, m,f) ds > 0.
This yields
1 1
/0 QX(s)f(s,IVt,r)ds:/o gx(s)f(s,%,r> ds > 0. (3.4)
By (2.8), (3.3) and (3.4), we have
1 1
(Bz)(t) = / W(t,s)f(s,]”z(s),z(s)) ds > Be(t)/ Qx(s)f(s,l”r, ‘L’) ds > Le(t), (3.5)
0 0
where
1
L= min{ %,B/O QX(s)f(s,[Vr, ‘L') ds}.
On the other hand, in view of (2.8), we also have
1 1
(Bz)(t) = / Wi, s)f(s, P’z(s),z(s)) ds < e(t)/ c(s)f(s, Lk (s), lze(s)) ds < L;e(t), (3.6)
0 0

where
1
L = max{Z, ] c(s)f (s, Lk (s), Le(s)) ds}.
0

Thus it follows from (3.3)—(3.6) that B(P,) C P, and B is well defined. O
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Theorem 3.1 (Existence) Suppose (FO)—(F2) hold. Then Eq. (1.1) has at least one positive
solution.

Proof Firstly by Lemma 2.3 and (3.2), we have

~D:7 (B2)(1) = £ (8, 17 2(8), 2(1)),

3.7
(B2)(0) = (B2 (0) =0, D¢ (B2)(1) = [, D" (Bz)(s) dX(s). e

Next we seek for a couple of lower and upper solutions of the boundary value problem
(2.1). To do this, take

n(t) = min{e(t),Be(t)}, HOE max{e(t),Be(t)}. (3.8)

Obviously, if e(t) = Be(¢), then e(t) is a positive solution of Eq. (1.1). If e(t) # Be(t), then we
have &(¢),n(t) € P, and

n(t) <e(t) <&(t). (3.9)
Letting
V() =BE®),  ¢@)=Bn@),

we claim that the functions v (¢), ¢(¢) shall be the lower solution and upper solution of the
boundary value problem (2.1), respectively.
In fact, it follows from (F1) that B is nonincreasing relative to z. By (3.8)—(3.9), we have

v (t) = B&(¢) < Bn () = ¢(2),
¥ (t) = BE(¢) < Be(t) < §(2), (3.10)

o(t) = Bn(t) > Be(t) = n(t),

and ¥ (t), ¢(t) € P.. Thus (3.7) and (3.10) yield

DY () +f (6,17 (2), ¥ (1))
= 9,7 (BE)(t) +f (&1 (BE)(2), (BE)(2))

> D (BE)D) +f (6, I6(1),(H) =0, te(0,1), (3.11)
1
YO =) =0, D" y(1) = /0 DY) dX),
and
D7 (1) + £ (6.1 9(2), $(0))
= D (B)() + £ (1,17 (Bn)(©), (Bn) (1)
(3.12)

<27 Bn)(e) +f(6,1"n(),n(®)) =0, te(0,1),

1
$(0)=¢'(0) =0, 9:"‘V¢(1)=/0 D" P(s)dX(s).
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Thus (3.10)—(3.12) show that ¢(¢) and ¥ () are the lower and upper solutions of the bound-
ary value problem (2.1), respectively, and (), ¢(¢) € P,.
Now define the function

SEIY @), 9 (), z<y(t),
F(t,2) = {f(t,172(8),2(8), ¥ () <z < o(2), (3.13)
f(&, 7o), d(1), z>p(2),

then from (3.13), F[0,1] x [0, +00) — [0, +00) is a continuous function.
Next let us consider the following auxiliary boundary value problem:

-9,%7z(t)=F(t,z), O0<t<]l,

1 (3.14)
2(0)=2'(0)=0, 2" 7z(1) = [; D" " 2(s)d X s).

Define an operator A in E by
1
(A2)(8) = / W (t,)F(s,z(s))ds, VzeE.
0

Obviously, from Lemma 2.3, a fixed point of A is a solution of the boundary value problem
(3.14).

Forallz € E,as ¢ € P,, there exists a constant 0 < [, < 1 such that (t) > [ye(¢), ¢t € [0, 1].
Thus by Lemma 2.4, we have

1 1
(A2)(0) < / C(5)F (5,2(5)) ds < / ) (57 (5), ¥ (5)) ds
0 0
1
< / c(s)f(s,f(s, lyI"e(s), Ly e(s)) ds
0
1
= / c(s)f(s, Lyk(s), lwe(s)) ds
0
< +00.
So A isbounded. In addition, according to the continuity of F and K, we find that A: E — E

is continuous.
Let £2 be a bounded subset of E, then we have ||z|| < N for some positive constant N > 0

of W(¢,s) that, for any € > 0 and s € [0, 1], there exists ¢ > 0 such that
€
|W(t1,5) - W(t2,5)| < Z)
for |t; — £;] < 0. Then

1
|Az(tr) - Az(t)| < f |W(t1,8) = W(ta,9)||F(s,2(s)) | ds < e.
0

This implies that A(£2) is equicontinuous.
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Thus according to the Arzela—Ascoli theorem, A : E — E is a completely continuous
operator. Consequently it follows from the Schauder fixed point theorem that A has a
fixed point w such that w = Aw.

In order to show that w is also a fixed point of the operator B, we only need to prove

v(t) <wt) <¢(1), tel0,1].

We firstly verify that w(t) < ¢(¢). Let z(¢) = ¢(¢) — w(?), t € [0, 1]. Noticing that w is a fixed
point of A and (3.12), we have

z(0)=2(0)=0, 2/"7z(1)= ‘/01 D7 z(s) d X (s). (3.15)
On the other hand, it follows from (3.11) and (F1) that

(6.7 ¢®,00) <f (6,7 n(),n(2)). (3.16)
Thus by the definition of F and (3.16), one gets

&Iy @), v @) < F(6u@) <f(61¢), (1))
<f(&I"n@®),n(t), YueENVtelo,1]. (3.17)

It follows from (3.7) and (3.17) that

D t) = D B(0) - D wle) = D (Bn()) + F(wld)

= —f (&, n(£),n(2)) + F(w(t) <O0. (3.18)
Thus Lemma 2.5, (3.15) and (3.18) imply that
Similarly, we also have w(t) — ¥(£) > 0 on [0, 1]. Thus the following estimation is valid:
o) =w(t) =¥ (@), tel0,1], (3.19)
which also implies F(t, w(t)) = f (¢, I7 w(t), w(t)), t € [0, 1].
Combined with the above facts, we get that the fixed point of A is also the fixed point
of B. So w(t) is a positive solution of the boundary value problem (2.1), and consequently

x(¢) = I"w(t) is a positive solution of Eq. (1.1). O

Theorem 3.2 (Estimation and asymptotic behavior) Assume (FO)—(F2) are satisfied. Then

there exist two positive constants m, n such that the solution x(t) to Eq. (1.1) satisfies

mt* ™ <x(t) <mt*' and D x(t) = o(t*7?).
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Proof It follows from 1 € P, and (3.19) that there exists 0 < [y, < 1 such that

w(t) = Y (t) = Lye(t).

Thus, from (3.20) and (2.8), we have

1
w(t) = / Wi, s)f(s, I" w(s), w(s)) ds
0
1
< e(t)/ c(s)f(s, lwlye(s),lv,e(s)) ds
0
1
= e(t)/ c(s)f(s, lw/c(s),lv,e(s)) ds
0
< Le(t).
Consequently, one gets
lye(t) < w(t) < Le(t).

We have

1

L I'(a _V)ta_l
I'(y) '

I"e(2) = @

/t(t —s)te(s)ds =
0

By (3.22), we have

In the end, by the 'Hospital rule,

. Dx) . D)
lim —— = —_— =
t—0+ (o2 t—0+ (o0 — 2)t23

that is, 2,” x(t) = o(t*2).

4 Nonsingular cases

(3.20)

(3.21)

(3.22)

In this section, we are interested in some nonsingular cases of the nonlinear term f at time

and space variables.

Case 1: f may be singular at £ = 0 and (or) £ = 1, but f is nonsingular at x; = x, = 0:

Theorem 4.1 Suppose (FO) and the following assumptions are satisfied:
(B1) feC((0,1) x [0,00) x [0,00), [0, +00)), and f(t,x1,x2) is decreasing in x; > 0 for

i=1,2.
(B2) f(¢,0,0)£0 forany t € (0,1), and

1
0< / c(s)f (s,0,0) ds < +00.
0

Page 11 of 17
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Then Eq. (1.1) has at least one positive solution x(t) satisfying

0 <x(t) < M*tY

for some constant M* > 0. Moreover, the positive solution x(t) has boundary asymptotic

behavior

D7 x(t) = o(t“’z).

Proof In fact, we only replace the set P, in Theorem 3.1 by using

Py ={x€E:x(t)>0,t€[0,1]}.
Let

n(t) =min{0,B0} =0,  &(¢) = max{0, B0} = B0,
and set

¥ (¢) =B&(t) = B(BO),  ¢(¢) =Bn(t) = BO.

Then we have ¢(¢), ¥ (¢) € P; and

0<¢(t)=B0 and 0<1y(t)=(Bp)(t) <BO0=¢(t).

On the other hand, we also have

DY) +f (61 Y (0, ¥ (1))
=97 (BE)O) +f (6,17 ¥ (0), ¥ (1))
=f(LI7E®,6(0) +f (617 ¥ (©), ¥ (1))
=~f (61790, 0(®) +f (&1 Y (), ¥ (1))
>0, te(0,1),

and

D77 o) +f (6,17 (0), $(0))
= D7 (B @) +f (6,17 9(2), $(2))
= —f (&1 n(),n(0) + £ (£, 17 $(2), $(2))
=—f(t,0,0) + £ (t. 179 (t), 9 (1))
<0, te(0,1).

(4.2)

(4.3)

Thus from (4.1)—(4.3), ¢(¢) and v (¢) are still the lower and upper solutions of the boundary

value problem (2.1), respectively.

Page 12 of 17
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Finally, it follows from Lemma 2.3 that

1 1
¢(t) =B0 = / W (t,s)f(s,0,0)ds < / c(s)f(s,0,0) ds = N'*,
0 0

p— N*
-~ I'(y)

t
N / (t—s)tds= M*t".
0

Thus according to the proofs of Theorems 3.1-3.2, the conclusion of Theorem 4.1 is
true. g

Case 2:f(t,x1,%,) isnonsingular atboth t =0,1and x; =0, i = 1,2. Then, by Theorem 4.1,
the following conclusion is valid.

Theorem 4.2 Assume that f(t,x1,x;) : [0,1] x [0,00) X [0,00) — [0, +00) is a continuous
and decreasing function in x;, i = 1,2 with f(t,0,0) = 0 for any t € [0, 1]. If (FO) holds, then
Eq. (1.1) has at least one positive solution x(t) with the estimation

0 <x(t) < M*t"
for some constant M* > 0 and boundary asymptotic behavior Dy x(t) = o(t*~2).

Proof In fact, if f(£,x1,%5) : [0, 1] x [0, 00) x [0,00) — [0, +00) is continuous and f(Z, 0, 0)
0, then the condition (B2) holds naturally. O

5 Numerical examples
Example 1 Consider the existence of positive solutions for the following singular frac-
tional differential equation with nonlocal boundary condition:

— D3 x(t) = 1064 [(Dy2x()) F +x73()], O<t<1,

L 3 1 1,1 (5.1)
2,2x(0) = 2,2x(0) = 0, 2:2x(1) = [, De2x(s)d X (s),
where X is a function of bounded variation such that
0, t€[0,3)
X0)=13, tell?d), (5.2)
1, te[3,1]

By simple calculation, Eq. (5.1) can be transformed to the following 4-point boundary
value problem with coefficients of both signs in the boundary condition:

—D3x(t) = 1061 [(Dyix(0) 8 +x73(8)], O<t<1,

1 5 1 1 1 (5.3)
2:4x(0) = D, +x(0) = 0, D:3x(1) = 3Di3x(3) - 5De3x(3).

Conclusion: The BVP (5.1) has at least one positive solution x(£), and there exist two

positive constants m, n such that

Nlwe

3
mt2 <x(t) < nt2

with boundary asymptotic behavior Qﬁx(t) = o(t% )
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11
Proof Let a = %, y = i, u= %,f(t,xl,xg) = 101,"%:[9613 +x,°]. Then 2 < o < 3 satisfying
O<y <pu<a-2andfissingularat£=0and x; =x, = 0.

Clearly,
5 7 5
Glt.s) 1 Jta(l-s)6 —(t—5)2 =Gy(t,s), 0<s<t<1,
»8) =
F(%) t%(l—s)g =: Gy(t,s), 0<t<s<l,
and
2Gi(4,9) - 161G, 9 =(1)IB-)HA-9)8 - L -9)F + 12 -9,
O§s<%,
7
Gt - L 13626936139 =01 E- D=9 + 3G -97,
re) 1<s<?
3Gy(4,9) - 1Ga3,5) = (DB - (D)1 - 95,
2<s<l
Thus
13 13 1
( ) reg) 5
X — Y, - =V. )
Gx(s)=0 t dX(t (9) 1 X(t)dtas 0.2691<«1
2 0
9) = —5- (1) + ——Ga(s)
c(s) = -5
) 13070° %"
Consequently, (FO) and (F1) hold.
Since
5 () s
e(t) =t4,x(t) = —5-12,
r@)
for any 7 > 0 and ¢ € (0, 1), we have f(t, Fy+1)t T)= 10t’@[(r 5))‘%t’1_12 %] # 0 and
4

1
</ c(s)f(s,rlc(s),te(s)) ds
0

—

v 1 7 1 r&e\s . 1 s
:10/o s 4[7%)(1—5)6 + 1‘3070@\4(3)][( F(%) ) §2 + 7 8g 32:|ds<+oo.

Thus (F2) holds.
It follows from Theorem 3.1 that Eq. (5.1) has at least a positive solution x(t) satisfying

the estimation

Nlwe
e

mt2 <x(t) <nt
1 1
for some positive constants m1, n and boundary asymptotic behavior Z;7x(¢) = o(¢2). O

Remark 5.1 In [14], Zhang et al. use the condition (A) to overcome the singularity of the
equation. Obviously, Example 1 indicates that (F1) and (F2) are easier to check than (A),
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thus the growth condition in this paper is more popular in handling a singularity in the
space variable.
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