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1 Introduction
Fractional differential equations are important mathematical models of some practical
problems in many fields such as polymer rheology, chemistry physics, heat conduction,
fluid flows, electrical networks, and many other branches of science (see [1, 2, 12, 14]).
Consequently, the fractional calculus and its applications in various fields of science and
engineering have received much attention, and many papers and books on fractional cal-
culus, fractional differential equations have appeared (see [2, 4, 10]). It should be noted
that the theory of nonlinear fractional differential equation boundary value problems re-
ceives more and more attention (see [1, 3, 13]). There has been significant development in
fractional differential equations in recent years; see the monographs of Lakshmikantham
et al. [8], Kilbas et al. [7], Podlubny [11], Miller and Ross [9].

Definition 1.1 ([10]) Let X be a Banach space. A one parameter T(t), 0 ≤ t < ∞, be a
bounded linear operators from X into X is a semigroup of a bounded linear operator on
X if

(1) T(0) = I (I is the identity operator on X).
(2) T(t + s) = T(t)T(s) for every t, s ≥ 0 (the semigroup property).

A semigroup of bounded linear operators, T(t), is uniformly continuous if

lim
t→0

∥
∥T(t) – I

∥
∥ = 0.
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The linear operator A defined by

D(A) =
{

x ∈ X : lim
t→0

T(t)x – x
t

exists
}

and

Ax = lim
t→0

T(t)x – x
t

=
d+T(t)x

dt

∣
∣
∣
∣
t=0

for x ∈ D(A)

is the infinitesimal generator of the semigroup T(t), D(A) is the domain of A.
Jardat et al. [6] considered the existence and uniqueness of mild solution for the semi-

linear initial value problem of non-integer order.
Zhou and Jiao [14] investigated the existence and uniqueness of mild solutions of the

nonlocal Cauchy problem with fractional evolution equations in an arbitrary Banach
space.

In this paper we study the existence and uniqueness of the classical and strong solutions
for the nonlinear evolution equation

u(α)(t) = Au(t) + f
(

t, u(t), Gu(t), Su(t)
)

, t0 < t < T ;α ∈ ]0, 1],

u(t0) = u0,
(1.1)

where A is the infinitesimal generator of a C0-semigroup {T(t); t ≥ 0} on a Banach space
X and f : [t0, T] × X × X × X → X is continuous in t, and

Gu(t) =
∫ t

t0

K(t, s)u(s) ds, K ∈ C
[

D, R+]

,

Su(t) =
∫ t

t0

H(t, s)u(s) ds, H ∈ C
[

D0, R+]

,

where D = {(t, s) ∈ R2 : t0 ≤ s ≤ t ≤ T}, D0 = {(t, s) ∈ R2 : t0 ≤ t, s ≤ T}.
Then we prove that the existence and uniqueness of classical and strong solutions if f

satisfies certain conditions.

Definition 1.2 ([1]) The fractional (arbitrary) order integral of the function h ∈ L1([a, b],
R

+) of order α ∈R
+ is defined by

Iα
a h(t) =

∫ t

a

(t – s)α–1

�(α)
h(s) ds,

where � is the gamma function. When a = 0, we write Iαh(t) = h(t) ∗ ϕα(t), where ϕα(t) =
tα–1

�(α) for t > 0, and ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as α → 0, where δ is the delta function.

Definition 1.3 ([1]) For a function h given on the interval [a, b], the Caputo fractional
order derivative of h, is defined by,

(cDα
a+ h

)

(t) =
1

�(n – α)

∫ t

a
(t – s)n–α–1h(n)(s) ds.

Here n = [α] + 1 and [α] denotes the integer part of α.
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2 Main results
In this section, we shall introduce some basic definitions, notations and lemmas which are
used throughout this paper.

Definition 2.1 A function u : [t0, T[ → X is a classical solution of the initial value problem
(1.1) on [t0, T[ if u is continuous on [t0, T[, continuously differentiable of order α on ]t0, T[,
u ∈ D(A) for t ∈ ]t0, T[ and the initial value problem (1.1) is satisfied on [t0, T[.

Let T(t) be the C0-semigroup generator by A and let u be a solution of Eq. (1.1). Then
the valued function g(s) = T(t – s)u(s) is differentiable of order α for t0 < s < t and

g(α)(s) = T(t – s)u(α)(s) – u(s)AαT(t – s)

= AT(t – s)u(s) + T(t – s)f
(

s, u(s), Gu(s), Su(s)
)

– u(s)AαT(t – s)

= T(t – s)f
(

s, u(s), Gu(s), Su(s)
)

– u(s)
(

A – Aα
)

T(t – s).

If f ∈ L1([t0; T] : X) then T(t – s)f (s, u(s), Gu(s), Su(s)) – u(s)(A – Aα)T(t – s) is integrable of
order α and integrating from t0 to t yields

T(t – s)u(s)|tt0 =
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

+
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)
(

A – Aα
)

u(s) ds,

u(t) = T(t – t0)u0 +
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

+
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)
(

A – Aα
)

u(s) ds.

(2.1)

Consequently, we have the following.

Corollary 2.2 If f ∈ L1([t0, T] : X) then for every u0 ∈ X the initial value problem (1.1) has
at most one solution. If it has a solution, the solution is given by (2.1).

For every f ∈ L1([t0, T] : X) the right-hand side of Eq. (2.1) is a continuous function on
[t0; T]. It is natural to consider it as a general solution of (1.1) even if it is not differentiable
of order α and does not strictly satisfy the equation in the sense of Definition 2.1; we
therefore define the following.

Definition 2.3 Let A be infinitesimal generator of a C0-semigroup T(t). Let u0 ∈ X and
f ∈ L1([t0, T] : X). The function u ∈ C([t0, T], : X) is given by

u(t) = T(t – t0)u0 +
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

+
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)
(

A – Aα
)

u(s) ds, t0 ≤ t ≤ T , (2.2)

is the mild solution of the initial value problem (1.1) on [t0, T].
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By analogy to the developments [2–4, 6, 14], we can see that the function u ∈ C([t0, T] :
X) is called a mild solution of

u(α)(t) = Au(t) + f (t), t0 < t < T ;α ∈ ]0, 1],

u(t0) = u0,
(2.3)

if

u(t) = T(t – t0)u0 +
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)f (s) ds, t0 ≤ t ≤ T . (2.4)

However, it is easy to see that this concept of a solution is not realistic. In fact, if Aα = A
and f (t) ≡ f (t, u(t), Gu(t), Su(t)), the two definitions of a mild solution given by (2.2) and
(2.4) coincide. Throughout this paper, we assume that the linear operator A satisfies the
identity Aα = A.

Definition 2.4 We say that f : [t0, T] × X × X × X → X is Lipschitz continuous if there is
a constant C such that

∥
∥f (t1, x1, y1, z1) – f (t2, x2, y2, z2)

∥
∥ ≤ C

(|t1 – t2| + ‖x1 – x2‖ + ‖y1 – y2‖ + ‖z1 – z2‖
)

,

where t1, t2 ∈ [t0, T].

To prove our main results we need the following.

Theorem 2.5 ([6]) Let f : [t0, T] × X × X × X → X be continuous in t on [t0, T] and uni-
formly Lipschitz continuous (with constant L) on X. If A is the generator of a strongly con-
tinuous semigroup {T(t); t ≥ 0} on a Banach space X, then for every u0 ∈ X the initial value
problem (1.1) has a unique mild solution u ∈ C([t0, T] : X).

As a consequence of Theorem 2.5 we have the following.

Corollary 2.6 If A and f satisfy the conditions of Theorem 2.5 then for every g ∈ C([t0, T] :
X) the integral equation

w(t) =g(t) +
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)f
(

s, w(s), Gw(s), Sw(s)
)

ds

has a unique solution w ∈ C([t0, T] : X).

Theorem 2.7 Let A be the infinitesimal generator of a C0 semigroup T(t), let f ∈ L1([t0, T] :
X) be continuous on ]t0, T] and

v(t) =
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)f
(

s, u(s), Gu(s), Su(s)
)

ds. (2.5)

The initial value problem (1.1) has a solution u on [t0, T[ for every u0 ∈ D(A) if one of the
following conditions is satisfied:
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(1) v(t) is continuously differentiable of order α on ]t0, T[.
(2) v(t) ∈ D(A) for t0 < t < T and Av(t) is continuous on ]t0, T[.

If (1.1) has a solution u on [t0, T[ for some u0 ∈ D(A) then v(t) satisfies both (1) and (2).

Proof If the initial value problem (1.1) has a solution u for some u0 ∈ D(A) then this
solution is given by (2.4). Consequently, v(t) = u(t) – T(t – t0)u0 is differentiable of or-
der α for t > t0 as the difference of two such differentiable functions of order α and
v(α)(t) = u(α)(t) – AT(t – t0)u0 is obviously continuous on ]t0, T[. Therefore, (1) is satisfied.
Also, if u0 ∈ D(A), T(t – t0)u0 ∈ D(A) for t > t0 and therefore v(t) = u(t) – T(t – t0)u0 ∈ D(A)
for t > t0 and Av(t) = Au(t) – AT(t – t0)u0 = u(α)(t) – f (t, u(t), Gu(t), Su(t)) – AT(t – t0)u0 is
continuous on ]t0, T[. Thus also (2) is satisfied.

On the other hand, it is easy to verify that for h > 0 the identity

T(h) – I
h

v(t) =
v(t + h) – v(t)

h

–
1

h�(α)

∫ t+h

t
(t + h – s)α–1T(t + h – s)f (s, . . .) ds (2.6)

holds and from the continuity of f it is clear that the second term of the right-hand side
of (2.6) has the limit f (t, . . .) as h → 0. If v(t) is continuously differentiable of order α on
]t0, T[ then it follows from (2.6) that v(t) ∈ D(A) for t0 < t < T and Av(t) = v(α) – f (t, . . .).
Since v(0) = 0 it follows that u(t) = T(t – t0)u0 + v(t) is the solution of the initial value
problem (1.1) for u0 ∈ D(A). If v(t) ∈ D(A) it follows from (2.6) that v(t) is differentiable
of order α from the right at t and the right α-derivative D(α)

+ v(t) of v satisfies D(α)
+ v(t) =

Av(t) + f (t, . . .). Since D(α)
+ v(t) is continuous, v(t) is continuously differentiable of order α

and v(α)(t) = Av(t) + f (t, . . .). Since v(0) = 0, u(t) = T(t – t0)u0 + v(t) is the solution of the
(1.1) for u0 ∈ D(A) and the proof is complete. �

From Theorem 2.7, we have the following corollary.

Corollary 2.8 Let A be the infinitesimal generator of a C0-semigroup T(t). If f is continu-
ously differentiable of order α on [t0, T] then the initial value problem (1.1) has a solution
u on [t0, T[ for every u0 ∈ D(A).

Proof We have

v(t) =
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

+
1

�(α)

∫ t

t0

sα–1T(s)f
(

t – s, u(t – s), Gu(t – s), Su(t – s)
)

ds. (2.7)

It is clear from (2.7) that v(t) is differentiable of order α for t > t0 and that the α-derivative,

v(α)(t) = T(t)f
(

0, u(0)Gu(0), Su(0)
)

+
1

�(α)

∫ t

t0

sα–1T(s)f
(

t – s, u(t – s), Gu(t – s), Su(t – s)
)

ds
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= T(t)f
(

0, u(0), Gu(0), Su(0)
)

+
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)Dαf
(

s, u(s), Gu(s), Su(s)
)

ds,

is continuous on ]t0, T[. The result therefore follows now from Theorem 2.7(1). �

Theorem 2.9 Let A be the infinitesimal generator of a C0-semigroup T(t) on X. If f :
[t0, T]×X ×X ×X → X is continuously differentiable from [t0, T]×X ×X ×X into X then
the mild solution of (1.1) with u0 ∈ D(A) is a classical solution of the initial value problem.

Proof We note first that the continuous differentiability of f from [t0, T] × X × X × X into
X implies that f is continuous in t and Lipschitz continuous in u, uniformly in t on [t0, T].
Therefore the initial value problem (1.1) possesses a unique mild solution u on [t0, T] by
Theorem 2.5. Next we show that this mild solution is continuously differentiable on [t0, T].
To this end we set B(s) = ∂

∂u f (s, u, Gu, Su) and

g(t) = T(t – t0)f
(

t0, u(t0), Gu(t0), Su(t0)
)

– AT(t – t0)u0

+
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)
∂

∂s
f (s, u, Gu, Su) ds. (2.8)

From our assumption it follows that g(t) ∈ C([t0, T] : X) and that the function h(t, u, Gu,
Su) = B(t)E(u, Gu, Su) is continuous in t from [t0, T] into X and uniformly Lipschitz con-
tinuous in u since s → B(s) is continuous from [t0, T] into B(X). Let w be the solution of
the integral equation

w(t) = g(t) +
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)B(s)w(s) ds. (2.9)

The existence and uniqueness of w(t) ∈ C([t0, T] : X) follow from Corollary 2.6. Moreover,
from our assumptions we have

f
(

s, u(s + h), Gu(s + h), Su(s + h)
)

– f
(

s, u(s), Gu(s), Su(s)
)

= B(s)
(

u(s + h) – u(s)
)

+ w1(s, h) (2.10)

and

f
(

s + h, u(s + h), Gu(s + h), Su(s + h)
)

– f
(

s, u(s + h), Gu(s + h), Su(s + h)
)

=
∂

∂s
f
(

s, u(s + h), Gu(s + h), Su(s + h)
)

.h + w2(s, h), (2.11)

where h–1‖wi(s, h)‖ → 0 as h → 0 uniformly on [t0, T] for i = 1, 2.
Adding (2.10) and (2.11) we have

f
(

s + h, u(s + h), Gu(s + h), Su(s + h)
)

– f
(

s, u(s), Gu(s), Su(s)
)

= B(s)
(

u(s + h) – u(s)
)

+ w1(s, h)

+
∂

∂s
f
(

s, u(s + h), Gu(s + h), Su(s + h)
)

.h + w2(s, h).
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If wh(t) = h–1(u(t + h) – u(t)) – w(t) then from the definition of u and (2.9) we obtain

wh(t) = h–1[u(t + h) – u(t)
]

– w(t)

= h–1
[

T(t + h – t0)u0 – T(t – t0)u0

+
1

�(α)

∫ t+h

t0

(t + h – s)α–1T(t + h – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

–
1

�(α)

∫ t

t0

T(t – s)(t – s)α–1f
(

s, u(s), Gu(s), Su(s)
)

ds
]

– T(t – t0)f
(

t0, u(t0), Gu(t0), Su(t0)
)

+ AT(t – t0)u0

–
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)
∂

∂s
f
(

s, u(s), Gu(s), Su(s)
)

ds

–
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)B(s)w(s) ds, (2.12)

wh(t) = h–1[u(t + h) – u(t)
]

– w(t)

= h–1
[

T(t + h – t0)u0 – T(t – t0)u0

+
1

�(α)

∫ t+h

t0

(t + h – s)α–1T(t + h – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

+
1

�(α)

∫ t+h

t0+h
T(t – s)(t – s)α–1f

(

s, u(s), Gu(s), Su(s)
)

ds

–
1

�(α)

∫ t

t0

T(t – s)(t – s)α–1f
(

s, u(s), Gu(s), Su(s)
)

ds
]

– T(t – t0)f
(

t0, u(t0), Gu(t0), Su(t0)
)

+ AT(t – t0)u0

–
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)
∂

∂s
f
(

s, u(s), Gu(s), Su(s)
)

ds

–
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)B(s)w(s) ds, (2.13)

wh(t) = h–1
[

T(t + h – t0)u0 – T(t – t0)u0

+
1

�(α)

∫ t0+h

t0

(t + h – s)α–1T(t + h – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

+
1

�(α)

∫ t

t0

T(t – s)(t – s)α–1
(

f
(

s + h, u(s + h), Gu(s + h), Su(s + h)
)

– f
(

s, u(s), Gu(s), Su(s)
)
)

ds
]

– T(t – t0)f
(

t0, u(t0), Gu(t0), Su(t0)
)

+ AT(t – t0)u0

–
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)
∂

∂s
f
(

s, u(s), Gu(s), Su(s)
)

ds

–
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)B(s)w(s) ds. (2.14)
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Now, from (2.10) and (2.11), we have

wh(t) =
[

h–1(T(t + h – t0)u0 – T(t – t0)u0
)

+ AT(t – t0)u0
]

+
1

h�(α)

∫ t0+h

t0

(t – s)α–1T(t + h – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

– T(t – t0)f
(

t0, u(t0), Gu(t0), Su(t0)
)

+
1

h�(α)

∫ t

t0

T(t – s)(t – s)α–1
[

h ×
(

B(s)
(

u(s + h) – u(s)
)

+ w1(s, h)

+
∂

∂s
f
(

s, u(s + h), Gu(s + h), Su(s + h)
)
)

+ w2(s, h))
]

ds

–
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)
∂

∂s
f
(

s, u(s), Gu(s), Su(s)
)

ds

–
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)B(s)w(s) ds; (2.15)

by rearrangement of the terms of (2.15) we have

wh(t) =
[

h–1(T(t + h – t0)u0 – T(t – t0)u0
)

+ AT(t – t0)u0
]

+
1

h�(α)

∫ t0+h

t0

(t – s)α–1T(t + h – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

– T(t – t0)f
(

t0, u(t0), Gu(t0), Su(t0)
)

1
�(α)

∫ t

t0

T(t – s)(t – s)α–1B(s)
[(

u(s + h) – u(s)
)

– w(s)
]

ds

+
1

�(hα)

∫ t

t0

T(t – s)(t – s)α–1[w1(s, h) + w2(s, h)
]

ds

+
1

�(α)

∫ t

t0

T(t – s)(t – s)α–1
[

∂

∂s
f
(

s, u(s + h), Gu(s + h), Su(s + h)
)

–
∂

∂s
f
(

s, u(s), Gu(s), Su(s)
)
]

ds.

Now

wh(t) =
[

h–1(T(t + h – t0)u0 – T(t – t0)u0
)

+ AT(t – t0)u0
]

+
1

h�(α)

∫ t

t0

(t – s)α–1T(t – s)
(

w1(s, h) + w2(s, h)
)

ds

+
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)
(

∂

∂s
f
(

s, u(s + h), Gu(s + h), Su(s + h)
)

–
∂

∂s
f
(

s, u(s), Gu(s), Su(s)
)

ds

+
1

h�(α)

∫ t0+h

t0

(t + h – s)α–1T(t + h – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

– T(t – t0)f
(

t0, u(t0), Gu(t0), Su(t0)
)

+
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)wh(t) ds.
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Now

∥
∥wh(t)

∥
∥ ≤ ∥

∥
[

h–1(T(t + h – t0)u0 – T(t – t0)u0
)

+ AT(t – t0)u0
]∥
∥

+ h–1
∥
∥
∥
∥

1
�(α)

∫ t

t0

(t – s)α–1T(t – s)
(

w1(s, h) + w2(s, h)
)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

1
�(α)

∫ t

t0

(t – s)α–1T(t – s)
(

∂

∂s
f
(

s, u(s + h), Gu(s + h), Su(s + h)
)

–
∂

∂s
f
(

s, u(s), Gu(s), Su(s)
)

ds
∥
∥
∥
∥

+ h–1
∥
∥
∥
∥

1
�(α)

∫ t0+h

t0

(t + h – s)α–1T(t + h – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

– T(t – t0)f
(

t0, u(t0), Gu(t0), Su(t0)
)
∥
∥
∥
∥

+
∥
∥
∥
∥

1
�(α)

∫ t

t0

(t – s)α–1T(t – s)wh(t) ds
∥
∥
∥
∥

. (2.16)

The norm of each one of the four first terms on the right-hand side of (2.16) tends to zero
as h → 0. Therefore we have

∥
∥wh(t)

∥
∥ ≤ ρ(h) +

M
�(α)

∫ t

t0

(t – s)α–1∥∥wh(s)
∥
∥ds, (2.17)

where M = max{‖T(t – s)‖‖B(s)‖ : t0 ≤ s ≤ T} and ρ(h) → 0 as h → 0. From (2.17) it fol-
lows by the generalized Gronwall inequality [5] that

∥
∥wh(t)

∥
∥ ≤ ρ(h) +

∫ t

t0

[ ∞
∑

n=1

Mn

�(nα)
(t – s)nα–1ρ(h) ds

]

= ρ(h)
∞

∑

n=0

Mn(t – t0)nα

�(nα + 1)

= ρ(h)Eα

(

M(t – t0)α
)

, where Eα(z) =
∞

∑

k=0

zk

�(kα + 1)

and therefore ‖wh(t)‖ → 0 as h → 0. This implies that u(t) is differentiable on [t0, T].
Finally, to show u is the classical solution of (1.1) we note that from the continuous

differentiability of u and the assumption of the differentiability of f it follows that s →
f (s, u(s), Gu(s), Su(s)) is continuously differentiable on [t0, T]. From Corollary 2.8 it then
follows that

v(t) = T(t – t0)u0 +
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

is the classical solution of the initial value problem

v(α)(t) = Av(t) + f
(

t, u(t), Gu(t), Su(t)
)

, t > t0,α ∈ (0, 1],

v(t0) = u0.
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But, by definition, u is a mild solution of (2.16) and by the uniqueness of the mild solution
of (2.16) it follows that u = v. Thus, u is a classical solution of the initial value problem
(1.1). �

Definition 2.10 A function u which is differential of order α almost everywhere on [t0, T]
such that u(α) ∈ C(α)([t0, T] : X) is called a strong solution of the initial value problem (1.1)
if

(1) u(α)(t) = Au(t) + f (t, u(t), Gu(t), Su(t), t0 < t < T , 0 < α ≤ 1 almost everywhere on
[t0, T].

(2) u(t0) = u0.

With the same proof as of Theorem 2.7 we have the following.

Theorem 2.11 Let A be the infinitesimal generator of a C0 semigroup T(t), let f ∈
L1([t0, T] : X) be continuous on ]t0, T] and

v(t) =
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)f (s, u(s), Gu(s), Su(s) ds, t ∈ [t0, T]. (2.18)

The initial value problem (1.1) has a strong solution u on [t0, T] for every u0 ∈ D(A) if one
of the following conditions is satisfied:

(1) v(t) is differentiable of order α on [t0, T] and v(α) ∈ C(α)([t0, T] : X).
(2) v(t) ∈ D(A) a.e. on [t0, T] and Av(t) ∈ L1([t0, T] : X).

If (1.1) has a strong solution u on [t0, T] for some u0 ∈ D(A) then v satisfies both (1) and (2).

As a consequence of Theorem 2.11 we have the following.

Corollary 2.12 Let X be a reflexive Banach space and let A be the infinitesimal generator
of a C0-semigroup T(t) on X. If f is Lipschitz continuous on [t0, T] then for each u0 ∈ D(A)
the initial value problem (1.1) has a unique strong solution on [t0, T] given by

u(t) = T(t – t0)u0 +
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)f (s, . . .) ds, t ∈ [t0, T]. (2.19)

To prove that the mild solution of the initial value problem (1.1) is a strong solution, we
need the following lemma.

Lemma 2.13 ([13]) For all α > 0 and β > –1, we have

∫ t

0
(t – s)α–1sβ ds =

tα+β�(α)�(β + 1)
�(α + β + 1)

.

Theorem 2.14 Let A be the infinitesimal generator of a C0-semigroup T(t) on a reflexive
Banach space X. If f : [t0, T] × X × X × X → X is Lipschitz continuous in all variables,
u0 ∈ D(A) and u is the mild solution of the initial value problem (1.1) then u is the strong
solution of this initial value problem (1.1).
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Proof Let ‖T(t)‖ ≤ M and ‖f (t, u(t), Gu(t), Su(t))‖ ≤ N for t0 ≤ t ≤ T and let f satisfy the
Lipschitz condition. For 0 < h < t – t0 we have

u(t + h) – u(t) = T(t + h – t0)u0 – T(t – t0)u0

+
1

�(α)

∫ t0+h

t0

(t – s)α–1T(t + h – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

+
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)
[

f
(

s + h, u(s + h), Gu(s + h), Su(s + h)
)

– f
(

s, u(s), Gu(s), Su(s)
)]

ds

and therefore, by using Lemma 2.13, we have

∥
∥u(t + h) – u(t)

∥
∥

≤ hM‖Au0‖ + hMNC1

+
1

�(α)

∫ t

t0

∥
∥(t – s)α–1∥∥

∥
∥T(t – s)

∥
∥

[∥
∥f

(

s + h, u(s + h), Gu(s + h), Su(s + h)
)

– f
(

s, u(s), Gu(s), Su(s)
)∥
∥
]

ds

≤ hM‖Au0‖ + hMNC1 +
M

�(α)

∫ t

t0

∥
∥(t – s)α–1∥∥c

[

h +
∥
∥u(s + h) – u(s)

∥
∥

+
∥
∥
(

Gu(s + h) – Gu(s)
)∥
∥ +

∥
∥Su(s + h) – Su(s)

∥
∥
]

ds,

where C1 = 1
�(α+1) . But

M
�(α)

∫ t

t0

∥
∥(t – s)α–1∥∥

∥
∥
(

Gu(s + h) – Gu(s)
)∥
∥ds

≤ M
�(α)

∫ t

t0

∥
∥(t – s)α–1∥∥

∫ s

t0

∣
∣G(s, τ )

∣
∣
∥
∥u(s + h) – u(s)

∥
∥dτ ds

≤ M
�(α)

∫ t

t0

∥
∥(t – s)(α–1)∥∥‖G‖∥∥u(s + h) – u(s)

∥
∥ds

≤ M‖G‖
�(α)

∫ t

t0

∥
∥(t – s)(α–1)∥∥

∥
∥u(s + h) – u(s)

∥
∥ds

≤ M‖G‖
�(α)

∫ t

t0

(t – s)α–1∥∥u(s + h) – u(s)
∥
∥ds;

similarly

M
�(α)

∫ t

t0

∥
∥(t – s)α–1∥∥

∥
∥
(

Su(s + h) – Su(s)
)∥
∥ds

≤ M
�(α)

∫ t

t0

∥
∥(t – s)α–1∥∥

∫ s

t0

∣
∣K(s, τ )

∣
∣
∥
∥u(s + h) – u(s)

∥
∥dτ ds

≤ M
�(α)

∫ t

t0

∥
∥(t – s)(α–1)∥∥‖S‖∥∥u(s + h) – u(s)

∥
∥ds
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≤ M‖S‖
�(α)

∫ t

t0

∥
∥(t – s)(α–1)∥∥

∥
∥u(s + h) – u(s)

∥
∥ds

≤ M‖S‖
�(α)

∫ t

t0

(t – s)α–1∥∥u(s + h) – u(s)
∥
∥ds,

then we have

∥
∥u(t + h) – u(t)

∥
∥ ≤ hM‖Au0‖ + hMNC1

+
Mh(1 + ‖G‖ + ‖S‖)

�(α)

∫ t

t0

(t – s)α–1∥∥u(s + h) – u(s)
∥
∥ds

so that

∥
∥u(t + h) – u(t)

∥
∥

≤ k1h +
Mh
�(α)

∫ t

t0

(t – s)α–1∥∥u(s + h) – u(s)
∥
∥ds, where k1 = M‖Au0‖ + MNC1,

which by the generalized Gronwall inequality [5] implies

∥
∥u(t + h) – u(t)

∥
∥ ≤ k1h +

∫ t

t0

∞
∑

n=1

(Mh)n

�(nα)
(t – s)nα–1k1h ds

= k1h
∞

∑

n=1

(Mh)n(t – t0)nα

�(nα + 1)

= k1hEα

(

Mh(t – t0)α
)

, where Eα(z) =
∞

∑

k=0

zk

�(kα + 1)

and u is Lipschitz continuous.
The Lipschitz continuity of u combined with the Lipschitz continuity of f implies that

t → f (t, u(t), Gu(t), Su(t)) is Lipschitz continuous on [t0, T]. From Corollary (2.12) it then
follows that the initial value problem

v(α)(t) = Av(t) + f
(

t, u(t), Gu(t), Su(t)
)

, t > t0,α ∈ (0, 1],

v(t0) = u0,

has a unique strong solution v on [t0, T] satisfying

v(t) = T(t – t0)u0 +
1

�(α)

∫ t

t0

(t – s)α–1T(t – s)f
(

s, u(s), Gu(s), Su(s)
)

ds

= u(t)

and so u is a strong solution of (1.1). �

3 Conclusions
In this paper, we investigated the existence and uniqueness of classical and strong solutions
of a fractional semilinear evolution equation using the method of a semigroup and the
Banach fixed theorem.
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