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1 Introduction
In this paper, we consider positive solutions for the following problem:

Dβ
0+

(
ϕp

(
Dα

0+y(x)
))

= f
(
x, y(x)

)
, 0 < x < 1, (1.1)

y(0) = y′(0) = y(1) = Dα
0+y(0) = 0, Dα

0+y(1) = λDα
0+y(ξ ), (1.2)

where α,β ∈ R, 2 < α ≤ 3, 1 < β ≤ 2, and ξ ∈ (0, 1),λ ∈ [0, +∞),ϕp(z) = |z|p–2z, p > 1, Dα
0+ is

the Riemann–Liouville fractional derivative, and f ∈ C([0, 1] × [0, +∞), [0, +∞)). By using
Krasnosel’skii’s fixed-point theorem, we give some multiplicity results.

Differential equations of fractional order, or fractional differential equations, in which
an unknown function is contained under the operation of a derivative of fractional order,
have been of great interest recently. Fractional differential equation models are proved to
be more adequate than integer order models for some problems in science and engineer-
ing. Many papers and books on fractional calculus and fractional differential equations
have appeared recently. For an introduction of fractional calculus and fractional differen-
tial equations, we refer the reader to [17, 25] and the references therein. And there have
been many results on existence and uniqueness of the solution of boundary value problems
for fractional differential equations. For example, fractional boundary value problems at
resonance [1, 5, 27, 39, 40], Caputo fractional derivative problems [11, 23, 37], impulsive
problems [2, 15, 29, 41], multi-point problems [1, 5, 21, 22, 27–29, 31, 40], integral bound-
ary value problems [6, 12, 13, 15], fractional p-Laplace problems [8, 10, 14, 21, 22, 35, 36],
fractional lower and upper solution problems [4, 7, 30, 38], fractional delay problems, [24,
33, 34], solitons [9], singular problems [3], etc.
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On the other hand, integer order differential equations with p-Laplacian operator also
arise in different research areas such as physical and natural phenomena, non-Newtonian
mechanics, nonlinear elasticity and glaciology, combustion theory, population biology,
nonlinear flow laws, and system of Monge–Kantorovich partial differential equations [8,
16, 19, 20, 32]. For example, turbulent flow in a porous medium is a fundamental me-
chanics problem. For studying this type of problem, Leibenson [19] introduced differential
equations with p-Laplacian operator

(
ϕp

(
y′(x)

))′ + f
(
x, y(x)

)
= 0.

In [26], by applying the fixed point index theory, Su studied the existence of positive
solutions of a nonlinear four-point singular boundary value problem with a p-Laplacian
operator:

⎧
⎨

⎩
(ϕp(y′(x)))′ + a(x)f (y(x)) = 0, 0 < x < 1,

αϕp(y(0)) – βϕp(y′(ξ )) = 0, γ ϕp(y(1)) – δϕp(y′(η)) = 0.

It is quite natural to study fractional differential equation relative to equation. Re-
cently, many scholars have paid more attention to the fractional order differential equation
boundary value problems with p-Laplacian operator, see [8, 10, 14, 21, 22]. Recently, Dong
et al. [10] investigated the following p-Laplacian fractional differential equation boundary
value problem:

Dα
(
ϕp

(
Dαy(x)

))
= f

(
x, y(x)

)
, 0 < x < 1, (1.3)

y(0) = y(1) = Dαy(0) = Dαy(1) = 0, (1.4)

where 1 < α ≤ 2 is a real number, Dα is the conformable fractional derivative. Some exis-
tence and multiplicity results of positive solutions are proved by the fixed-point theorems
on cone. The purpose of this paper is to generalize some existence results of the above
references to a nonlinear fractional boundary value problem with p-Laplacian.

2 Preliminaries
Definition 2.1 ([17]) The fractional integral of order α > 0 of a function y : (0, +∞) → R

is defined as

Iα
0+y(x) =

1

(α)

∫ x

0
(x – z)α–1y(z) dz.

Definition 2.2 ([17]) The fractional derivative of order α > 0 of a continuous function
y : (0, +∞) →R is defined as

Dα
0+y(x) =

1

(n – α)

(
d

dx

)n ∫ x

0

y(z)
(x – z)α–n+1 dz,

where n = –[–α].
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Lemma 2.1 ([17]) Assume that y, Dα
0+y ∈ C(0, 1) ∩ L(0, 1). Then

Iα
0+Dα

0+y(x) = y(x) + c1xα–1 + c2xα–2 + · · · + cN xα–N , ci ∈R, i = 1, 2, . . . , N ,

where N = –[–α].

Let M := λp–1ξβ–1 such that M �= 1, and

G(x, z) =

⎧
⎨

⎩

1

(α) [x(1 – z)]α–1, 0 ≤ x ≤ z ≤ 1;

1

(α) ([x(1 – z)]α–1 – (x – z)α–1), 0 ≤ z ≤ x ≤ 1,

(2.1)

H(x, z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[x(1–z)]β–1–λp–1[x(ξ–z)]β–1–(1–M)(x–z)β–1

(1–M)
(β) , 0 ≤ z ≤ x ≤ 1, z ≤ ξ ;
[x(1–z)]β–1–(1–M)(x–z)β–1

(1–M)
(β) , 0 < ξ ≤ z ≤ x ≤ 1;
[x(1–z)]β–1–λp–1[x(ξ–z)]β–1

(1–M)
(β) , 0 ≤ x ≤ z ≤ ξ < 1;
[x(1–z)]β–1

(1–M)
(β) , 0 ≤ x ≤ z ≤ 1, ξ ≤ z.

(2.2)

Lemma 2.2 Let Q(x) = x(1 – x)α–1. Then functions G(x, z), H(x, z) ∈ C([0, 1] × [0, 1]) and
satisfy:

(1) G(x, z) = G(1 – z, 1 – x); G(x, z) > 0 for x, z ∈ (0, 1);
(2) Q(1–x)Q(z)


(α) ≤ G(x, z) ≤ (α–1)Q(z)

(α) for x, z ∈ [0, 1];

(3) If M < 1, then H(x, z) > 0 for x, z ∈ (0, 1).

Proof It is easily seen that functions G(x, z), H(x, z) ∈ C([0, 1]× [0, 1]) and (1) hold. We will
only prove (2) and (3).

(2) For 0 ≤ z ≤ x ≤ 1, since 0 < α – 2 ≤ 1, one has

G(x, z) =
1


(α)
([

x(1 – z)
]α–1 – (x – z)α–1)

=
α – 1

(α)

∫ x(1–z)

x–z
sα–2 ds

≤ α – 1

(α)

[
x(1 – z)

]α–2[x(1 – z) – (x – z)
]

≤ α – 1

(α)

(1 – z)α–2z(1 – x)

≤ (α – 1)Q(z)

(α)

,

and

G(x, z) =
1


(α)
([

x(1 – z)
]α–1 – (x – z)α–1)

≥ 1

(α)

([
x(1 – z)

]α–2[x(1 – z)
]

– (x – z)]
)

=
1


(α)
[
x(1 – z)

]α–2z(1 – x)

≥ 1

(α)

xα–1(1 – z)α–1z(1 – x)
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=
Q(z)Q(1 – x)


(α)
.

For 0 ≤ x ≤ z ≤ 1, one has

G(x, z) =
1


(α)
xα–1(1 – z)α–1

≤ 1

(α)

zα–1(1 – z)α–1

≤ 1

(α)

(α – 1)z(1 – z)α–1

≤ (α – 1)Q(z)

(α)

,

and

G(x, z) =
1


(α)
xα–1(1 – z)α–1

≥ 1

(α)

xα–1(1 – z)α–1z(1 – x)

=
Q(z)Q(1 – x)


(α)
.

So, Q(1–z)Q(z)

(α) ≤ G(x, z) ≤ (α–1)Q(z)


(α) for x, z ∈ [0, 1].
(3) For 0 < z ≤ x < 1, z ≤ ξ , set

h(x, z) =
[x(1 – z)]β–1 – (x – z)β–1


(β)
.

It is obvious that h(x, z) > 0 for 0 < z ≤ x < 1. Hence, we get

H(x, z) =
[x(1 – z)]β–1 – λp–1[x(ξ – z)]β–1 – (1 – M)(x – z)β–1

(1 – M)
(β)

=
(

1 +
M

1 – M

)
[x(1 – z)]β–1


(β)
–

(x – z)β–1


(β)
–

λp–1[x(ξ – z)]β–1

(1 – M)
(β)

=
[x(1 – z)]β–1 – (x – z)β–1


(β)
+

λp–1xβ–1[ξβ–1(1 – z)β–1 – (ξ – z)β–1]
(1 – M)
(β)

= h(x, z) +
λp–1xβ–1

1 – M h(ξ , z)

> 0.

Similarly, there holds H(x, z) > 0 for 0 < η ≤ z ≤ x < 1 or 0 < x ≤ z ≤ η < 1 or 0 < x ≤ z <
1,η ≤ z.

Thus, H(x, z) > 0 for x, z ∈ (0, 1). The proof is completed. �
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Lemma 2.3 Suppose that h ∈ C[0, 1], p > 1,α,β ∈R, 2 < α ≤ 3, 1 < β ≤ 2 and ξ ∈ (0, 1),λ ∈
[0, +∞). Then the following problem

⎧
⎨

⎩
Dβ

0+(ϕp(Dα
0+y(x))) = y(x), 0 < x < 1,

y(0) = y′(0) = y(1) = Dα
0+y(0) = 0, Dα

0+y(1) = λDα
0+y(ξ ),

(2.3)

has a unique solution

y(x) =
∫ 1

0
G(x, z)ϕq

(∫ 1

0
H(z, τ )y(τ ) dτ

)
dz,

where ϕq = (ϕp)–1, 1
p + 1

q = 1.

Proof From the equation of (2.2), Lemma 2.1, and the fact that Dα
0+y(0) = 0, there is

ϕp
(
Dα

0+y(x)
)

=
1


(β)

∫ x

0
(x – z)β–1y(z) dz + c1xβ–1 (2.4)

for some c1 ∈ R. Thus,

ϕp
(
Dα

0+y(1)
)

=
1


(β)

∫ 1

0
(1 – z)β–1y(z) dz + c1, (2.5)

ϕp
(
Dα

0+y(ξ )
)

=
1


(β)

∫ ξ

0
(ξ – z)β–1y(z) dz + c1ξ

β–1. (2.6)

Taking into account that Dα
0+y(1) = λDα

0+y(ξ ), combining with (2.5) and (2.6), we obtain

c1 = –
∫ 1

0

(1 – z)β–1


(β)(1 – M)
y(z) dz +

∫ ξ

0

λp–1(ξ – z)β–1


(β)(1 – M)
y(z) dz.

Thus,

ϕp
(
Dα

0+y(x)
)

=
∫ x

0

(x – z)β–1


(β)
y(z) dz –

∫ 1

0

xβ–1(1 – z)β–1


(β)(1 – M)
y(z) dz

+
∫ ξ

0

λp–1xβ–1(ξ – z)β–1


(β)(1 – M)
y(z) dz

= –
∫ 1

0
H(x, z)y(z) dz,

then

Dα
0+y(x) + ϕq

(∫ 1

0
H(x, z)y(z) dz

)
= 0. (2.7)

By the use of Lemma 2.1, Eq. (2.7) is equivalent to the integral equation

y(x) = –Iα
0+ϕq

(∫ 1

0
H(x, z)y(z) dz

)
+ d1xα–1 + d2xα–2 + d3xα–3 (2.8)

for some d1, d2, d3 ∈R.
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By y(0) = y′(0) = 0, there are d2 = d3 = 0. Thus

y(x) = –Iα
0+ϕq

(∫ 1

0
H(x, z)y(z) dz

)
+ d1xα–1

= –
1


(α)

∫ x

0
(x – z)α–1ϕq

(∫ 1

0
H(z, τ )y(τ ) dτ

)
dz + d1xα–1.

By y(1) = 0, there is

d1 =
1


(α)

∫ 1

0
(1 – z)α–1ϕq

(∫ 1

0
H(z, τ )y(τ ) dτ

)
dz.

Therefore, the unique solution of problem (2.2) is

y(x) = –
1


(α)

∫ x

0
(x – z)α–1ϕq

(∫ 1

0
H(z, τ )y(τ ) dτ

)
dz

+
1


(α)

∫ 1

0

[
x(1 – z)

]α–1
ϕq

(∫ 1

0
H(z, τ )y(τ ) dτ

)
dz

=
∫ 1

0
G(x, z)ϕq

(∫ 1

0
H(z, τ )y(τ ) dτ

)
dz.

The proof is completed. �

Let E = C[0, 1] be a Banach space with the maximum norm ‖y‖ = max0≤x≤1 |y(x)|. Define
a cone P ⊂ E by

P =
{

y ∈ E | y(x) ≥ Q(1 – x)
α – 1

‖y‖, 0 ≤ x ≤ 1
}

.

Lemma 2.4 Define T : P → E as

(T y)(x) =
∫ 1

0
G(x, z)ϕq

(∫ 1

0
H(z, τ )f

(
τ , y(τ )

)
dτ

)
dz.

Then T : P → P is a completely continuous operator.

Proof By the use of relation (2) of Lemma 2.2, for any y ∈ P, there hold

(T y)(x) ≤ α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ )f

(
τ , y(τ )

)
dτ

)
dz

and

(T y)(x) ≥ Q(1 – x)

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ )f

(
τ , y(τ )

)
dτ

)
dz.

Then (T y)(x) ≥ q(1–x)
α–1 ‖T y‖, which implies T : P → P. By the use of the Arzela–Ascoli

theorem, a standard proof shows that T : P → P is completely continuous. �



Tian et al. Boundary Value Problems  (2018) 2018:127 Page 7 of 14

Lemma 2.5 ([18]) Let E be an ordered Banach space, P ⊂ E be a cone. Suppose that �1,
�2 are bounded open subsets of E with 0 ∈ �1 ⊂ �1 ⊂ �2, and T : P → P is a completely
continuous operator such that either

(A1) ‖T y‖ ≤ ‖y‖, y ∈ P ∩ ∂�1 and ‖T y‖ ≥ ‖y‖, y ∈ P ∩ ∂�2, or
(A2) ‖T y‖ ≥ ‖y‖, y ∈ P ∩ ∂�1 and ‖T y‖ ≤ ‖y‖, y ∈ P ∩ ∂�2.

Then T has a fixed point in P ∩ �2\�1.

3 Existence of positive solutions
For notational convenience, denote

f0 = lim inf
y→+0

min
x∈[1/4,3/4]

f (x, y)
yp–1 , f 0 = lim sup

y→+0
max

x∈[0,1]

f (x, y)
yp–1 ,

f∞ = lim inf
y→+∞ min

x∈[1/4,3/4]

f (x, y)
yp–1 , f ∞ = lim sup

y→+∞
max

x∈[0,1]

f (x, y)
yp–1 ,

ρ∗ =
(

α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ ) dτ

)
dz

)–1

,

ρ∗ =
(Q( 1

2 )

(α)

∫ 1

0
Q(z)ϕq

(∫ 3
4

1
4

H(z, τ ) dτ

)
dz

)–1

, σ = min
1/4≤x≤3/4

Q(1 – x)
α – 1

.

From now on we will use the following assumptions:
(C1) f0 ∈ (( ρ∗

σ
)p–1,∞], f∞ ∈ (( ρ∗

σ
)p–1,∞].

(C2) f 0 ∈ [0,ρp–1
∗ ), f ∞ ∈ [0,ρp–1

∗ ).
(C3) There exist constants d ∈ (0,ρ∗) and λ1 > 0 such that

f (x, y) ≤ (dλ1)p–1, 0 ≤ x ≤ 1, 0 ≤ y ≤ λ1.

(C4) There exist constants D ∈ (ρ∗,∞) and λ2 > 0 such that

f (x, y) ≥ (Dλ2)p–1, 1/4 ≤ x ≤ 3/4,σλ2 ≤ y ≤ λ2.

Theorem 3.1 Assume that conditions (C1), (C3) hold, then problem (1.1) has at least two
solutions y1 and y2 such that 0 < ‖y1‖ < λ1 < ‖y2‖.

Proof Firstly, by condition (C3), there exist constants d ∈ (0,ρ∗) and λ1 > 0 such that

f (x, y) ≤ (dλ1)p–1, 0 ≤ x ≤ 1, 0 ≤ y ≤ λ1.

Set �λ1 = {y ∈ P | ‖y‖ < λ1}. Taking into account the monotonicity of ϕ(z) and relation (2)
of Lemma 2.2, for y ∈ ∂�λ1 , we have

‖T y‖ = max
0≤x≤1

∣∣T y(x)
∣∣

≤ α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ )f

(
τ , y(τ )

)
dτ

)
dz

≤ α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ )(dλ1)(p–1) dτ

)
dz
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≤ ρ∗λ1
α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ ) dτ

)
dz

= λ1 = ‖y‖.

Thus, ‖T y‖ ≤ ‖y‖ for all y ∈ ∂�λ1 .
Secondly, with the first relation of condition (C1), f0 ∈ (( ρ∗

σ
)p–1,∞), there exists a real

number r1 ∈ (0,λ1) such that

f (x, y) ≥ yp–1
(

ρ∗

σ

)p–1

, for
1
4

≤ x ≤ 3
4

, 0 < y ≤ r1.

Set �r1 = {y ∈ P | ‖y‖ < r1}. For y ∈ ∂�r1 , we have

r1 = ‖y‖ ≥ y(x) ≥ Q(1 – x)
α – 1

‖y‖ ≥ σ‖y‖ = σ r1, x ∈
[

1
4

,
3
4

]
.

Thus, with relation (2) of Lemma 2.2, there is

‖T y‖ = max
0≤x≤1

∣∣T y(x)
∣∣

= max
0≤x≤1

∫ 1

0
G(x, z)ϕq

(∫ 1

0
H(z, τ )f

(
τ , y(τ )

)
dτ

)
dz

≥
∫ 1

0
G

(
1
2

, z
)

ϕq

(∫ 3
4

1
4

H(z, τ )yp–1(τ )
(

ρ∗

σ

)p–1

dτ

)
dz

≥ r1ρ
∗


(α)

∫ 1

0
Q

(
1
2

)
Q(z)ϕq

(∫ 3
4

1
4

H(z, τ ) dτ

)
dz

= r1 = ‖y‖.

So, ‖T y‖ ≥ ‖y‖ for all y ∈ ∂�r1 .
Thirdly, with the second relation of condition (C1), f∞ ∈ (( ρ∗

σ
)p–1,∞), there exists a real

number R∗ > 0 such that

f (x, y) ≥ yp–1
(

ρ∗

σ

)p–1

, for
1
4

≤ x ≤ 3
4

, y ≥ R∗.

Choose R1 = max{2λ1, R∗
σ

}, set �R1 = {y ∈ P | ‖y‖ < R1}. For y ∈ ∂�R1 , we get

R1 = ‖y‖ ≥ y(x) ≥ Q(1 – x)
α – 1

‖y‖ ≥ σ‖y‖ = σR1 ≥ R∗, x ∈
[

1
4

,
3
4

]
.

Thus, with relation (2) of Lemma 2.2, there is

‖T y‖ = max
0≤x≤1

∣∣T y(x)
∣∣

= max
0≤x≤1

∫ 1

0
G(x, z)ϕq

(∫ 1

0
H(z, τ )f

(
τ , y(τ )

)
dτ

)
dz

≥
∫ 1

0
G

(
1
2

, z
)

ϕq

(∫ 3
4

1
4

H(z, τ )up–1(τ )
(

ρ∗

σ

)p–1

dτ

)
dz
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≥ R1ρ
∗


(α)

∫ 1

0
Q

(
1
2

)
Q(z)ϕq

(∫ 3
4

1
4

H(z, τ ) dτ

)
dz

= R1 = ‖y‖.

So, ‖T y‖ ≥ ‖y‖ for all y ∈ ∂�R1 .
By Lemma 2.5, T has a fixed point y1 ∈ (�λ1 \�r1 ) and a fixed point y2 ∈ (�R1 \�λ1 ). That

is to say, y1, y2 are both positive solutions of problem (1.1) such that 0 < ‖y1‖ < λ1 < ‖y2‖. �

Theorem 3.2 Assume that conditions (C2), (C4) hold, then problem (1.1) has at least two
solutions y1 and y2 satisfying 0 < ‖y1‖ < λ2 < ‖y2‖.

Proof Firstly, by condition (C4), there exist two constants D ∈ (ρ∗,∞) and λ2 > 0 such that

f (x, y) ≥ (Dλ2)p–1, 1/4 ≤ x ≤ 3/4,σλ2 ≤ y ≤ λ2.

Set �λ2 = {y ∈ P | ‖y‖ < λ2}. For y ∈ ∂�λ2 , one has

λ2 = ‖y‖ ≥ y(x) ≥ Q(1 – x)
α – 1

‖y‖ ≥ σ‖y‖ = σλ2, x ∈
[

1
4

,
3
4

]
.

Thus, we get

‖T y‖ = max
0≤x≤1

∣∣Ty(x)
∣∣

= max
0≤x≤1

∫ 1

0
G(x, z)ϕq

(∫ 1

0
H(z, τ )f

(
τ , y(τ )

)
dτ

)
dz

≥
∫ 1

0
G

(
1
2

, z
)

ϕq

(∫ 3
4

1
4

H(z, τ )(Dλ2)(p–1) dτ

)
dz

≥ λ2ρ
∗


(α)

∫ 1

0
Q

(
1
2

)
Q(z)ϕq

(∫ 3
4

1
4

H(z, τ ) dτ

)
dz

= λ2 = ‖y‖.

So, ‖T y‖ ≥ ‖y‖ for all y ∈ ∂�λ2 .
Secondly, with the first relation of condition (C2), f 0 ∈ [0,ρp–1

∗ ), there exists a real num-
ber r2 ∈ (0,λ2) such that

f (x, y) ≤ yp–1ρp–1
∗ ≤ (r2ρ∗)p–1, for 0 ≤ x ≤ 1, 0 < y ≤ r2.

Set �r2 = {y ∈ P | ‖y‖ < r2}. For y ∈ ∂�r2 , one has

‖T y‖ = max
0≤x≤1

∣∣Ty(x)
∣∣

≤ α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ )f

(
τ , y(τ )

)
dτ

)
dz

≤ α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ )(r2ρ∗)p–1 dτ

)
dz



Tian et al. Boundary Value Problems  (2018) 2018:127 Page 10 of 14

= r2ρ∗
α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ ) dτ

)
dz

= r2 = ‖y‖.

So, ‖T y‖ ≤ ‖y‖ for all y ∈ ∂�r2 .
Thirdly, with the second relation of condition (C2), f ∞ ∈ [0,ρp–1

∗ ), there exists a positive
number R∗ such that

f (x, y) ≤ yp–1ρp–1
∗ , for 0 ≤ x ≤ 1, y ≥ R∗.

We now consider two situations.
Case 1. The function f is bounded on [0,∞). We can choose a positive number G > 0

such that f (x, y) ≤ Gp–1ρ
p–1
∗ for x ∈ [0, 1], y ∈ [0,∞). Let R2 = max{2λ2, G} and �R2 = {y ∈

P | ‖y‖ < R2}. For y ∈ ∂�R2 , one has

‖T y‖ = max
0≤x≤1

∣∣T y(x)
∣∣

≤ α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ )f

(
τ , y(τ )

)
dτ

)
dz

≤ α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ )Gp–1ρp–1

∗ dτ

)
dz

≤ R2ρ∗
α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ ) dτ

)
dz

= R2 = ‖y‖.

So, ‖T y‖ ≤ ‖y‖ for all y ∈ ∂�R2 .
Case 2. The function f is unbounded on [0,∞). We can choose a positive number R2 >

max{2λ2, R∗} such that f (x, y) ≤ f (x, R2) for x ∈ [0, 1], y ∈ (0, R2). Set �R2 = {y ∈ P | ‖y‖ <
R2}. For y ∈ ∂�R2 , one has

‖T y‖ = max
0≤x≤1

∣
∣T y(x)

∣
∣

≤ α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ )f

(
τ , y(τ )

)
dτ

)
dz

≤ α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ )f (τ , R2) dτ

)
dz

≤ α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ )Rp–1

2 ρp–1
∗ dτ

)
dz

≤ R2ρ∗
α – 1

(α)

∫ 1

0
Q(z)ϕq

(∫ 1

0
H(z, τ ) dτ

)
dz

= R2 = ‖y‖.

So, ‖T y‖ ≤ ‖y‖ for all y ∈ ∂�R2 .
By Lemma 2.5, T has a fixed point y1 ∈ (�λ2 \ �r2 ) and a fixed point y2 ∈ (�R2 \ �λ2 ).

That is to say, y1, y2 are both positive solutions of problem (1.1) and 0 < ‖y1‖ < λ2 <
‖y2‖. �
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By Theorems 3.1 and 3.2, we can obtain the following corollary.

Corollary 3.1 Problem (1.1) has at least one positive solution if one of the following as-
sumptions is satisfied:

(A1) Conditions (C3) and (C4) hold; or
(A2) Conditions f 0 ∈ [0,ρp–1

∗ ) and f∞ ∈ (( ρ∗
σ

)p–1,∞) hold; or
(A3) Conditions f0 ∈ (( ρ∗

σ
)p–1,∞) and f ∞ ∈ [0,ρp–1

∗ ) hold; or
(A4) Conditions (C3) and f∞ ∈ (( ρ∗

σ
)p–1,∞) (or f0 ∈ (( ρ∗

σ
)p–1,∞)) hold; or

(A5) Conditions (C4) and f 0 ∈ [0,ρp–1
∗ ) (or f ∞ ∈ [0,ρp–1

∗ )) hold.

4 Examples
In this section, we present some examples to check our results. Let

α =
5
2

, β =
3
2

, q = 2, p = 2, ξ =
1
2

, λ =
√

2
2

,

then there are

H(x, z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1√
π
{4[x(1 – z)] 1

2 – 2
√

2[x( 1
2 – z)] 1

2 – 2(x – z) 1
2 }, 0 ≤ z ≤ x ≤ 1, z ≤ 1

2 ;
1√
π
{4[x(1 – z)] 1

2 – 2(x – z) 1
2 }, 0 < 1

2 ≤ z ≤ x ≤ 1;
1√
π
{4[x(1 – z)] 1

2 – 2
√

2[x( 1
2 – z)] 1

2 }, 0 ≤ x ≤ z ≤ 1
2 < 1;

4√
π

[x(1 – z)] 1
2 , 0 ≤ x ≤ z ≤ 1, 1

2 ≤ z,

and

M = λp–1ξβ–1 =
1
2

, Q(x) = x(1 – x)α–1 = x(1 – x)
3
2 ,

ρ∗ = 22.5, ρ∗ = 16, σ =
1
3

.

Example 4.1 Consider the boundary value problem

Dβ
0+

(
ϕp

(
Dα

0+y(x)
))

= f
(
x, y(x)

)
, 0 < x < 1, (4.1)

y(0) = y′(0) = y(1) = Dα
0+y(0) = 0, Dα

0+y(1) = λDα
0+y(ξ ), (4.2)

where

f (x, y) =
y2

2
cos x + 70 sin y.

Direct computations show that

f0 = lim inf
u→0+

min
x∈[1/4,3/4]

f (x, y)
y

= lim inf
y→0+

(y cos 3
4

2
+ 70

sin y
y

)
= 70 > 68 =

(
ρ∗

σ

)p–1

,

f∞ = lim inf
y→+∞ min

x∈[1/4,3/4]

f (x, y)
y

= lim inf
y→+∞

(y cos 3
4

2
+ 70

sin y
y

)
= ∞ > 68 =

(
ρ∗

σ

)p–1

,
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so condition (C1) holds. Choose λ1 = 6, d = 15 ∈ (0,ρ∗), one has

f (x, y) ≤ 88 < 90 = dλ1, when 0 ≤ x ≤ 1, 0 ≤ y ≤ 6,

so condition (C3) holds. By the use of Theorem 3.1, problem (1.1) has at least two solutions
y1 and y2 satisfying 0 < ‖y1‖ < 6 < ‖y2‖.

Example 4.2 Consider the boundary value problem (4.1), (4.2), where

f (x, y) =
500y sin y

y + 1
+ 15xy.

Direct computations show that

f 0 = lim sup
y→0+

max
x∈[0,1]

f (x, y)
y

= lim sup
y→0+

(
500 sin y

y + 1
+ 15

)
= 15 < 16 = ρp–1

∗ ,

f ∞ = lim sup
y→+∞

max
x∈[0,1]

f (x, y)
y

= lim sup
y→+∞

(
500 sin y

y + 1
+ 15

)
= 15 < 16 = ρp–1

∗ ,

so condition (C2) holds. Choose λ2 = 1
2 , D = 23 ∈ (ρ∗,∞), one has

f (x, y) ≥ 12.4 > Dλ2 =
23
2

, for
1
4

≤ x ≤ 3
4

,
1
6

= σλ2 ≤ y ≤ λ2 =
1
2

,

so condition (C4) holds. By the use of Theorem 3.2, problem (1.1) has at least two solutions
y1 and y2 satisfying 0 < ‖y1‖ < 1

2 < ‖y2‖.

Example 4.3 Consider the boundary value problem (4.1), (4.2), where

f (x, y) = 5 + xy2.

Let λ1 = 2, d = 5 ∈ (0,ρ∗). Direct computations show that

f (x, y) ≤ 9 < dλ1 = 10, for 0 ≤ x ≤ 1, 0 ≤ y ≤ 2,

and

f∞ = lim inf
y→+∞ min

x∈[1/4,3/4]

f (x, y)
y

= lim inf
y→+∞

(
5
y

+
y
4

)
= ∞ > 68 =

(
ρ∗

σ

)p–1

.

So condition (A4) was satisfied. By the use of Corollary 3.1, problem (1.1) has at least one
positive solution.
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