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Abstract
In this paper, the authors investigate the following fractional Kirchhoff boundary
value problem:

{
(a + b

∫ T
0 (0Dα

t u)
2 dt)tDα

T (0D
α
t u) + λV(t)u = f (t,u), t ∈ [0, T ],

u(0) = u(1) = 0,

where the parameter λ > 0 and constants a,b > 0. By applying the mountain pass
theorem and the linking theorem, some existence results on the above fractional
boundary value problem are obtained. It should be pointed out that the potential V
may be sign-changing.
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1 Introduction
In recent ten years, the fractional differential equations have been extensively studied by
many researchers due to their various applications in science and engineering [1–5]. In
fact, one can find numerous applications in the modeling of various phenomena such as
in neurons, viscoelasticity, biochemistry, bioengineering, porous media, electromagnetic,
etc. Especially, in the last several years, the investigations on the equations including both
left and right fractional derivative have received more and more attention. Due to the
appearance of both left and right fractional derivatives in equations, the fixed point theory
is generally not suitable for the study of the existence of solution to such problems. For
the first time, Jiao and Zhou [6] showed that the variational method is a very effective tool
for studying such problems. In [6], by introduction of appropriate spaces and variational
structure and using some critical point theorem, the authors investigated the existence of
solutions to the following equations:

⎧⎨
⎩tDα

T (0Dα
t u(t)) = ∇F(t, u(t)), a.e. t ∈ [0, T],

u(0) = u(T) = 0.
(1.1)

Under some suitable conditions, the existence results were obtained on equation (1.1).
Since then there have been many literature works investigating a variety of fractional equa-

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13661-018-1046-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-018-1046-3&domain=pdf
mailto:mathchgq@163.com


Chai and Liu Boundary Value Problems  (2018) 2018:125 Page 2 of 18

tions with left and right derivatives via variational methods, and a lot of results on the ex-
istence of one solution, three solutions, infinite solutions, and so on, have been obtained
(see [7–15]).

On the other hand, recently, more and more research has focused on the following
Kirchhoff-type problem:

⎧⎨
⎩–(a + b

∫
RN |∇u|2)�u + V (x)u = f (x, u), x ∈R

N ,

u ∈ H1(RN ),
(1.2)

where V : RN → R and constants a, b are two positive numbers. Problem (1.2) is called
nonlocal because of the presence of the term

∫
RN |∇u|2 dx, which means that (1.2) is no

longer a pointwise identical equation. This phenomenon provokes more difficulties to
overcome, which makes the study of such a class of problems particularly interesting. If
the function V vanishes and R

N is replaced with a bounded domain � ⊂R
N in (1.2), then

it reduces to the following Dirichlet problem of Kirchhoff type:

⎧⎨
⎩–(a + b

∫
�

|∇u|2 dx)�u = f (t, u), x ∈ �,

u = 0, x ∈ ∂�,

which is related to the stationary analog of equation

ρ
∂2u
∂t2 –

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx
)

∂2u
∂x2 = 0 (1.3)

proposed by Kirchhoff in [16], which is an extension of the classical D’Alembert’s wave
equation and is used to characterize the free vibrations of elastic strings.

In recent years, Eq. (1.2) has been investigated in depth under different conditions on f
and V , and a lot of existence results of the nontrivial solution to (1.2) have been obtained
via variational method. In [17], Jin and Wu got existence of infinite many radial solutions
by using the fountain theorem for N = 3 and V = 1. While f satisfies 4-superlinear con-
dition and V admits other assumptions, Wu [18] established some existence results on
nontrivial solutions. For more related research, the readers can refer to [19–30] and the
references therein.

Motivated by these works mentioned above and combining the fractional equations with
left-right derivatives and the Kirchhoff equations, the authors will investigate the following
fractional Kirchhoff boundary value problem (BVP for short):

⎧⎨
⎩(a + b

∫ T
0 (0Dα

t u)2 dt)tDα
T (0Dα

t u) + λVu = f (t, u), t ∈ [0, T],

u(0) = u(T) = 0,
(1.4)

where the parameter λ > 0 and constants a, b > 0. By using the mountain pass theorem and
the linking theorem, we establish some existence results of nontrivial solutions to BVP
(1.4). It should be pointed out that in some references mentioned previously, the potential
V is always assumed to be continuous and positive. Here, we consider BVP (1.4) having a
more general potential V . In particular, the potential V can be sign-changing. As a result,
there are more difficulties that need to be overcome and more derivation techniques need
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to be introduced. In addition, some critical point theorems under the (C)c condition but
not the usual (PS)c condition will be applied. To the best of our knowledge, no one has
studied BVP (1.4) so far.

Finally, we turn to showing the organization of the paper. In Sect. 2, we present some
definitions and the variational work frame for (1.4) as well as some lemmas, which will be
used later. In Sect. 3, we give the main results.

2 Preliminaries
In this section, we introduce the following definitions and lemmas.

Definition 2.1 ([5]) Let f be a function defined on [a, b]. The left Riemann–Liouville frac-
tional integral of order γ > 0 for function f is defined by

aD–γ
t f (t) =

1
	(γ )

∫ t

a
(t – s)γ –1f (s) ds, t ∈ [a, b],

provided the right-hand side is pointwise defined on [a, b], where 	 is the gamma function.

Definition 2.2 ([5]) Let f be a function defined on [a, b]. The right Riemann–Liouville
fractional integral of order γ > 0 for function f is defined by

tD–γ

b f (t) =
1

	(γ )

∫ b

t
(s – t)γ –1f (s) ds, t ∈ [a, b],

provided the right-hand side is pointwise defined on [a, b].

Definition 2.3 ([5]) Let f be a function defined on [a, b]. The left and right Riemann–
Liouville fractional derivatives of order γ > 0 for function f denoted by aDγ

t f (t) and
tDγ

b f (t), respectively, are defined by

aDγ
t f (t) =

dn

dtn aDγ –n
t f (t)

and

tDγ

b f (t) = (–1)n dn

dtn tDγ –n
b f (t),

where t ∈ [a, b], n – 1 ≤ γ < n, n ∈ N .

Definition 2.4 ([6]) Let 0 < α ≤ 1 and 1 < p < ∞. Denote the fractional derivative space
Eα,p

0 by the closure of C∞
0 ([0, T],R) on the norm

‖u‖α,p =
(∫ T

0

∣∣u(t)
∣∣p dt +

∫ T

0

∣∣0Dα
t u(t)

∣∣p dt
)1/p

, ∀u ∈ Eα,p
0 .

By [6], the space (Eα,p
0 ,‖ · ‖α,p) is a Banach space.

As usual, for 1 ≤ p < ∞, we definite the norms ‖u‖LP = (
∫ T

0 |u(t)|p dt) 1
2 for u ∈ Lp[0, T]

and ‖u‖∞ = maxt∈[0,T] |u(t)| for u ∈ C([0, T],R).
By [6], we have the following results.
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Lemma 2.1 ([6]) Let 0 < α ≤ 1, 1 < p < ∞. Then Eα,p
0 is a reflective and separable Banach

space. Moreover, if α > 1
p , then Eα,p

0 ⊂ C([0, T],R).

Lemma 2.2 ([6]) Let 0 < α ≤ 1, 1 < p < ∞. For any u ∈ Eα,p
0 ,

(i) if α > 1
p or α ≤ 1 – 1

p , then ‖u‖Lp ≤ Tα

	(α+1)‖0Dα
t u‖Lp ;

(ii) if α > 1
p and 1

p + 1
q = 1, then ‖u‖∞ ≤ Tα–1/p

	(α)((α–1)q+1)1/q ‖0Dα
t u‖Lp .

Lemma 2.3 ([6]) Let 1 < p < ∞ and α > 1
p . If uk ⇀ u in Eα,p

0 , then uk → u in C([0, T],R).
Of course, uk → u in Lq([0, T]) for any q ≥ 1.

In what follows, we always assume that p = 2 and 1
2 < α ≤ 1.

Let V +and V –be the positive part and the negative part on potential V , respectively.
Then V = V + – V –.

We give some assumptions on the potential V as follows:
(V1) V is measurable and essentially bounded below on [0, T].
(V2) �i �= ∅, i = 1, 2, where �1 = int{t ∈ [0, T] : V (t) ≥ 0}, �2 = int{t ∈ [0, T] : V (t) < 0}.
(V3) limR→+∞ meas{x ∈ [0, T] : V (x) ≥ R} = 0.
In order to study the Kirchhoff-type boundary value problem with sign-changing po-

tential V , we need the following work frame. For each fixed λ > 0, define

Xλ :=
{

u ∈ Eα,2
0 :

∫ T

0
V +(t)u2(t) dt < ∞

}

and 〈u, v〉λ :=
∫ T

0 [a(0Dα
t u)(0Dα

t v) + λV +uv] dt for u, v ∈ Xλ.
In view of Lemmas 2.1–2.3, it is easy to know the following results hold.

Lemma 2.4 Assume condition (V1) holds. Then
(i) The space Xλ is a reflective and separable Hilbert space with the inner product

〈u, v〉λ, and also a reflective and separable Banach space with the norm
‖u‖λ = 〈u, u〉 1

2
λ , u ∈ Xλ.

(ii) The norms ‖ · ‖α,2 and ‖ · ‖λ on Xλ are equivalent.
(iii) Xλ is continuously and compactly embedded in the spaces C([0, T]) and L2([0, T]).

Moreover, we need the following notation. For the fixed λ > 0, let

Yλ =
{

u ∈ Xλ : supp u ⊂ V –1[0,∞)
}

.

Then Xλ = Yλ ⊕ Y ⊥
λ . Obviously, if V (t) ≥ 0, then Xλ = Yλ. Otherwise, Y ⊥

λ �= {0}.
We define a bilinear function a+

λ on Xλ × Xλ by

a+
λ(u, v) =

∫ T

0

[
a
(

0Dα
t u

)(
0Dα

t v
)
(t) + λV +(t)u(t)v(t)

]
dt

and a bilinear functional bλ on Y ⊥
λ × Y ⊥

λ by

bλ(u, v) =
∫ T

0
λV –(t)u(t)v(t) dt.

The following result will be used later.
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Lemma 2.5 Under condition (V1), the function bλ(u, u) is weakly continuously on Y ⊥
λ .

Proof By (V1), the function V – is essentially bounded below, that is, there exists v0 > 0
such that 0 ≤ v(t) ≤ v0, a.e. t ∈ [0, T]. Let {un} be any sequence with un ⇀ u in Y ⊥

λ . Then,
by Lemma 2.4, it follows that un → u in C([0, T]), and therefore,

lim
n→∞

∫ T

0
V –(t)u2

n(t) dt =
∫ T

0
V –(t)u2(t) dt

in terms of the dominated convergence theorem. That is, bλ(u, u) is weakly continuous on
Y ⊥

λ . The proof is complete. �

Now, we turn to considering the following eigenvalue problem on Y ⊥
λ :

atDα
T
(

0Dα
t u

)
+ λV +u = βλV –u, u ∈ Y ⊥

λ , (2.1)

where constants a > 0, λ > 0.
We denote an operator A+

λ on Y ⊥
λ associated with (2.1) by

A+
λu = atDα

T
(

0Dα
t u

)
+ λV +u, u ∈ Y ⊥

λ .

Clearly, A+
λ is formally self-adjoint in L2([0, T]). Hence, in view of the result in [31] com-

bined with Lemma 2.5, we have the following conclusion.

Lemma 2.6 Under condition (V1), the eigenvalue problem (2.1) admits a sequence of eigen-
values {βk(λ)} satisfying

0 < β1(λ) < β2(λ) ≤ · · · ≤ βN0(λ)(λ) ≤ βN0(λ)+1(λ) ≤ · · · ≤ βn(λ) ≤ · · · ,

with βN0(λ)(λ) ≤ 1 < βN0(λ)+1 and βk(λ) → +∞ as k → ∞. In addition, βk(λ) is character-
ized with

βk(λ) = inf
F⊥Yλ ,dim F≥k

sup

{
λ–1‖u‖λ

2 : u ∈ F ,
∫ T

0
V –1(t)u2(t) dt = 1

}
,

and eigenvector ek corresponding to βk(λ) forms a basis for Y ⊥
λ , which can be chosen so that

〈ei, ej〉λ = δij.

Denote the subspaces Xλ,1, Xλ,2 by Xλ,1 = span{ek : 1 ≤ k ≤ N0(λ)}, Xλ,2 = span{ek : k ≥
N0(λ) + 1}, respectively. Then Y ⊥

λ = Xλ,1 ⊕ Xλ,2, Xλ = Xλ,1 ⊕ Xλ,2 ⊕ Yλ.
Furthermore, we need to introduce a bilinear function aλ on Xλ × Xλ as follows:

aλ(u, v) =
∫ T

0

[
a
(

0Dα
t u

)(
0Dα

t v
)
(t) + λV (t)u(t)v(t)

]
dt, u, v ∈ Xλ.

On the above function aλ, we have the following conclusions.
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Lemma 2.7 Assume that condition (V1) holds. For constant a > 0 and fixed λ > 0, we have
(i) aλ(u, u) ≤ 0 for any u ∈ Xλ,1;

(ii) aλ(u, u) ≥ 0 for any u ∈ Xλ,2;
(iii) aλ(u, v) = 0 for any u, v ∈ Xλ taken in a different subspace among Xλ,1, Xλ,2, and Yλ.

Proof (i) For any u ∈ Xλ,1 with
∑N0(λ)

i=1 tiei, by (2.1), we have

δij = 〈ei, ej〉λ = a+
λ(ei, ej)

=
∫ T

0

[
a
(

0Dα
t ei

)(
0Dα

t ej
)
(t) + λV +(t)ei(t)ej(t)

]
dt

= βiλ

∫ T

0
V –(t)ei(t)ej(t) dt, 1 ≤ i, j ≤ N0(λ).

Thus,

aλ(ei, ej) =
∫ T

0

[
a
(

0Dα
t ei

)(
0Dα

t ej
)
(t) + λV (t)ei(t)ej(t)

]
dt

= (βi – 1)λ
∫ T

0
V –(t)ei(t)ej(t) dt

=
βi – 1

βi
δij, 1 ≤ i, j ≤ N0(λ),

and therefore aλ(u, u) =
∑N0(λ)

i=1
βi–1
βi

t2
i ≤ 0, for u =

∑N0(λ)
i=1 tiei, noting that 0 < βi ≤ 1 as 1 ≤

i ≤ N0(λ).
(ii) For any u ∈ Xλ,2 with u =

∑m
i=N0(λ)+1 tiei, by an argument similar to that in (i), we know

that

aλ(u, u) =
m∑

i=N0(λ)+1

βi – 1
βi

t2
i > 0, (2.2)

noting that βi > 1 as i ≥ N0(λ) + 1. Hence, for any u ∈ Xλ,2, taking {un} ⊂ Xλ,2 with un =∑mn
i=N0(λ)+1 t(n)

i ei satisfying un → u as n → ∞. It follows from (2.2) that aλ(un, un) > 0, n ≥ 1.
By

aλ(un, un) = ‖un‖2
λ –

∫ T

0
V –(t)u2

n(t) dt

and the fact that ‖un‖λ → ‖u‖λ, un → u in C([0, T]), 0 ≤ V –(t) ≤ v0, a.e. t ∈ [0, T], applying
the dominated convergence theorem, we know that

aλ(u, u) = lim
n→∞ aλ(un, un) ≥ 0.

(iii) For any u ∈ Xλ,1, v ∈ Yλ, because V –(t)v(t) = 0, we have

aλ(u, v) = a+
λ(u, v) – λ

∫ T

0
V –(t)u(t)v(t) dt = a+

λ(u, v) = 〈u, v〉λ = 0.

Similarly, for any u ∈ Xλ,2, v ∈ Yλ, or u ∈ Xλ,1, v ∈ Xλ,2, we have aλ(u, v) = 0. �
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Now, we turn to introducing two critical point theorems. Let E be a Banach space and
I : E → R be a functional of class C1. A sequence {un} ⊂ E is a (C)c sequence of I means
that if I(un) → c and (1 + ‖un‖)I ′(un) → 0 as n → ∞. Moreover, I satisfies the Cerami
condition at level c if any (C)c sequence of I has a convergent subsequence.

Lemma 2.8 (Mountain pass theorem [32]) Let E be a Banach space, I ∈ C1(E,R) satisfies
that max{I(0), I(e)} ≤ μ < η ≤ inf‖u‖=ρ I(u) for some μ < η,ρ > 0, and e ∈ E with ‖e‖ > ρ .
Let c be characterized by c = infγ∈	 max0≤t≤1 I(γ (t)), where 	 = {γ ∈ C([0, 1], E) : γ (0) =
0,γ (1) = e}. Then c ≥ η and I has a (C)c sequence.

Lemma 2.9 (Linking theorem [33]) Let X = Y ⊕ Z be a Banach space with dim Y < ∞. Let
ρ > r > 0 and e0 ∈ Z with ‖e0‖ = r. Set

M :=
{

u = y + λe0 : ‖u‖ ≤ ρ,λ ≥ 0, y ∈ Y
}

,

Nr :=
{

u ∈ Z : ‖u‖ = r
}

,

M0 :=
{

u = y + λe0 : y ∈ Y ,‖u‖ = ρ,λ ≥ 0 or ‖u‖ ≤ ρ,λ = 0
}

.

If I ∈ C1(X,R) satisfies that b := infNr I > a := maxM0 I , then c ≥ b, and there exists a (C)c

sequence of I , where c := infr∈	 maxu∈M I(γ (u)), 	 = {γ ∈ C(M, X) : γ|M0 = Id}.

3 Main result
In this section, we establish some existence results on solutions to BVP (1.4). First, we list
some conditions on functions f and F , where F(t, x) =

∫ x
0 f (t, s) ds, (t, x) ∈ [0, T] ×R.

(f1) f ∈ C([0, T] ×R).
(f2) There exist constants μ > 4, 0 < τ < 2 and a nonnegative function g ∈ L 2

2–τ such that

F(t, x) –
1
μ

f (t, x)x ≤ g(t)|x|τ , a.e. t ∈ [0, T], x ∈R.

(f3) There exists σ > 2 such that lim|x|→0 supt∈[0,T]
F(t,x)
|x|σ < ∞.

(f4) There exists θ > 2 such that lim|x|→∞ inft∈[0,T]
F(t,x)
|x|θ > 0.

(f ′
4) There exists θ > 4 such that lim|x|→∞ inft∈[0,T]

F(t,x)
|x|θ > 0.

(f5) f (t, x)x ≥ 0 for all t ∈ [0, T] and x ∈ R.
The energy functional associated with BVP (1.4) is expressed by

Iλ(u) =
1
2

∫ T

0

[
a
(

0Dα
t u

)2(t) + λV (t)u2(t)
]

dt

+
b
4

(∫ T

0

(
0Dα

t u
)2 dt

)2

–
∫ T

0
F
(
t, u(t)

)
dt. (3.1)

Furthermore, clearly, under conditions (V1) and (f1),

I ′
λ(u)v =

∫ T

0

[
a
(

0Dα
t u

)(
0Dα

t v
)
(t) + λV (t)u(t)v(t)

]
dt

+ b
∫ T

0

(
0Dα

t u
)2 dt

∫ T

0

(
0Dα

t u
)(

0Dα
t v

)
(t) dt –

∫ T

0
f
(
t, u(t)

)
v(t) dt (3.2)

for all u, v ∈ Xλ.
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u ∈ Xλ is called a weak solution of BVP (1.4) if I ′
λ(u)v = 0 holds for all v ∈ Xλ. That is, u is

a critical point of Iλ in Xλ.
Firstly, we establish several lemmas.

Lemma 3.1 If conditions (V1) and (f1)–(f2) hold, then any (C)c sequence {un} of Iλ for each
c ∈ R is bounded in Xλ.

Proof Let {un} be any (C)c sequence of Iλ. Then Iλ(un) → c and (1 + ‖un‖λ)I ′
λ(un) → 0 as

n → ∞. Thus,

c + o(1) = Iλ(un) –
1
μ

I ′
λ(un)un

=
(

1
2

–
1
μ

)∫ T

0

[
a
(

0Dα
t un(t)

)2 + λV (t)u2
n(t)

]
dt

+
(

1
4

–
1
μ

)
b
(∫ T

0

(
0Dα

t un(t)
)2 dt

)2

+
∫ T

0

(
1
μ

f
(
t, un(t)un(t)

)
– F

(
t, un(t)

))
dt

=
(

1
2

–
1
μ

)
‖un‖2

λ –
(

1
2

–
1
μ

)∫ T

0
λV –(t)u2

n(t) dt

+
(

1
4

–
1
μ

)
b
(∫ T

0

(
0Dα

t un
)2 dt

)2

+
∫ T

0

(
1
μ

f (t, un)un – F(t, un)
)

dt. (3.3)

By (V1), there exists v0 > 0 such that 0 ≤ V –(t) ≤ v0, a.e. t ∈ [0, T], and therefore

0 ≤
∫ T

0
V –(t)u2

n(t) dt ≤ v0‖un‖2
L2 . (3.4)

Also, by (f1)–(f2), one gets

∫ T

0

[
F
(
t, un(t)

)
–

1
μ

f
(
t, un(t)

)
un(t)

]
dt ≤

∫ T

0
g(t)|un|τ dt ≤ g0‖un‖τ

L2 , (3.5)

where g0 = ‖g‖
L

2
2–τ

. Thus, it follows from (3.3)–(3.5) that

(
1
2

–
1
μ

)
‖un‖2

λ ≤ c + o(1) + λ

(
1
2

–
1
μ

)
v0‖un‖2

L2 + g0‖un‖τ
L2 . (3.6)

Inequality (3.6) shows that if the sequence {un} is bounded in L2, then so is it in Xλ.
Assume by contradiction that there exists a subsequence, still denoted by {un}, such that

‖un‖L2 → ∞ as n → ∞. Write vn = un
‖un‖L2

. Then ‖vn‖L2 = 1. It follows from (3.6) that

(
1
2

–
1
μ

)
‖vn‖2

λ ≤ c
‖un‖L2

+ o(1) + λ

(
1
2

–
1
μ

)
v0 + g0‖un‖τ–2

L2 .

The above inequality together with 0 < τ < 2 implies that {vn} is bounded in Xλ. Thus,
up to a subsequence, vn ⇀ v in Xλ, and then it follows from Lemma 2.4 that vn → v in
Lq, q ≥ 1 and vn → v in C[0, T].
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On the other hand, by (3.3)–(3.5), we also have

(
1
4

–
1
μ

)(∫ T

0

(
0Dα

t vn(t)
)2 dt

)2

≤ c
‖un‖4

L2
+ o(1) +

g0v0

‖un‖2
L2

+ g0‖un‖τ–4
L2 . (3.7)

Denote a norm ‖ · ‖∗ on Xλ by ‖u‖∗ = (
∫ T

0 (0Dα
t u(t))2 dt)1/2. Then it follows from Lem-

mas 2.2–2.4 that the norms ‖ · ‖λ and ‖ · ‖∗ are equivalent. Thus, the relation vn ⇀

v in (Xλ,‖ · ‖λ) implies that vn ⇀ v in (Xλ,‖ · ‖∗), and therefore, by the weak lower
semi-continuity of norm, we have ‖v‖∗ ≤ limx→∞ inf‖vn‖∗. That is,

∫ T
0 (0Dα

t v)2 dt ≤
limn→∞ inf

∫ T
0 (0Dα

t vn)2 dt. Hence, by (3.7), it follows that
∫ T

0 (0Dα
t v(t))2 dt = 0, and so,

0Dα
t v(t) = 0, a.e. t ∈ [0, T]. Thus, v(t) = 0D–α

t 0Dα
t v(t) = 0, t ∈ [0, T], which contradicts

‖v‖L2 = limn→∞ ‖vn‖L2 = 1. This means that {un} is bounded in L2[0, T], and so is in Xλ.
The proof is complete. �

Lemma 3.2 Under conditions (V1)–(V2), for each fixed j ≥ 1, the eigenvalue βj(λ) associ-
ated with (2.1) satisfies that βj(λ) → 0 as λ → +∞.

Proof In terms of (V1)–(V2), we can choose φi ∈ C∞
0 (�2)\{0} with suppφi ∩ suppφj = Ø,

i �= j, 1 ≤ i, j ≤ m. Let F = span{φ1,φ2, . . . ,φm}. Then, by Lemma 2.6,

0 < βj(λ) ≤ sup
u∈F\{0}

‖u‖2
λ

λ
∫ T

0 V –(t)u2(t) dt
. (3.8)

Notice that suppφi ⊂ �2,φi(t)V +(t) = 0, t ∈ [0, T]. Thus ‖u‖λ = ‖u‖1.
Now, for any u ∈ F , define ‖u‖∗ = (

∫ T
0 V –(t)u2(t) dt) 1

2 . We claim that (F ,‖ · ‖∗) is a
normed space. In fact, for any u ∈ F and k ∈R, obviously, ‖u‖∗ ≥ 0 and ‖ku‖∗ = |k|‖u‖∗. In
addition, if ‖u‖∗ = 0, then the fact that supp u ⊂ �2 implies that u(t) = 0, t ∈ [0, T], namely
u = 0.

Finally , we show that

‖u + v‖∗ ≤ ‖u‖∗ + ‖v‖∗

for any u, v ∈ F . Indeed, for any u, v ∈ F , since

∫ T

0
V –(t)

∣∣u(t)
∣∣∣∣v(t)

∣∣dt =
∫ T

0

(
V –(t)

) 1
2
∣∣u(t)

∣∣(V –(t)
) 1

2
∣∣v(t)

∣∣dt

≤
(∫ T

0
V –(t)u2(t) dt

) 1
2
(∫ T

0
V –(t)v2(t) dt

) 1
2

= ‖u‖∗‖v‖∗,

we have

‖u + v‖2
∗ =

∫ T

0
V –(t)(u + v)2 dt

≤
∫ T

0
V –(t)

(
u2 + v2 + 2|u||v|)dt
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= ‖u‖2
∗ + ‖v‖2

∗ + 2
∫ T

0
V –(t)|u||v|dt

≤ (‖u‖∗ + ‖v‖∗
)2.

That is, ‖u + v‖∗ ≤ ‖u‖∗ + ‖v‖∗. Hence, (F ,‖ · ‖∗) is a normed space with finite dimension.
Now, in terms of the equivalence of norms on a finite dimensional space, there exist

two constants c1, c2 > 0 such that c1‖u‖∗ ≤ ‖u‖1 ≤ c2‖u‖∗ for any u ∈ F . Then, it follows
from (3.8) that 0 < βj(λ) ≤ 1

λ
c2

2 → 0, as λ → +∞, noting that ‖u‖λ = ‖u‖1. The proof is
complete. �

By Lemma 3.2, there exists �0 > 0 such that Xλ,1 �= ∅ as λ > �0. In what follows, we will
apply Lemma 2.9 with Y = Xλ,1 and Z = Xλ,2 ⊕ Yλ. Of course, Y �= ∅ and dim Y < ∞.

Lemma 3.3 Let (V1)–(V2) and (f1), (f3) hold. Then, for each λ > �0, there exist rλ > 0 and
kλ > 0 such that Iλ(u) ≥ kλ for all u ∈ Xλ,2 ⊕ Yλ with ‖u‖λ = rλ.

Proof We first show that there exists δλ > 0 such that aλ(u, u) ≥ δλ‖u‖2
λ for all u ∈ Xλ,2.

The argument is similar to that in Lemma 2.7. In fact, for any j ≥ N0(λ) + 1, we have

aλ(ej, u) =
∫ T

0

[
a
(

0Dα
t ej(t)

)(
0Dα

t u(t)
)

+ λV (t)ej(t)u(t)
]

dt

= λ(βj – 1)
∫ T

0
V –(t)ej(t)u(t)] dt,

〈ej, u〉λ =
∫ T

0

[
a
(

0Dα
t ej(t)

)(
0Dα

t u(t)
)

+ λV +(t)ej(t)u(t)
]

dt

= λβj

∫ T

0
V –(t)ej(t)u(t) dt.

Thus,

aλ(ej, u) =
(

1 –
1
βj

)
〈ej, u〉λ ≥ δλ〈ej, u〉λ,

where δλ = 1 – 1
βN0(λ)+1

> 0 noting that βN0(λ)+1 > 1.
Since {ej}∞j=N0(λ)+1 is a basis of Xλ,2, taking {un} ⊂ Xλ,2 such that un → u Xλ,2 with un =∑mn
i=N0(λ)+1 tn

i ei, then

aλ(u, un) = aλ

(
u,

mn∑
i=N0(λ)+1

t(n)
i ei

)

=
mn∑

i=N0(λ)+1

t(n)
i aλ(u, ei)

≥ δλ

mn∑
i=N0(λ)+1

t(n)
i 〈u, ei〉λ

= δλ〈u, un〉λ,
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and so, aλ(u, u) = limn→∞ aλ(u, un) ≥ limn→∞ δλ〈u, un〉λ = δλ〈u, u〉λ = δλ‖u‖2
λ. While for

any v ∈ Yλ, because V (t)v2(t) = V +(t)v2(t), we have aλ(v, v) = ‖v‖2
λ. Hence, for any w =

u ⊕ v ∈ Xλ,2 ⊕ Yλ, observing that aλ(u, v) = 0 by Lemma 2.7, we have

Iλ(w) =
1
2

aλ(u, u) +
1
2

aλ(v, v) +
b
4

(∫ T

0

(
0Dα

t w(t)
)2 dt

)2

–
∫ T

0
F
(
t, w(t)

)
dt

≥ 1
2
δλ‖u‖2

λ +
1
2
‖v‖2

λ –
∫ T

0
F
(
t, w(t)

)
dt

≥ δλ‖w‖2
λ –

∫ T

0
F
(
t, w(t)

)
dt, (3.9)

where δλ = min{ 1
2δλ, 1

2 } > 0.
On the other hand, by condition (f3), taking l > 0 with lim|x|→0 supt∈[0,T]

F(t,x)
|x|σ < l, then

there exists r1 > 0 such that F(t,x)
|x|σ < l as |x| < r1. Thus, F(t, x) < l|x|σ as |x| < r1. So, by Lem-

mas 2.2 and 2.4, there is r2 > 0 such that ‖u‖λ ≤ r2 ensures that ‖u‖∞ < r1 for any u ∈ Xλ.
Hence, for any w ∈ Xλ,2 ⊕ Yλ, if ‖w‖λ ≤ r2, then

F
(
t, w(t)

) ≤ l
∣∣w(t)

∣∣σ , t ∈ [0, T]. (3.10)

Thus, it follows from (3.9)–(3.10) that

Iλ(w) ≥ δλ‖w‖2
λ – l

∫ T

0

∣∣w(t)
∣∣σ dt ≥ δλ‖w‖2

λ – lT‖w‖σ
∞. (3.11)

Again by Lemmas 2.2 and 2.4, there exists cλ > 0 such that ‖w‖σ∞ ≤ cλ‖w‖σ
λ . Thus, by (3.11),

we get

Iλ(w) ≥ δλ‖w‖2
λ – cλ‖w‖σ

λ , (3.12)

where constant cλ > 0. Noting that σ > 2, by (3.12), we can take small 0 < r < r1 and a num-
ber kλ > 0 such that Iλ(w) ≥ kλ for w ∈ Xλ,2 ⊕ Yλ with ‖w‖λ = r. The proof is complete. �

By (V2), we can take e0 ∈ C∞
0 (�1)\{0} with e0(t) ≥ 0, t ∈ [0, T] and ‖e0‖λ = r, then e0 ∈ Yλ.

We have the following conclusion.

Lemma 3.4 Suppose that (V1)–(V2) and (f1), (f4)–(f5) hold. Then, for each λ > �0, there
exist bλ > 0 and ρλ(> rλ) such thatsupu∈∂� Iλ(u) < kλ as b < bλ, where

� =
{

u = v + se0 : v ∈ Xλ,1,‖u‖λ ≤ ρλ, s ≥ 0
}

.

Proof By (f4), take d0 > 0 with lim|x|→∞ inft∈[0,T]
F(t,x)
|x|θ > d0. Then ∃M0 > 0 such that F(t,x)

|x|θ >
d0 as |x| ≥ M0. That is, F(t, x) > d0|x|θ , as |x| ≥ M0. By (f1), let m0 = mint∈[0,T],|x|≤M0 (F(t, x)–
d0|x|θ ). Thus F(t, x) ≥ d0|x|θ – |m0|, t ∈ [0, T], x ∈R.

The following argument is divided into two parts.
(i) We show that ∃ρλ(> rλ) and bλ > 0 such that Iλ(u) < 0 as u ∈ Xλ,1 ⊕Re0 with ‖u‖λ = ρλ

and b < bλ.
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In fact, for any u = v + w ∈ Xλ,1 ⊕ Re0, we already know that aλ(v, w) = 0, aλ(v, v) ≤ 0 by
Lemma 2.7. Moreover, owing to the fact that e0 ∈ C∞

0 (�1) and V (t)e2
0(t) = V +(t)e2

0(t), we
have aλ(w, w) = ‖w‖2

λ. Thus

Iλ(u) ≤ 1
2
‖w‖2

λ +
b
4

(∫ T

0

(
0Dα

t u
)2(t) dt

)2

–
∫ T

0
F
(
t, u(t)

)
dt

≤ 1
2
‖u‖2

λ +
b

4a2 ‖u‖4
λ –

∫ T

0

[
d0

∣∣u(t)
∣∣θ – |m0|

]
dt

=
1
2
‖u‖2

λ +
b

4a2 ‖u‖4
λ + |m0|T – d0‖u‖θ

Lθ .

In terms of equivalence of the norms on a finite dimensional space, there exists d1 > 0 such
that d0‖u‖θ

Lθ ≥ d1‖u‖θ
λ. Thus,

Iλ(u) ≤ 1
2
‖u‖2

λ +
b

4a2 ‖u‖4
λ + |m0|T – d1‖u‖θ

λ. (3.13)

Let h(t) = 1
2 t2 + |m0|T – d1tθ . The assumption θ > 2 yields that h(t) → –∞ as t → +∞.

Thus, we can take ρλ(> rλ) such that h(ρλ) < 0, and then, choose small bλ > 0 so that h(ρλ) +
1

4a2 bλρ
4
λ < 0. Hence, it follows from (3.13) that Iλ(u) < 0 as u ∈ Xλ,1 ⊕ Re0 with ‖u‖λ = ρλ

and b ≤ bλ.
(ii) We show that ∃bλ ∈ (0, bλ] such that Iλ(u) < kλ for u ∈ Xλ,1 with ‖u‖λ ≤ ρλ, and b < bλ.
In fact, by (f5), F(t, x) ≥ 0, t ∈ [0, T] and x ∈ R. For any u ∈ Xλ,1 with ‖u‖λ ≤ ρλ, by

Lemma 2.7, aλ(u, u) ≤ 0, and therefore

Iλ(u) ≤ b
4

(∫ T

0

(
0Dα

t u
)2(t) dt

)2

≤ b
4a2 ‖u‖4

λ ≤ b
4a2 ρ4

λ .

For 0 < bλ taken previously in (i), choose small 0 < bλ ≤ bλ so that bλ

4a2 ρ4
λ < kλ. Then Iλ(u) <

kλ as ‖u‖λ ≤ ρλ.
By the above arguments on (i)–(ii), we conclude that supu∈∂� Iλ(u) ≤ kλ. The proof is

complete. �

Lemma 3.5 Assume that (V1), (V3) and (f1)–(f2) hold. Then any (C)c sequence {un} of Iλ
satisfies the Cerami condition at level c for each λ > 0 for any c ∈R.

Proof Let {un} be any (C)c sequence of Iλ. Then, by Lemma 3.1, {un} is bounded in Xλ.
Thus, up to a subsequence, un ⇀ u in Xλ, and therefore, (I ′

λ(un) – I ′
λ(u))(un – u) → 0 as

n → ∞. Let vn = un – u, then by (3.2)

o(1) =
(
I ′
λ(un) – I ′

λ(u)
)
(vn)

= ‖vn‖2
λ – λ

∫ T

0
V –(t)v2

n(t) dt + bAn –
∫ T

0

(
f (t, un) – f (t, u)

)
vn dt, (3.14)

where

An =
∫ T

0

(
0Dα

t un
)2 dt

∫ T

0

(
0Dα

t un
)(

0Dα
t vn

)
dt –

∫ T

0

(
0Dα

t u
)2 dt

∫ T

0

(
0Dα

t u
)(

0Dα
t vn

)
dt
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=
∫ T

0

(
0Dα

t un
)2 dt

∫ T

0

(
0Dα

t vn
)2 dt

+
[∫ T

0

(
0Dα

t un
)2 dt –

∫ T

0

(
0Dα

t u
)2 dt

]∫ T

0

(
0Dα

t u
)(

0Dα
t vn

)
dt

≥
[∫ T

0

(
0Dα

t un
)2 dt –

∫ T

0

(
0Dα

t u
)2 dt

]∫ T

0

(
0Dα

t u
)(

0Dα
t vn

)
dt.

Again, owing to the fact that vn ⇀ 0 in Xλ, we have

o(1) = 〈vn, u〉λ =
∫ T

0
a
(

0Dα
t vn

)(
0Dα

t u
)

dt + λ

∫ T

0
V +(t)vn(t)u(t) dt. (3.15)

We turn to showing that
∫ T

0 V +(t)vn(t)u(t) dt → 0 as n → ∞. Set

VR =
{

x ∈ [0, T] : V +(t) ≥ R
}

, V c
R = [0, T]\VR.

By (V3), limR→+∞ meas VR = 0. Because {vn} is bounded in Xλ, there exists M0 > 0 such that
‖vn‖λ ≤ √

λM0, and so (
∫ T

0 V +(t)v2
n dt) 1

2 ≤ 1√
λ
‖vn‖λ ≤ M0. Thus

∫
VR

V +|vn||u|dt =
∫

VR

(
V +) 1

2 |vn|
(
V +) 1

2 |u|dt

≤
(∫

VR

V +v2
n dt

) 1
2
(∫

VR

V +u2 dt
) 1

2

≤
(∫ T

0
V +v2

n dt
) 1

2
(∫

VR

V +u2 dt
) 1

2

≤ M0

(∫
VR

V +u2 dt
) 1

2
. (3.16)

Now, since
∫ T

0 V +(t)u2(t) dt < ∞, by the absolute continuity of integral combined with
the fact limR→+∞ meas VR = 0, there exists large R0 > 0 so that (

∫
VR0

V +(t)u2(t) dt) 1
2 < ε

2M0
.

Then it follows from (3.16) that
∫

VR0

V +(t)
∣∣vn(t)

∣∣∣∣u(t)
∣∣dt <

ε

2
. (3.17)

On the other hand, taking into account that un ⇀ 0 implies that vn → 0 in C([0, T]) and
vn → 0 in L2[0, T], observing that

∫
V c

R0
V +(t)|vn||u|dt ≤ R0‖vn‖∞‖u‖∞, we know that there

exists N0 ≥ 1 such that
∫

V c
R0

V +(t)|vn||u|dt <
ε

2
, (3.18)

as n ≥ N0.
Then, by (3.17)–(3.18), one has

∫ T

0
V +|vn||u|dt ≤

∫
VR0

V +|vn||u|dt +
∫

V c
R0

V +|vn||u|dt <
ε

2
+

ε

2
= ε,
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as n ≥ N0. Namely,
∫ T

0 V +|vn||u|dt → 0 as n → ∞, and so
∫ T

0 V +vnu dt → 0, as n → ∞.
Hence, it follows from (3.15) that

∫ T

0

(
0Dα

t vn
)(

0Dα
t u

)
dt → 0 (3.19)

as n → ∞. Hence, by (3.19) it is easy to see that

∫ T

0

(
0Dα

t un
)2 dt –

∫ T

0
(0Dtu)2 dt =

∫ T

0

(
0Dα

t vn
)2 dt + o(1). (3.20)

Thus

An ≥
∫ T

0

(
0Dα

t vn
)2 dt

∫ T

0

(
0Dα

t u
)(

0Dα
t vn

)
dt + o(1)

∫ T

0

(
0Dα

t u
)(

0Dα
t vn

)
dt.

Again, from (3.19), it follows that there exists N1 ≥ 1 such that

An ≥ –
1

3ba

∫ T

0

(
0Dα

t vn
)2 dt + o(1) ≥ –

1
3b

‖vn‖2
λ + o(1) (3.21)

as n ≥ N1.
Finally, owing to the fact that f ∈ C([0, T],R) and vn → 0 in C([0, T]), u ∈ C([0, T]), 0 ≤

V –(t) ≤ v0, a.e., t ∈ [0, T], it is easy to see that

∫ T

0

(
f (t, un) – f

(
t, u(t)

)
vn

)
dt = o(1), λ

∫ T

0
V –(t)v2

n(t) dt = o(1).

Combining (3.14) with (3.21), we get

o(1) ≥ 2
3
‖vn‖2

λ + o(1).

This means that vn → 0 in Xλ and the proof is complete. �

Now, we are in a position to show our first result on the existence of solution to BVP
(1.4).

Theorem 3.1 Assume that conditions (V1)–(V3) and (f1)–(f5) hold. Then there exist con-
stants �0 > 0 and bλ > 0 such that BVP (1.4) has at least one nontrivial weak solution for
λ > �0 and b < bλ.

Proof Firstly, we show that Iλ is of class C1.
In fact, let {un} be any sequence with un → u in Xλ. Then un → u in C([0, T]) and

in L2[0, T] by Lemma 2.4. Set Luϕ = 〈u,ϕ〉λ, φuϕ =
∫ T

0 V –(t)uϕ dt, ψuϕ =
∫ T

0 (0Dtu)2 dt ×∫ T
0 (0Dα

t u)(0Dα
t ϕ) dt and Guϕ =

∫ T
0 f (t, u)ϕ dt for any ϕ ∈ Xλ. Then, by (3.2), I ′

λ(u)ϕ =
Luϕ – λφuϕ + bψu – Guϕ,ϕ ∈ Xλ.

It is well known that Lu is continuous in X∗
λ . Next, we show that φu,ψu, and Gu are also

continuous in X∗
λ .



Chai and Liu Boundary Value Problems  (2018) 2018:125 Page 15 of 18

(i) On φu, for any ϕ ∈ Xλ with ‖ϕ‖λ ≤ 1, noting that 0 ≤ V –(t) ≤ v0, we have

‖φunϕ – φuϕ‖ ≤
∫ T

0
V –|un – u||ϕ|dt

≤ v0

∫ T

0
|un – u||ϕ|dt

≤ v0‖un – u‖L2‖ϕ‖L2

≤ c0‖un – u‖L2‖ϕ‖λ

for some c0 > 0, because ‖ϕ‖L2 ≤ c1‖ϕ‖λ by Lemma 2.4. Hence

‖φun – φu‖X∗
λ

= sup
‖ϕ‖λ≤1

‖φunϕ – φuϕ‖ ≤ c0‖un – u‖L2 → 0

as n → ∞. That is, φu is continuous in X∗
λ .

(ii) On ψu, for any ϕ ∈ Xλ with ‖ϕ‖λ ≤ 1, by an argument similar to (3.20), we have

|ψunϕ – ψuϕ|

≤
∣∣∣∣
∫ T

0

(
0Dα

t un
)2 dt –

∫ T

0

(
0Dα

t u
)2 dt

∣∣∣∣
∣∣∣∣
∫ T

0

(
0Dα

t un
)(

0Dα
t ϕ

)
dt

∣∣∣∣
+

∫ T

0

(
0Dα

t u
)2 dt

∣∣∣∣
∫ T

0
0Dα

t (un – u)
(

0Dα
t ϕ

)
dt

∣∣∣∣
≤

(∫ T

0

(
0Dα

t (un – u)
)2 dt +

∣∣o(1)
∣∣)∫ T

0

∣∣0Dα
t un

∣∣∣∣0Dα
t ϕ

∣∣dt

+
∫ T

0

(
0Dα

t u
)2 dt

∫ T

0

∣∣0Dα
t (un – u)

∣∣∣∣0Dα
t ϕ

∣∣dt

≤
(∫ T

0

(
0Dα

t (un – u)
)2 dt +

∣∣o(1)
∣∣)(∫ T

0

(
0Dα

t un
)2 dt

) 1
2
(∫ T

0

(
0Dα

t ϕ
)2 dt

) 1
2

+
∫ T

0

(
0Dα

t u
)2 dt

(∫ T

0

(
0Dα

t (un – u)
)2 dt

) 1
2
(∫ T

0

(
0Dα

t ϕ
)2 dt

) 1
2

≤
(

1
a
‖un – u‖2

λ +
∣∣o(1)

∣∣)1
a
‖un‖λ‖ϕ‖λ +

1
a2 ‖un – u‖λ‖u‖2

λ‖ϕ‖λ

≤ c1‖un – u‖2
λ +

∣∣o(1)
∣∣ + c2‖un – u‖λ

for some c1 > 0, c2 > 0 observing that {‖un‖λ} is bounded, ‖ϕ‖λ ≤ 1 and c2 = 1
a2 ‖u‖2

λ.
Thus ‖ψun – ψu‖X∗

λ
= sup‖ϕ‖λ≤1 |ψunϕ – ψuϕ| → 0 as n → ∞. That is, ψu is continuous

in X∗
λ .

(iii) On Gu, by f ∈ C([0, T],R), it is easy to see that Gu is also continuous in X∗
λ , we omit

it.
Summing up the above arguments (i)–(iii), we know that Iλ is of class C1. Now, by Lem-

mas 3.3 and 3.4 and applying Lemma 2.9, for λ > �0, there exists a (C)c sequence {un}
of Iλ in Xλ with c ≥ kλ > 0. Then, by Lemma 3.5, up to a subsequence, un → u in Xλ.
Hence, ∀ϕ ∈ Xλ, thanks to the fact that Iλ is of class C1, 0 = limn→∞ I ′

λ(un)ϕ = I ′
λ(u)ϕ and
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0 < kλ ≤ c = limn→∞ Iλ(un) = Iλ(u). Thus, u is a nontrivial solution of BVP (1.4). The proof
is complete. �

Now, we give the second existence result.

Theorem 3.2 Assume that conditions (V1), (V3), (f1)–(f3), and (f ′
4) hold. Furthermore,

V (t) ≥ 0, a.e. t ∈ [0, T]. Then BVP (1.4) has at least one nontrivial weak solution for each
λ > 0.

Proof We already know that Iλ is of class C1 by the proof of Theorem 3.1. Moreover, under
conditions (f1) and (f3), making an argument similar to (3.12), we know that the following
inequality also holds:

Iλ(u) ≥ δλ‖u‖2
λ – c̄λ‖u‖σ

λ , u ∈ Xλ

for some δλ > 0, cλ > 0. Thus, observing that σ > 2, there exist constants α0 > 0,ρ > 0 such
that Iλ(u) ≥ α0 as ‖u‖λ = ρ small enough.

On the other hand, by (f ′
4) and making an argument similar to (3.13), we also have

Iλ(u) ≤ 1
2
‖u‖2

λ +
b

4a2 ‖u‖4
λ + |m0|T – d0‖u‖θ

Lθ , u ∈ Xλ.

Then taking u0 ∈ Xλ with ‖u0‖λ > ρ , we have

Iλ(tu0) ≤ 1
2

t‖u0‖2
λ +

b
4

t4‖u0‖4
λ + |m0|T – d0tθ‖u0‖θ

Lθ → –∞

as t → +∞, noting that θ > 4. So, we choose t0 > 0 large so that Iλ(t0u0) < 0 and ‖t0u0‖ > ρ .
Write e0 = t0u0. Then Iλ(e0) < 0 and ‖e0‖λ > ρ . By Lemma 2.8, there is a (C)c sequence {un}
of Iλ with c = cλ, where

0 < α0 ≤ cλ := inf
γ∈T

max
t∈[0,1]

Iλ
(
γ (t)

)
, 	 =

{
γ ∈ (

[0, 1], Xλ

)
: γ (0) = 0,γ (1) = e

}
.

Then, by Lemma 3.5, {un} satisfies the Cerami condition at level cλ for each λ > 0. Thus,
passing to a subsequence, un → u in Xλ. By an argument as before, we know that u is a
nontrivial weak solution to BVP(1.4). This completes the proof. �

4 Conclusion
In this paper, by applying the mountain pass theorem and the linking theorem, some ex-
istence results of the nontrivial solutions to BVP (1.4) were obtained. Here, problem (1.4)
is a nonlocal problem as the appearance of the term

∫ T
0 (0Dα

t u)2 dt and has a general po-
tential V , which can be sign-changing. As a result, there are more difficulties that need to
be overcome and more derivation techniques need to be introduced.
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