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Abstract
In this paper, based on the pressure project method, we consider an adaptive
stabilized finite volume method for the Oseen equations with the lowest equal order
finite element pair. Firstly, we develop the discrete forms in both finite element and
finite volume methods, and establish the existence and uniqueness of numerical
solutions by establishing the equivalence of linear terms in finite element and finite
volume methods. Secondly, a residual type a posteriori error estimator is designed,
and the computable global upper and local lower bounds between the exact
solutions and the finite volume solutions are established. Thirdly, a discrete local
lower bound between two successive finite volume solutions is obtained,
convergence analysis of the adaptive stabilized finite volume method is also
performed. Finally, some numerical results are presented to verify the performances
of the developed error estimators and confirm the established theoretical findings.
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1 Introduction
Finite volume method, as an important numerical tool for solving partial differential equa-
tions, has been widely used in the engineering community for fluid computations (see [9,
14, 15, 29, 30]). Finite volume method is intuitive since it is based on local conservation
of mass, momentum, and energy over volumes. Finite volume method has a flexibility
similar to that of the finite element method for handling complicated geometries, and its
implementation is comparable to that of the finite difference method. Furthermore, its
numerical solution usually has certain conservation features that are desirable in many
practical applications. Based on the above reasons, several researchers have contributed
to this method extensively and obtained numerous important results. For example, we
can refer to [14, 26] for the monographs, and for the recent developments about the finite
volume method, we can read [1, 8, 13, 20, 31, 37] and the references therein.

Let � ∈R
2 be a bounded polygon domain with Lipschitz continuous boundary ∂�. We

consider the following Oseen problem, which consists of finding a pair (u, p) as the solution
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of the equations

⎧
⎪⎪⎨

⎪⎪⎩

–ν�u + a · ∇u + ∇p = f in �,

∇ · u = 0 in �,

u = 0 on ∂�,

(1.1)

where u is the velocity field, p is the pressure, ν is the viscosity, f is the body forces. For
the sake of simplicity, we consider the simplest Dirichlet condition. Several simplifying as-
sumptions will be made for the advection vector a. In particular, we take a ∈ C0(�), weakly
divergence free with derivatives of order up to m is locally bounded (m > 0 is integer, see
Assumption A1 in Sect. 2).

The Oseen problem stated above can be considered as a linearization of the stationary
incompressible Navier–Stokes equations. It also appears as one of the steps of some mul-
tilevel methods for these equations, or results from a time discretization of the transient
Navier–Stokes problem if the advection coefficient a is treated explicitly. This is why it is
often used as a first step towards the analysis of the full nonlinear problem, to obtain both
a priori and a posteriori estimates.

Let us introduce some standard notations. The space of square integrable functions in �

is denoted by L2(�), and the space of functions whose distributional derivatives of order
up to m ≥ 0 belong to L2(�) is denoted by Hm(�). The space H1

0 (�) consists of functions
in H1(�) vanishing on ∂�. A bold character is used to denote the vector counterpart of
all these spaces. The L2 inner product in � is denoted by (·, ·)�, and the norm in a Ba-
nach space X by ‖ · ‖X . This notation is simplified in some cases as follows: (·, ·)� ≡ (·, ·),
‖ · ‖L2(�) ≡ ‖ · ‖0, for the positive integer m, set ‖ · ‖Hm(�) ≡ ‖ · ‖m, and if K is an element
‖ · ‖L2(K ) ≡ ‖ · ‖K , ‖ · ‖Hm(K ) ≡ ‖ · ‖m,K .

With above notations, the velocity and pressure spaces for the continuous problem are
X := H1

0(�), M := L2(�)/R. The variational formulation for problem (1.1) reads as follows:
For all (v, q) ∈ X × M, find (u, p) ∈ X × M such that

⎧
⎨

⎩

ν(∇u,∇v) – (∇ · v, p) + (a · ∇u, v) = (f , v),

(∇ · u, q) = 0.
(1.2)

The bilinear terms satisfy the following continuity and inf-sup properties (see [16]):

∣
∣ν(∇u,∇v) – (∇ · v, p) + (a · ∇u, v) + (∇ · u, q)

∣
∣

≤ C
(‖∇u‖0 + ‖p‖0

)(‖∇v‖0 + ‖q‖0
)
, (1.3)

β
(‖∇u‖0 + ‖p‖0

) ≤ sup
0 �=(v,q)∈X×M

|ν(∇u,∇v) – (∇ · v, p) + (a · ∇u, v) + (∇ · u, q)|
‖∇v‖0 + ‖q‖0

.

Here and below, C > 0 is a generic constant depending at most on the data �, ν , a, and f.
In the following sections, C1, C2, . . . denote some positive constants depending only on �.

From the above properties, we know that problem (1.2) is well posed.
The standard Galerkin approximation of problem (1.2) is straightforward. Let TH denote

a shape regular and conforming triangulation of the domain �. The diameter of an element
domain K ∈ TH is denoted by HK and the diameter of the finite element partitions by H =
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max{HK |K ∈ TH}. For simplicity, we assume that all the element domains are the image of
a reference element K̂ through a polynomial mapping. We define the polynomial spaces
Pk(K̂) with order k on the element K̂ . From these polynomial spaces, we construct the
finite element spaces XH ⊂ X and MH ⊂ M in the usual manner. The discrete version of
problem (1.2) is as follows: Find (uH , pH ) ∈ XH × MH such that

⎧
⎨

⎩

ν(∇uH ,∇vH ) – (∇ · vH , pH ) + (a · ∇uH , vH ) = (f , vH ), ∀vH ∈ XH ,

(∇ · uH , qH ) = 0, ∀qH ∈ MH .
(1.4)

The well-posedness of problem (1.4) relies on the ellipticity of the viscous term and the
inf-sup or the Babus̆ka–Brezzi condition (see [10, 16]), which have been shown to hold
for the continuous problem. The first property is automatically inherited by its discrete
counterpart. However, the inf-sup condition needs to be explicitly required. This leads to
the need to use mixed interpolations and verify

β∗ ≤ inf
0 �=qH∈MH

sup
0 �=vH∈XH

(∇ · vH , qH )
‖vH‖1 · ‖qH‖0

(1.5)

for a positive constant β∗. The construction of the finite element spaces XH and MH to
satisfy (1.5) can be found in [16], examples include the MINI element and the Taylor–
Hood element.

From the computational point of view, it is convenient to use the same interpolation of
the velocity and pressure. However, this choice turns out to violate condition (1.5); there-
fore, some stabilized methods have been proposed to approximate problem (1.2). Exam-
ples of these stabilized methods are those of Brezzi and Douglas [4], Brezzi and Pitkäanta
[5], Douglas and Wang [12] (see also the references therein). Recently, a novel stabilized
technique using polynomial pressure projection has been proposed and studied to solve
incompressible flow [2, 21, 22, 24]. This new stabilized method has three prominent fea-
tures. (1) It is of practical convenience in real applications with the same partitions for
velocity and pressure. (2) Less computational time is required by easily applying the lower
order elements. (3) Compared with the standard finite element method, its analyses of
H1-norm and L2-norm for the velocity and pressure are derived without any high order
regularity assumptions on the exact solution. So this method has been widely used to con-
sider various kinds of problems [17, 18, 25, 28, 36].

In this paper, based on the regular triangular partitions of domain � and the pressure
project method, we consider the stabilized adaptive finite volume method for the Oseen
equations by the lowest equal order element (i.e., P1–P1 pair). The main contributions of
our work can be listed as follows.

(I) Existence and uniqueness of stabilized finite element and finite volume schemes
are developed, the corresponding stability and convergence results can be
established following the references [3, 6, 21].

(II) Residual type a posteriori error estimators are designed, the upper and lower
bounds are presented, a discrete local lower bound between two successive
numerical solutions is also shown.

(III) Thanks to the local error estimator, the stabilized adaptive finite volume method
and its convergence analysis are given and analyzed.
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The outline of this paper is organized as follows. In Sect. 2, the stabilized finite element
and finite volume methods for the Oseen problem are described. Our numerical schemes
are based on the lowest equal order pair, and we use the polynomial pressure projection
method to overcome the restriction of (1.5). The basic idea is to add some terms in the
discrete schemes, which are formed by the local projection from different spaces. Hav-
ing stated the stabilized numerical schemes, we deduce a complete numerical analysis of
global upper and local lower bounds for the errors in Sect. 3. Sections 4 and 5 are devoted
to deriving the discrete local lower bound and the convergence property of the adaptive
stabilized finite volume method. Two numerical examples are presented in Sect. 6 to show
the performances of the developed error estimators. One with known solution to verify
the convergence orders of the numerical solutions, the other is a model problem to con-
firm the efficiency of the adaptive finite volume method. Finally, some conclusions are
drawn.

2 Description of the discrete numerical schemes
2.1 Stabilized finite element method
Throughout this paper, we focus on the following finite element subspaces:

XH =
{

v ∈ C0(�)2 ∩ X : v|K ∈ P1(K)2,∀K ∈ TH
}

,

MH =
{

q ∈ C0(�) ∩ M : q|K ∈ P1(K),∀K ∈ TH
}

,

where P1(K) is the space of affine polynomials on the element K .
For the solenoidal vector a, we make the following assumption (see [3, 6, 11]).

Assumption A1 There is a constant CD such that the m derivatives of a within the ele-
ment K are bounded above by CD|a|∞,K , ∀K ∈ Th.

Under the assumption of weakly divergence free of a, for all v ∈ X, we have

(a · ∇v, v) =
1
2
(
a · ∇(v · v), 1

)
= –

1
2

(∇ · a, v · v) = 0. (2.1)

It is well known that the above chosen finite element spaces XH and MH do not satisfy the
discrete inf-sup condition (1.5), but they are of practical importance in real applications.
A recently popular stabilized approach, called local pressure projection method, is used
in [2, 17, 21, 22] to stabilize the lower order finite element for incompressible flow.

The stabilized finite element method for problem (1.2) is to find (uH , pH ) ∈ XH × MH

satisfying

⎧
⎨

⎩

ν(∇uH ,∇vH ) – (∇ · vH , pH ) + (a · ∇uH , vH ) = (f , vH ), ∀vH ∈ XH ,

(∇ · uH , qH ) + Gh(pH , qH ) = 0, ∀qH ∈ MH .
(2.2)

Here, the stabilized term G(·, ·) is defined by

Gh(pH , qH ) = (pH – �HpH , qH – �H qH ) ∀pH , qH ∈ MH , (2.3)
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and the local projection �H : L2(�) → P0(K) satisfies

(p, qH ) = (�Hp, qH ),‖�Hp‖0 ≤ C‖p‖0, ∀p ∈ M, qH ∈ P0(K),

‖p – �Hp‖0 ≤ CH‖p‖1, ∀p ∈ H1(�) ∩ M,
(2.4)

where P0(K) denotes a piecewise constant on each element K .
We first present the Scott–Zhang [32] interpolating property as the following lemma.

Lemma 2.1 Let IH be the interpolation operator from X ∩ C0(�)2 into Xh. It holds

‖w – IH w‖0,K ≤ C1HK‖w‖1,ωK ,

‖w – IH w‖0,E ≤ C1H1/2
E ‖w‖1,ωE ,

‖IH w‖1 ≤ ‖w‖1,

where ωK =
⋃

K ′∩K �=∅ K ′ (K ′ ∈ Th) and ωE =
⋃

E∩K �=∅ K .

Due to the quasi-uniformness of the triangulation TH , the inverse inequality holds

‖wH‖1 ≤ C2H–1‖wH‖0, ∀wH ∈ XH . (2.5)

Denote

B
(
(uH , pH ), (vH , qH )

)

≡ ν(∇uH ,∇vH ) – (∇ · vH , pH ) + (a · ∇uH , vH ) + (∇ · uH , qH ) + Gh(pH , qH ).

Then the well-posedness of problem (2.2) can be obtained from the following theorem.

Theorem 2.2 For all (uH , pH ), (vH , qH ) ∈ XH × MH , it holds

B
(
(uH , pH ), (vH , qH )

) ≤ C
(‖uH‖1 + ‖pH‖0

)(‖vH‖1 + ‖qH‖0
)
. (2.6)

Furthermore, there exists a constant β∗ such that, for all (uH , pH ) ∈ XH × MH ,

β∗(‖∇uH‖0 + ‖pH‖0
) ≤ sup

0 �=(vH ,qH )∈XH×MH

|B((uH , pH ), (vH , qH ))|
‖∇vH‖0 + ‖qH‖0

. (2.7)

Proof The continuity (2.6) holds by using the Cauchy inequality and Assumption A1.
Now, we present the proof of (2.7). For each pH ∈ MH ⊂ M, there exists w ∈ X [10, 16]

such that

∇ · w = pH (2.8)

and

‖w‖1 ≤ C3‖pH‖0, (∇ · w, pH ) ≥ C4‖w‖1‖pH‖0. (2.9)
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Let wH = IH w ∈ XH , which satisfies Lemma 2.1. Then it follows from the Green’s formula,
Poincare’s inequality, the inverse inequality (2.5), and (2.8)–(2.9) that

∣
∣ν(∇uH ,∇wH )

∣
∣ ≤ ν‖uH‖1‖wH‖1

≤ ν‖uH‖1‖w‖1 ≤ C3ν‖uH‖1‖pH‖0 ≤ 1
4
‖pH‖2

0 + C2
3ν

2‖uH‖2
1,

∣
∣(∇ · wH , pH )

∣
∣ = (∇ · w, pH ) –

(∇ · (w – wH ), pH
) ≥ ‖pH‖2

0 – C1C4H‖w‖1‖∇pH‖0

= ‖pH‖2
0 – C1C4H‖w‖1

∑

K∈TH

∥
∥∇(pH – �H pH )

∥
∥

0

≥ ‖pH‖2
0 – C1C2C3C4‖pH‖0

∑

K∈TH

‖pH – �HpH‖0

≥ 3
4
‖pH‖2

0 – C2
1C2

2C2
3C2

4‖pH – �HpH‖2
0,

∣
∣(a · ∇uH , wH )

∣
∣ ≤ CD|a|∞‖∇uH‖0‖wH‖0

≤ CD|a|∞‖∇uH‖0‖wH‖1 ≤ 1
4
‖pH‖2

0 + C2
3C2

D|a|2∞‖uH‖2
1.

Set δ > 0 and take

vH = uH – δwH and qH = pH .

Thanks to (2.1) and the above inequalities, one finds

∣
∣B

(
(uH , pH ), (uH – δwH , pH )

)∣
∣

=
∣
∣ν(∇uH ,∇uH ) + Gh(pH , pH ) + (a · ∇uH , uH )

– δ
[
ν(∇uH ,∇wH ) – (∇ · wH , pH ) + (a · ∇uH , wH )

]∣
∣

≥ ν‖∇uH‖2
0 +

∥
∥(I – �H )pH

∥
∥2

0

– δ

(
(
C2

3ν
2 + C2

3C2
D|a|2∞

)‖uH‖2
1 –

1
4
‖pH‖2

0 + C2
1C2

2C2
3C2

4‖pH – �H pH‖2
0

)

≥ (
ν – δ

(
C2

3ν
2 + C2

3C2
D|a|2∞

))‖uH‖2
1 +

δ

4
‖pH‖2

0 +
(
1 – δC2

1C2
2C2

3C2
4
)‖pH – �HpH‖2

0,

provided that 0 < δ < min{ ν

C2
3 (ν2+C2

D|a|2∞) , 1
C2

1 C2
2 C2

3 C2
4
}. Denote

C(ν) ≡ min

{

ν – δC2
3
(
ν2 + C2

D|a|2∞
)
,

1
4
δ

}

, C(δ) ≡ max
{

2, 1 + 2δ2}.

Then we have

‖∇vH‖2
0 + ‖qH‖2

0 = ‖∇uH – δ∇wH‖2
0 + ‖pH‖2

0

≤ 2‖∇uH‖2
0 +

(
1 + 2δ2)‖pH‖2

0 ≤ C(δ)
(‖∇uH‖2

0 + ‖pH‖2
0
)
.

Taking β∗ = C(ν)/C(δ), we obtain the desired result (2.7).
From Theorem 2.2 we see that problem (2.2) admits a unique solution. �
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Figure 1 Control volumes

2.2 Stabilized finite volume method
Let NH be the set of all interior vertices of the triangulation and EH be the set of all interior
edges. To define the finite volume method, we introduce a dual partition T ∗

H based on
TH , the elements in T ∗

H are called control volumes. The dual mesh is constructed by the
following rule: For each element K ∈ TH with vertices Pj, j = 1, 2, 3, select its barycenter
O and the midpoint Mj on each of the edges of K . We can construct the control volumes
K̃i ∈ T ∗

H by connecting O to Mj as shown in Fig. 1.
The dual finite element space is defined by

X̃H =
{

v ∈ L2(�)2 : v|K̃i ∈ P0(K̃i)2, v|∂K̃i∩∂� = 0,∀K̃i ∈ T ∗
H

}
.

Note that P0(K̃i) denotes a piecewise constant on each control volume K̃i. The two finite
dimensional spaces XH and X̃H have the same dimension. Furthermore, there exists an
invertible linear mapping 
H : XH → X̃H such that


H vH (x) =
NH∑

i=1

vH (xi)φi(x), xi is the node of TH , x ∈ �, vH ∈ XH ,

where φi(x) is the characteristic function associated with the dual partition T ∗
H :

φi(x) =

⎧
⎨

⎩

1 x ∈ K̃i,

0 otherwise.

The idea of connecting the different spaces through the mapping 
H was introduced by
Li and Zhu in [27] for the elliptic problem. The following properties hold.

Lemma 2.3 (See [7, 26, 34]) For any vH ∈ XH and v∗
H = 
H vH ∈ X̃H , for each interior ele-

ment K ∈ TH with its boundary ∂K ∈ EH , there hold

∫

K

(
vH – v∗

H
)

dx = 0,
∫

∂K

(
vH – v∗

H
)

ds = 0,
∥
∥v∗

H
∥
∥

0 ≤ C‖vH‖0,

∥
∥vH – v∗

H
∥
∥

0,r,K ≤ ChK‖vH‖1,r,K ,
∥
∥vH – v∗

H
∥
∥

0,r,∂K ≤ CH1–1/r
K ‖vh‖1,r,K , r ∈ [1,∞).
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Analogous to (2.2), the stabilized finite volume method for problem (1.1) is to find
(uv

H , pv
H ) ∈ (XH , MH ) satisfying

⎧
⎨

⎩

A(uv
H ,
H vH ) + D(
HvH , pv

H ) + (a · ∇uv
H ,
H vH ) = (f ,
hvH ), ∀vH ∈ XH ,

(∇ · uv
H , qH ) + GH (pv

H , qH ) = 0, ∀qH ∈ MH ,
(2.10)

where

A
(
uv

H ,
hvH
)

= –ν

NH∑

j=1

vH (Pj) ·
∫

∂K̃j

∂uv
H

∂n
ds,

D
(

H vH , pv

H
)

=
NH∑

j=1

vH (Pj) ·
∫

∂K̃j

pv
H · n ds,

(f ,
H vH ) =
NH∑

j=1

vH (Pj) ·
∫

K̃j

f dx.

Lemma 2.4 It holds that, for all uv
H , vH ∈ XH , pv

H ∈ MH ,

A
(
uv

H ,
H vH
)

= ν
(∇uv

H ,∇vH
)
,

D
(

H vH , pv

H
)

=
(∇ · vH , pv

H
)
.

(2.11)

Moreover, we have

(
a · ∇uv

H ,
uv
H
)

= 0. (2.12)

Proof The equations in (2.11) have been shown in [23, 34, 35]. It suffices to prove (2.12).
For uv

H ∈ XH , it follows from the definition of 
h and (2.1) that

(
a · ∇uv

H ,
uv
H
)

=
NH∑

j=1

∫

K̃j

a · ∇uv
H · 
H uv

H dx

= –
NH∑

j=1


H uv
H (Pj) ·

∫

K̃j

a · ∇uv
H dx

=
NH∑

j=1


H uv
H (Pj) ·

[∫

K̃j

(∇ · u)uv
H dx –

∫

∂K̃j

auv
H · n ds

]

.

With the weakly divergence free of a and the continuity of a, uv
H , we complete the

proof. �

We denote the generalized bilinear form C((·, ·), (·, ·)) on (XH , MH ) × (XH , MH ) as

C
((

uv
H , pv

H
)
, (vH , qH )

)

= A
(
uv

H ,
H vH
)

+ D
(

H vH , pv

H
)

+ d
(
uv

H , qH
)

+ GH
(
pv

H , qH
)

+
(
a · ∇uv

H ,
H vH
)
.
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By applying the relationships between finite element and finite volume methods pre-
sented in Lemma 2.4, and following the proof of Theorem 2.2, we can establish the conti-
nuity and weak coercivity for the generalized bilinear form C((·, ·), (·, ·)). Here we omit the
proof for simplification and present its continuity and weak coercivity.

Theorem 2.5 For all (uv
H , pv

H ), (vH , qH ) ∈ XH × MH , it holds

∣
∣C

((
uv

H , pv
H
)
, (vH , qH )

)∣
∣ ≤ C

(∥
∥uv

H
∥
∥

1 +
∥
∥pv

H
∥
∥

0

)(‖vH‖1 + ‖qH‖0
)
.

Moreover, there exists a constant β̃∗ > 0, independent of H , such that

β̃∗(∥∥uv
H
∥
∥

1 +
∥
∥pv

H
∥
∥

0

) ≤ sup
0 �=(vH ,qH )∈(XH ,MH )

C((uv
H , pv

H ), (vH , qH ))
‖vH‖1 + ‖qH‖0

. (2.13)

From Theorem 2.5, we know that problem (2.10) has a unique solution (uv
H , pv

H ).
For the stability and convergence results of numerical schemes (2.2) and (2.10), following

the proofs provided in [3, 6, 21], by taking different test functions and using the energy
method, we can obtain that the numerical schemes (2.2) and (2.10) are unconditionally
stable, error estimates for the numerical solutions are also optimal. Here we omit these
proofs for simplification.

3 A posteriori error estimation
In this section, we derive a residual type error estimator of the stabilized finite volume
method for the Oseen problem. The upper and lower bounds between the exact solution
and the finite volume solution are obtained by using Lemma 2.4 and some techniques
involving the bubble functions.

3.1 Upper bounds
In this subsection, a residual-based error estimator is investigated by using the techniques
of residual a posteriori error estimates and the stabilized finite volume method for the
Oseen equations. The error between (u, p) and (uv

H , pv
H ) is bounded by the global error

estimator ηH defined below.
For an element K of the triangulation TH , we set

RK = f + ν�uv
H – ∇pv

H – a · ∇uv
H ,

and for an edge E of a triangle K

JE =
[

ν
∂uv

H
∂n

– pv
H I · n

]

E
=

[

ν
∂uv

H
∂n

]

E
,

where n is the unit normal outward to ∂K . We also define the following local error esti-
mator for any (uv

H , pv
H ) ∈ XH × MH :

η2
H (K) = H2

K‖RK‖2
0,K +

∥
∥∇ · uv

H
∥
∥2

0,K + HE‖JE‖2
0,E.

Then the global error estimator is given by

η2
H =

∑

K∈TH

η2
H (K).
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The following theorem plays an important role in the process of establishing the upper
bound of adaptive finite volume method for the Oseen equations.

Theorem 3.1 Let (u, p) and (uv
H , pv

H ) be the solutions of problems (1.2) and (2.10), respec-
tively. Then, for any (v, q) ∈ X × M and v∗

H ∈ X̃H , it holds

ν
(∇(

u – uv
H
)
,∇v

)
–

(∇ · v, p – pv
H
)

+
(∇ · (u – uv

H
)
, q

)
+

(
a · ∇(

u – uv
H

)
, v

)

=
∑

K∈TH

∫

K

(
RK · (v – v∗

H
)

+ ∇ · uv
H q

)
dx +

∑

E∈EH

∫

E
JE

(
v – v∗

H
)

ds. (3.1)

Proof It follows from (1.2) that

ν
(∇(

u – uv
H
)
,∇v

)
–

(∇ · v, p – pv
H
)

+
(∇ · (u – uv

H
)
, q

)

= (f , v) – (a · ∇u, v) – ν
(∇uv

H ,∇v
)

+
(∇ · v, pv

H
)

–
(∇ · uv

H , q
)
. (3.2)

By the Green’s formula, one finds

ν
(∇uv

H ,∇v
)

–
(∇ · v, pv

H
)

+
(∇ · uv

H , q
)

=
(
–ν�uv

H + ∇pv
H , v

)
+

(∇ · uv
H , q

)
+

∑

E∈EH

∫

E
JE · v ds. (3.3)

On each control volume K̃ ∈ T ∗
H , applying the Green’s formula on K̃ ∩ K (see Fig. 1), we

have
∫

K̃∩K

(
–ν�uv

H + ∇pv
H
) · v∗

H dx = –
∫

∂K̃∩K
JE · v∗

H ds –
∫

∂K∩K̃
JE · v∗

H ds.

Summing the above results and using the first equation in (2.10), we obtain

0 =
(
–ν�uv

H + ∇pv
H , v∗

H
)

+
(
f , v∗

H
)

–
(
a · ∇uv

H , v∗
H
)

+
∑

E∈EH

∫

E
JE · v∗

H ds

=
(
–ν�uv

H + ∇pv
H , v∗

H
)

+
(
f , v∗

H
)

+
(
a · ∇uv

H , u – v∗
H
)

+
∑

E∈EH

∫

E
JE · v∗

H ds –
(
a · ∇uv

H , v
)
. (3.4)

The proof is completed by using (3.2), (3.3), and (3.4). �

Theorem 3.2 Let (u, p) and (uv
H , pv

H ) be the solutions of problems (1.2) and (2.10), respec-
tively. Under Assumption A1, there exists a positive constant C such that

∥
∥∇(

u – uv
H
)∥
∥

0 +
∥
∥p – pv

H
∥
∥

0 ≤ C5ηH .

Proof Using Lemmas 2.1 and 2.3 and the Cauchy–Schwarz inequality in (3.1), we see that

∣
∣
∣
∣

∑

K∈TH

∫

K
RK · (v – IH v) dx

∣
∣
∣
∣ ≤ C1

( ∑

K∈Th

H2
K‖RK‖2

0,K

)1/2

‖v‖1,
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∣
∣
∣
∣

∑

K∈TH

∫

K
∇ · uv

H · q dx
∣
∣
∣
∣ ≤

∑

K∈TH

∥
∥∇ · uv

H
∥
∥

0,K · ‖q‖0,

∣
∣
∣
∣

∑

E∈EH

∫

E
JE · (v – IH v) ds

∣
∣
∣
∣ ≤ C1

(∑

E∈Eh

HE‖JE‖2
0,E

)1/2

‖v‖1.

It follows from the above inequalities, Lemma 2.3, and the coerciveness property (1.3) that

β
(∥
∥∇(

u – uv
H
)∥
∥

0 +
∥
∥p – pv

H
∥
∥

0

)

≤ sup
0 �=(v,q)∈X×M

(∣
∣ν

(∇(
u – uv

H
)
,∇v

)
–

(∇ · v, p – pv
H
)

+
(
a · ∇(

u – uv
H

)
, v

)

+
(∇ · (u – uv

H
)
, q

)∣
∣
)
/
(‖∇v‖0 + ‖q‖0

)

≤ C5

( ∑

K∈TH

H2
K‖RK‖2

K +
∑

K∈TH

∥
∥∇ · uv

H
∥
∥2

K +
∑

E∈EH

HE‖JE‖2
E

)1/2

≤ C5ηH .

Thus, we complete the proof. �

3.2 Lower bounds
This subsection is devoted to estimating the lower bound of the residual based error esti-
mator. Here, it is important to ensure the efficiency of an algorithm that uses ηH as a local
refinement indicator. Firstly, we recall the definition of the oscillation of the residual on
each element K ∈ TH :

OSC2
R(K) ≡ ∥

∥HK (RK – RK )
∥
∥2

K , OSC2
D(K) =

∥
∥∇ · uv

H
∥
∥2

K ,

where RK is defined by RK = 1
|K |

∫

K R dx, |K | is the area of an element K . Moreover, we
define the oscillation of the jump on each edge E by

OSC2
J (E) ≡ HE‖JE – JE‖2

E = HE

∥
∥
∥
∥

[
∂uv

H
∂n

–
1

HE

∫

E

∂uv
H

∂n
ds

]∥
∥
∥
∥

2

E
= 0.

Then the local oscillation is defined by

OSCH(K) =
(
OSC2

R(K) + OSC2
D(K) + OSC2

J (E)
)1/2

and the global oscillation by

OSCH =
( ∑

K∈TH

(
OSC2

R(K) + OSC2
D(K)

)
) 1

2

=
( ∑

K∈TH

(∥
∥HK (RK – RK )

∥
∥2

K +
∥
∥∇ · uv

H
∥
∥2

K

)
) 1

2
.

To analyze the residual-based error estimator, the triangular bubble functions are intro-
duced as follows. For a triangle K ∈ TH , let λK ,1, λK ,2, and λK ,3 be the barycentric coordi-
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nates of K . Define the triangular bubble function bK by

bK (K) =

⎧
⎨

⎩

27λK ,1λK ,2λK ,3, in K ,

0, in � \ T .
(3.5)

Also, for any E ∈ EH , let the barycentric coordinates of the end points of E be λE,1 and λE,2,
and define the edge bubble function bE by

bE(K) =

⎧
⎨

⎩

4λE,1λE,2, in ωE ,

0, in � \ ωE ,
(3.6)

where ωE is defined in Lemma 2.1. The following results can be found in reference [33].

Lemma 3.3 Assume that the partition TH is locally quasi-uniform. For any element K ∈ TH

and edge E ∈ EH , the functions bK and bE satisfy the following properties:
(1) supp bK ⊂ K , bK ∈ [0, 1], and maxx∈K bK (x) = 1;

∫

K
bK dx =

9
20

|K | ∼ H2
K , ‖∇bK‖0,K ≤ CH–1

K ‖bK‖K .

(2) supp bE ⊂ ωE , bE ∈ [0, 1], and maxx∈ωE bE(x) = 1;

∫

E
bE dx =

2
3

HE,
∫

ωE

bE dx ∼ H2
E , ‖∇bE‖ωE ≤ CH–1

E ‖bE‖ωE .

Lemma 3.4 For any K ∈ TH and (uv
H , pv

H ) ∈ XH × MH , under Assumption A1, we have

‖HK RK‖K ≤ C
(∥
∥∇(

u – uv
H
)∥
∥

K +
∥
∥p – pv

H
∥
∥

K +
∥
∥HK (RK – RK )

∥
∥

K

)
, (3.7)

∥
∥H

1
2

E JE
∥
∥

E ≤ C
(∥
∥∇(

u – uv
H
)∥
∥

ωE
+

∥
∥p – pv

H
∥
∥

ωE
+

∥
∥HK (RK – RK )

∥
∥

ωK

)
. (3.8)

Proof It follows from (1.2), (2.1), inverse inequality, the Green’s formula, and Lemma 3.3
that

‖R1K‖2
K =

20
9

(∫

K
bK R1K RK dx +

∫

K
bK RK (RK – RK ) dx

)

K

≈ (
f + ν�uv

H – a · ∇uv
H – ∇pv

H , bK RK
)

K +
∫

K
bK RK (RK – RK ) dx

=
(
ν∇u,∇(bK RK )

)

K –
(
p,∇ · (bK RK )

)

K + (a · ∇u, bK RK )K

–
(
ν∇uv

H ,∇(bK RK )
)

K

+
(
pv

H ,∇ · (bK RK )
)

K –
(
a · ∇uv

H , bK RK
)

K +
∫

K
bK RK (RK – RK ) dx

≤ C
[
H–1

K
(∥
∥∇(

u – uv
H
)∥
∥

K +
∥
∥p – pv

H
∥
∥

K

)
+ ‖RK – RK‖K

]‖RK‖K .

Thus we have

‖R1K‖K ≤ C
(
H–1

K
(∥
∥∇(

u – uv
H
)∥
∥

K +
∥
∥p – pv

H
∥
∥

K

)
+ ‖RK – RK‖K

)
.
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Thanks to the triangle inequality, one finds

‖HK RK‖K ≤ ‖HK RK‖K +
∥
∥HK (RK – RK )

∥
∥

K

≤ C
(∥
∥∇(

u – uv
H
)∥
∥

K + ‖p – pv
H‖K + ‖HK (RK – RK‖K )

)
.

That is, the proof of (3.7) is completed.
Similar to the proof of (3.7), using (1.2), Lemmas 2.1 and 3.3 and noting [23, 37], we

obtain
∣
∣
∣
∣

∫

E
ν∇(

u – uv
H
) · ∇(bEJE) dx –

∫

E

(
p – pv

H
) · ∇ · (bEJE) dx

∣
∣
∣
∣

≤ CH–1/2
E

(∥
∥∇(

u – uv
H
)∥
∥

ωE
+

∥
∥p – pv

H
∥
∥

ωE

)‖JE‖E ,
∣
∣
∣
∣

∫

E
bEJE(JE – JE) ds

∣
∣
∣
∣ ≤ C‖JE – JE‖E‖bEJE‖E = 0,

∣
∣
∣
∣

∫

E

(
f + ν�uv

H – a · ∇uv
H – ∇pv

H
) · bEJE dx +

∫

E

(
a · ∇(

u – uv
H
)) · bEJE dx

∣
∣
∣
∣

≤ C
(
H1/2

E ‖RK‖ωE + H1/2
E CD|a|∞

∥
∥∇(

u – uv
H
)∥
∥

ωE

)‖JE‖E .

Thus we have

‖JE‖2
E =

3
2

(∫

E
JEbEJE ds +

∫

E
bEJE(JE – JE) ds

)

≈
∫

E

(
–ν�uv

H + ∇pv
H
) · bEJE dx –

∫

E

(
ν∇uv

H – pv
H
) · ∇(bEJE) dx +

∫

E
bEJE(JE – JE) ds

≤
∣
∣
∣
∣

∫

E
ν∇(

u – uv
H
) · ∇(bEJE) dx –

∫

E

(
p – pv

H
) · ∇ · (bEJE) dx +

∫

E
bEJE(JE – JE) ds

–
∫

E

(
f + ν�uv

H – a · ∇uv
H – ∇pv

H
) · bEJE dx +

∫

E

(
a · ∇(

u – uv
H

)) · bEJE dx
∣
∣
∣
∣

≤ C
[
H–1/2

E
(∥
∥∇(

u – uv
H
)∥
∥

ωE
+

∥
∥p – pv

H
∥
∥

ωE

)
+ H1/2

E ‖RK‖ωE

]‖JE‖E . (3.9)

Then (3.8) is obtained by the triangle inequality, (3.7), and (3.9). �

Using Lemma 3.4 and taking a sum over all elements and edges, we obtain the following
result.

Theorem 3.5 Let (u, p) ∈ X × M and (uv
H , pv

H ) ∈ XH × MH be the solutions of problems
(1.2) and (2.10), respectively, then we have

ηH ≤ C
(∥
∥∇(

u – uv
H
)∥
∥

0 +
∥
∥p – pv

H
∥
∥

0 + OSCH
)
.

4 Discrete local lower bound
In this section, we consider the discrete local lower bound for ‖∇(uv

h – uv
H )‖0 + ‖pv

h – pv
H‖0

between two conforming triangulations Th and TH and the corresponding finite element
spaces XH × MH ⊂ Xh × Mh. Furthermore, the interior node property holds on each edge
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Figure 2 Interior node property and local refinement

E of TH (see [37]): The interior of E = ∂K1 ∩ ∂K2 (K1, K2 ∈ TH ) contains at least one vertex
of TH , see Fig. 2.

Compared with the results of the residual-based error estimator in the previous section,
we focus on the discrete local lower bound on the domain ωE for each E ∈ EH .

Lemma 4.1 Under the assumption of the interior node property, let (uv
h, pv

h) ∈ Xh ×Mh and
(uv

H , pv
H ) ∈ XH × MH be the stabilized finite volume solutions of problem (2.10) on Th and

TH , respectively. Then, for Ki ∈ ωE (i = 1, 2), we have

‖HKi RKi‖0,Ki ≤ C
(∥
∥∇(

uv
h – uv

H
)∥
∥

0,Ki
+

∥
∥pv

h – pv
H
∥
∥

0,Ki
+ OSCH(K)

)
.

Proof The triangle inequality gives

‖RKi‖0,Ki ≤ ‖RKi – RKi‖0,Ki + ‖RKi‖0,Ki . (4.1)

For the second term on the right-hand side of (4.1), choosing vi = IH bKi , v∗
i = 
H vi ∈ X∗

H
and applying Lemmas 2.4 and 3.3, the inverse inequality, and the interior node property,
we see that

‖RKi‖2
0,Ki

∼ (
RKi , v∗

i RKi

)

=
(
f + ν�uv

H – a · ∇uv
H – ∇pv

H , v∗
i RKi

)
–

(
RKi – RKi , v∗

i RKi

)

= A
(
uv

h – uv
H , v∗

i RKi

)
+ D

(
pv

h – pv
H , v∗

i RKi

)
+

(
a · ∇(

uv
h – uv

H
)
, v∗

i RKi

)

–
(
RKi – RKi , v∗

i RKi

)

= ν
(∇(

uv
h – uv

H
)
,∇(IH bKi RKi )

)
+

(∇ · (IH bKi RKi ), pv
h – pv

H
)

+
(
a · ∇(

uv
h – uv

H
)
, v∗

i RKi

)
–

(
RKi – RKi , v∗

i RKi

)

≤ C
(
H–1

Ki

(∥
∥∇(

uv
h – uv

H
)∥
∥

0,Ki
+

∥
∥pv

h – pv
H
∥
∥

0,Ki

)

+ CD|a|∞
∥
∥∇(

uv
h – uv

H
)∥
∥

0,Ki
+ ‖RKi – RKi‖0,Ki

)‖RKi‖0,Ki .

Therefore, thanks to (4.1) we have

‖RKi‖0,Ki ≤ C
(
H–1

Ki

(∥
∥∇(

uv
h – uv

H
)∥
∥

0,Ki
+

∥
∥pv

h – pv
H
∥
∥

0,Ki

)
+ ‖RKi – RKi‖0,Ki

)
.

Multiplying the above inequality by HKi , a straightforward computation gives the desired
result. �
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Lemma 4.2 Under the assumption of the interior node property, let (uv
h, pv

h) ∈ Xh ×Mh and
(uv

H , pv
H ) ∈ XH × MH be the stabilized finite volume solutions of problem (2.10) on Th and

TH , respectively. Then, for E ∈ EH , we have

∥
∥H1/2

E JE
∥
∥

0,E ≤ C
(∥
∥∇(

uv
h – uv

H
)∥
∥

0,Ki
+

∥
∥pv

h – pv
H
∥
∥

0,Ki
+ OSCH(K)

)
.

Proof Setting vE = IHbE and v∗
E = 
H vE and noting that [pv

HI · n]E = 0, we have

‖JE‖2
0,E ∼ (

JE , v∗
EJE

)
=

(

ν
∂uv

H
∂n

– pv
H I · n, v∗

EJE

)

. (4.2)

Using the Green’s formula and the divergence theorem on each Q ∈ K ∩ K , we get (see
Fig. 1)

(

ν
∂uv

H
∂n

, v∗
E

)

E
= –

∫

∂K̃i

ν
∂uv

H
∂n

· v∗
E ds +

∫

Q
ν�uv

H · v∗
E dx,

(
pv

HI · n, v∗
E
)

E = –
∫

∂K̃i

pv
H · nv∗

E ds +
∫

Q
∇pv

H · v∗
E dx.

Using the above equalities and recalling the definitions of A(·, ·) and D(·, ·), we see that

(

ν
∂uv

H
∂n

– pv
HI · n, v∗

E

)

E
= –

∫

∂K̃i

(

ν
∂uv

H
∂n

– pv
HI · n

)

· v∗
E ds +

∫

Q

(
ν�uv

H – ∇pv
H
) · v∗

E dx

=
∫

Q

(
f – a · ∇uv

H + ν�uv
H – ∇pv

H
) · v∗

E dx.

Due to supp bE ⊂ ωE , multiplying JE to both sides of the above equality, we obtain

∣
∣
∣
∣

∫

Q

(
f – a · ∇uv

H + ν�uv
H – ∇pv

H
) · JEv∗

E dx
∣
∣
∣
∣

≤ C‖RK‖0,ωE

∥
∥JEv∗

E
∥
∥

0,ωE
≤ CH1/2

E ‖RK‖0,ωE‖JE‖0,ωE . (4.3)

Combine (4.2) with (4.3) to arrive at

∥
∥H1/2

E JE
∥
∥

0,E ≤ C‖HKi RK‖0,ωE . (4.4)

The proof is completed by using Lemma 4.1 and (4.4). �

Finally, from Lemmas 4.1 and 4.2, we obtain the main result of this section.

Theorem 4.3 Under the assumption of the interior node property, let (uv
h, pv

h) ∈ Xh × Mh

and (uv
H , pv

H ) ∈ XH × MH be the stabilized finite volume solutions of problem (2.10) on Th

and TH , respectively. Then we have

ηH ≤ C6
(∥
∥∇(

uv
h – uv

H
)∥
∥

0 +
∥
∥pv

h – pv
H
∥
∥

0 + OSCH
)
.
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5 Adaptive finite volume method and convergence analysis
In this section, we develop an adaptive finite volume method based on the local error
estimator presented in the previous sections. The techniques are adopted from [23, 37]
for the second order elliptic problem. For the Oseen equations, the adaptive finite vol-
ume method can be divided into several steps. For the sake of convenience, we set Tk ,
k = 0, 1, 2, . . . , to be a sequence of shape regular triangulations and (uv

k , pv
k), k = 0, 1, 2, . . . ,

to be a sequence of stabilized finite volume solutions on the corresponding nested finite
element spaces generated by the adaptive finite volume method. We have developed the
quasi-residual type of the a posteriori error estimator and established the upper and lower
bounds between the exact solution and the finite volume solutions, and the discrete local
lower bounds between the approximate solutions on meshes TH and Th in Sects. 3 and 4.

5.1 Adaptive finite volume method
First, we choose parameters θ1, θ2 ∈ (0, 1) and an initial mesh T0 with mesh size h0 = H .

Step 1. Solve and estimate.
1. Solve the following stabilized finite volume formulation to find (uv

k , pv
k):

C
((

uv
k , pv

k
)
, (vk , qk)

)
=

(
f , v∗

k
)
.

2. Compute the residual error estimator ηhk .
Step 2. Local refinement.
1. Determine a suitable adaptive refinement for an update. Let Uk be the minimal edge

set required refinement by satisfying the following marking strategy:

θ1ηhk ≤ ηhk (ωUk ), θ2OSChk ≤ OSChk (ωUk ).

2. Refinement and completion. Let Tk+1 be the refinement of Tk . Refine each element
K ∈ ωUk and complete the hanging points, such that Tk+1 is a conforming
triangulation.

Step 3. Cycle criterion: For a sufficiently small tolerance ε > 0, if ηhk ≤ ε, stop the com-
putation. Otherwise, set k = k + 1 and go to Step 2.

The convergence analysis for the adaptive stabilized finite volume method will be dis-
cussed in what follows. It is known that the convergence analysis of finite element method
requires the orthogonality property [23, 37]. However, the corresponding property loses
effectiveness for the finite volume method due to the test and trial functions that belong
to different spaces for the present method.

Theorem 5.1 Set (uv
h, pv

h) ∈ Xh × Mh and (uv
H , pv

H ) ∈ XH × MH be the stabilized finite
volume solutions of problem (2.10) on Th and TH , respectively. Denote eh = uv

h – uv
H and

εh = pv
h – pv

H . Then we have

ν
(∇(

u – uv
H
)
,∇eh

)
–

(∇ · eh, p – pv
H
)

+
(∇ · (u – uv

H
)
, εh

)
+

(
a · ∇(

u – uv
H

)
, eh

)

≤ C
(∥
∥∇(

uv
h – uv

H
)∥
∥

0 +
∥
∥pv

h – pv
H
∥
∥

0

) · OSCH .

Proof Choosing (v, q) = (vH , qH ) in (3.1), it follows from Lemma 2.3 and Theorem 3.1 that
∣
∣
∣
∣

∫

K
RK · (vH – v∗

H
)

dx
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

K
(RK – RK ) · (vH – v∗

H
)

dx
∣
∣
∣
∣ ≤ CHK‖RK – RK‖0,K‖vH‖1,K ,
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∣
∣
∣
∣

∫

K
∇ · uv

H qH dx
∣
∣
∣
∣ ≤ ∥

∥∇ · uv
H
∥
∥

0,K‖qH‖0,K , ∀K ∈ TH ,
∣
∣
∣
∣

∫

E
JE

(
v – v∗

H
)

ds
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

E
(JE – JE)

(
v – v∗

H
)

ds
∣
∣
∣
∣ = 0, ∀E ∈ ∂K .

Summing up over all K ∈ TH and E ∈ EH with (vH , qH ) = (eh, εh) and using the definition of
OSCH , we obtain the desired result. �

5.2 Error reduction of two successive steps
The convergence property guarantees that the iterative loop terminates in a finite number
of steps starting from an initial coarse mesh. Now, we investigate the adaptive stabilized
finite volume method for the Oseen equations in terms of an error reduction between two
successive steps. The mathematical induction argument can be used to obtain the error
reduction in a finite number of steps.

Lemma 5.2 Let (uv
h, pv

h) ∈ Xh ×Mh and (uv
H , pv

H ) ∈ XH ×MH be the stabilized finite volume
solutions of problem (2.10) on Th and TH , respectively. Set H = maxK∈TH HK . Then there
exists a constant ρ1 ∈ (0, 1) such that

OSC2
h ≤ ρ1OSC2

H .

Proof Here, we only estimate the term Rτ , τ ∈ Th (see Fig. 2). Others can be bounded with
a similar argument. For the residual on τ ⊂ K ⊂ TH , we have

Rτ = RH
τ – ∇(∇pv

h – ∇pv
H
)

– a · (∇uv
h – ∇uv

H
)
, (5.1)

where Rτ and RH
τ are the error estimators on mesh Th with solutions (uv

h, pv
h) and (uv

H , pv
H ),

respectively. Using the definition of Rτ , (5.1) and the Young inequality, we see that

OSC2
h(K) =

∑

τ⊂K

h2
τ‖Rτ – Rτ‖2

0,τ +
∑

τ⊂K

∥
∥∇ · uv

h
∥
∥2

0,τ . (5.2)

Since ∇εh = ∇(pv
h – pv

H ) is a constant, thus ∇εh – ∇εh = 0. Setting γ0 ∈ (0, 1) such that
hτ ≤ γ0HK and K ∈ ωUH , we define a refinement factor by

γK =

⎧
⎨

⎩

γ0, in K ∈ ωUH ,

1, in � \ ωUH .

Thanks to (2.4), (5.2), the making strategy on local refinement and straightforward com-
putation, the above inequality restricted to the mesh TH can be rewritten as

OSC2
h =

∑

K∈TH

∑

τ⊂K

OSC2
h(τ )

≤
∑

K∈TH

γ 2
K H2

K‖Rτ – Rτ‖2
0,K +

∑

K∈TH

∥
∥∇ · uv

h
∥
∥2

0,K

≤
∑

K∈TH\ωUK

γ 2
0

(

H2
K‖Rτ – Rτ‖2

0,K +
∑

K∈TH

∥
∥∇ · uv

h
∥
∥2

0,K

)
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+
∑

K∈ωUK

γ 2
0

(

H2
K‖Rτ – Rτ‖2

0,K +
∑

K∈TH

∥
∥∇ · uv

h
∥
∥2

0,K

)

+
(
1 – γ 2

0
) ∑

K∈TH

∥
∥∇ · uv

h
∥
∥2

0,K

≤ 2OSC2
H –

(
1 – γ 2

0
) ∑

K∈UK

OSC2
H(τ )

≤ (
2 –

(
1 – γ 2

0
)
θ2

2
)
OSC2

H .

Thus, the desired result is obtained by choosing ρ1 = 2 – (1 – γ 2
0 )θ2

2 ∈ (0, 1) in the above
inequality. �

Lemma 5.3 Let (uv
h, pv

h) ∈ Xh ×Mh and (uv
H , pv

H ) ∈ XH ×MH be the stabilized finite volume
solutions of problem (2.10) on Th and TH , respectively. There exist constants γ > 0 and
ρ0 ∈ (0, 1) such that

∥
∥u – uv

h
∥
∥

1 +
∥
∥p – pv

h
∥
∥

0 + γ OSC2
h ≤ ρ0

(∥
∥u – uv

H
∥
∥

1 +
∥
∥p – pv

H
∥
∥

0 + γ OSC2
H
)
.

Proof Using (1.3) and the Young inequality, we have

∥
∥u – uv

h
∥
∥2

1 +
∥
∥p – pv

h
∥
∥2

0

=
∥
∥u – uv

H
∥
∥2

1 –
∥
∥uv

h – uv
H
∥
∥2

1 – 2
(∇(

u – uv
h
)
,∇(

uv
h – uv

H
))

+
∥
∥p – pv

H
∥
∥2

0 –
∥
∥pv

h – pv
H
∥
∥2

0 – 2
(
p – pv

h, pv
h – pv

H
)

≤ ∥
∥u – uv

H
∥
∥2

1 +
∥
∥p – pv

H
∥
∥2

0 –
(∥
∥uv

h – uv
H
∥
∥2

1 +
∥
∥pv

h – pv
H
∥
∥2

0

)

+ 2
(∥
∥u – uv

h
∥
∥

1 +
∥
∥p – pv

h
∥
∥

0

) · (∥∥uv
h – uv

H
∥
∥

1 +
∥
∥pv

h – pv
H
∥
∥

0

)

≤ ∥
∥u – uv

H
∥
∥2

1 +
∥
∥p – pv

H
∥
∥2

0 –
(∥
∥uv

h – uv
H
∥
∥2

1 +
∥
∥pv

h – pv
H
∥
∥2

0

)

+ β–1∣∣ν
(∇(

u – uv
h
)
,∇(

uv
h – uv

H
))

–
(∇ · (uv

h – uv
H
)
, p – pv

h
)

+
(
a · ∇(

u – uv
h
)
, uv

h – uv
H
)

+
(∇ · (u – uv

h
)
, pv

h – pv
H
)∣
∣. (5.3)

By Theorem 5.1 and the Young inequality, we obtain

β–1∣∣ν
(∇(

u – uv
h
)
,∇(

uv
h – uv

H
))

–
(∇ · (uv

h – uv
H
)
, p – pv

h
)

+
(
a · ∇(

u – uv
h
)
, uv

h – uv
H
)

+
(∇ · (u – uv

h
)
, pv

h – pv
H
)∣
∣

≤ C7
(∥
∥uv

h – uv
H
∥
∥

1 +
∥
∥pv

h – pv
H
∥
∥

0

) · OSCh

≤ 1
2
(∥
∥uv

h – uv
H
∥
∥2

1 +
∥
∥pv

h – pv
H
∥
∥2

0

)
+ C2

7OSC2
h . (5.4)

Combine (5.3) with (5.4) and apply Lemma 5.2 to arrive at

∥
∥u – uv

h
∥
∥2

1 +
∥
∥p – pv

h
∥
∥2

0 + γ OSC2
h

≤ ∥
∥u – uv

H
∥
∥2

1 +
∥
∥p – pv

H
∥
∥2

0 –
1
2
(∥
∥uv

h – uv
H
∥
∥2

1 +
∥
∥pv

h – pv
H
∥
∥2

0

)
+ C8OSC2

H , (5.5)
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where C8 = (ρ1C2
7 +γρ1). By the results of a lower bound of the solution on the initial mesh

and Theorems 3.2 and 4.3, and the marking strategy, we have

∥
∥u – uv

H
∥
∥2

1 +
∥
∥p – pv

H
∥
∥2

0 ≤ C2
5η

2
H ≤ C2

5θ
–2
1 η2

H (ωUk )

≤ C9
(∥
∥uv

h – uv
H
∥
∥2

1 +
∥
∥pv

h – pv
H
∥
∥2

0 + OSC2
H
)
, (5.6)

where C9 = 2C2
5C2

6θ
–2
1 . Substituting (5.6) into (5.5), we see that

∥
∥u – uv

h
∥
∥2

1 +
∥
∥p – pv

h
∥
∥2

0 + γ OSC2
h

≤
(

1 –
1

2C9

)
(∥
∥u – uv

H
∥
∥2

1 +
∥
∥p – pv

H
∥
∥2

0

)
+

(

C8 +
1
2

)

OSC2
H .

Figure 3 The mesh in adaptive computation. (a) Initial mesh. (b) Mesh after step 1. (c) Mesh after step 2.
(d) Mesh after step 3
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Choose appropriate parameters θ1 > 0 and γ > 0 such that

1 –
1

2C9
= 1 –

θ2
1

2C2
5C2

6
∈ (0, 1) and C8 +

1
2

= ρ1C2
7 + γρ1 +

1
2

∈ (0, 1).

Setting ρ0 = max{1 – 1
2C9

, C8 + 1
2 }, we complete the proof. �

Using induction for a series of partitions Tk , k = 0, 1, 2, . . . , we obtain the convergence of
adaptive stabilized finite volume method.

Theorem 5.4 (Convergence analysis) Let (uv
k , pv

k), k = 0, 1, 2, . . . , be a sequence of the cor-
responding stabilized finite volume solutions of problem (2.10) on Tk , set the mesh size H of
T0 be sufficiently small. Then we have

∥
∥u – uv

h
∥
∥

1 +
∥
∥p – pv

h
∥
∥

0 ≤ (∥
∥u – uv

H
∥
∥

1 +
∥
∥p – pv

H
∥
∥

0 + γ OSC2
H
)1/2

ρk
0 .

Figure 4 The contours of pressure. (a) Initial mesh. (b) Mesh after step 1. (c) Mesh after step 2. (d) Mesh after
step 3
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From Theorem 5.4, we can see that our algorithm will terminate in a finite number of
steps.

6 Numerical validations
In this section, we present two numerical examples to confirm our theoretical results and
verify the efficiency of established a posteriori error estimators for the Oseen equations
in the stabilized finite volume method. We solve the considered problem in the following
adaptive strategy as presented in Sect. 5.

(1) Give an initial triangulation Th and a tolerance η∗. Solve the Oseen equations by the
stabilized finite volume method on this partition.

(2) If {∑
K∈Th

η2
K }1/2 ≤ η∗, stop, we get the final numerical approximations. Otherwise,

go to (3).

Table 1 Errors and the effective index on adaptive meshes with ν = 1

N ratio ‖uh–u‖1‖u‖1 uH1 rate
‖ph–p‖0‖p‖0 pL2 rate

550 0.5437 0.372325 0.875961
851 0.5404 0.323236 0.6478 0.737632 0.7875
1234 0.5650 0.262181 1.1267 0.610745 1.0159
1865 0.6187 0.217119 0.9133 0.501487 0.9545
3011 0.6869 0.174988 0.9007 0.394036 1.0068

Table 2 Error and the effective index on uniform meshes with ν = 1

N ratio ‖uh–u‖1‖u‖1 uH1 rate
‖ph–p‖0‖p‖0 pL2 rate

550 0.5437 0.372325 0.875961
857 0.5557 0.356411 0.1970 0.827581 0.2562
1241 0.5491 0.340932 0.2399 0.796662 0.2057
1872 0.5532 0.332744 0.1183 0.752626 0.2766
3032 0.5721 0.309528 0.3001 0.703231 0.2815

Figure 5 T-shape domain and the boundary conditions
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(3) Compute ηK and {∑
K∈Th

η2
K }1/2, generate the new mesh size h, and re-compute

{∑
K∈Th

η2
K }1/2 based on the new partition, then go to step (2).

6.1 A singular problem with known solution
In this test, we compute the Oseen equations in � with adaptive mesh and uniform mesh,
where � is a disk of radius equal to 1 with a crack joining the center to the boundary as
presented in [33], and the exact solutions for velocity and pressure are given by

u1 = 1.5r
1
2
(
cos(0.5θ ) – cos(1.5θ )

)
,

u2 = 1.5r
1
2
(
3 sin(0.5θ ) – sin(1.5θ )

)
,

p = –6r– 1
2 cos(0.5θ ),

where (r, θ ) is a polar representation of a point in the disk and these solutions are singular
at the end of the crack. f is determined by (1.1), and non-homogeneous Dirichlet bound-
ary conditions on the curved part of the boundary and homogeneous Dirichlet boundary
conditions on the straight part of the boundary are given. We choose the advection coeffi-

Figure 6 The mesh, the profiles of pressure and velocity, and the velocity vector with NT = 254
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cient a =
( 1

1

)
and ν = 1. We start our adaptive computation from the initial triangulations,

as presented in Fig. 3(a) and refine three times shown in Fig. 3(b)–(d). It is observed that
there are much more elements in the noncontinuous area than in the continuous area.
Furthermore, the contours of the pressure near the crack become smooth as the num-
ber of triangles increases, see Fig. 4(a)–(d). In Tables 1–2, we provide the ratio between
the error indicators and the discrete error, which is defined as the effective index in [19].
For a good estimator, this quantity should be a constant, independent of the mesh sizes.
Here NT is the number of elements in the triangulations. The relative errors of veloc-
ity and pressure in different norms are presented in adaptive mesh and uniform mesh.
The experimental convergence rates are given by αeθ

= 2∗log[‖eθ (ε1)‖0/‖eθ (ε2)‖0]
log[NT(ε1)/NT(ε1)] , where θ takes

u, p.
Comparing Tables 1 and 2, we can see that the error estimator is good due to the ra-

tio being a constant near 0.55. Since the convergence order of the relative errors of ve-
locity and pressure are O(h), then we can conclude that the convergence order of er-
ror estimator is O(h), which verifies the established theoretical analysis very well. On
the other hand, the errors of adaptive procedures decrease much faster than those ob-
tained by uniform ones. For example, the precision obtained with 3032 triangles in a

Figure 7 The mesh, the profiles of pressure and velocity, and the velocity vector with NT = 1049
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uniform mesh can be reached with 1234 triangles in an adaptive computation. This
means we can save more work by the adaptive procedures than by the uniform proce-
dures.

6.2 T-shape domain model
A T-shape domain model, as shown in Fig. 5, is a popular problem for testing the efficiency
of the established a posteriori error estimators. In this test, we choose u = (4y(1 – y), 0) on
influx and natural boundary condition on outflux.

We start from the initial mesh with h = 0.25, the corresponding profiles of velocity and
pressure are presented in Fig. 6. Then we note that the successive iterations of the adap-
tive strategies create more triangles in two corners of the T-shape domain as time in-
creases, see Figs. 7–8. The profiles of velocity and pressure level lines are also presented
with adaptive computations, see Figs. 7–8. As expected, the oscillations in the obtained
pressure isovalues disappear and the velocity field becomes smooth. Finally, in order to
show the prominent features of the established a posteriori error estimators, we com-
pare the velocity and pressure contours obtained in the adaptive mesh with the uniform
mesh using nearly the same number of triangles, see Figs. 8 and 9. From these figures, we

Figure 8 The mesh, the profiles of pressure and velocity, and the velocity vector with NT = 2821
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Figure 9 The mesh, the profiles of pressure and velocity, and the velocity vector with NT = 2876

can see that the obtained results using the adaptive algorithm based on the a posteriori
error estimators give more accurate approximation to the exact solutions in the critical
regions.

7 Conclusion
In this paper, with the help of the pressure project method, we construct and analyze an
adaptive stabilized finite volume method for the Oseen equations based on the lowest
equal order finite element pair. A lower bound for the discrete local errors of numerical
solutions is derived. Using the residual type a posteriori error estimator, the convergence
of the adaptive stabilized finite volume algorithm is also established. Finally, some numer-
ical results are presented to confirm the established theoretical findings and verify the
efficiency of the developed error estimators. As an important model, the Oseen equations
attract many researchers’ attention in the computational field. How to extend the devel-
oped techniques of this paper to the Navier–Stokes equations will be discussed in our
coming work.
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