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Abstract
In this paper, we consider a class of fractional differential equations with infinite-point
boundary value conditions. Under some conditions concerning the spectral radius
with respect to the relevant linear operator, both the existence of uniqueness and the
nonexistence of positive solution are obtained by means of the iterative technique.
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1 Introduction
In this paper, we consider the following fractional differential equations (FDE for short)
with infinite-point boundary value conditions:

⎧
⎨

⎩

Dα
0+u(t) + a(t)f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n–2)(0) = 0, Dβ
0+u(1) =

∑∞
i=1 ηiDβ

0+u(ξi),
(1.1)

where α ≥ 2, n – 1 < α ≤ n, 0 < β < α – 1, ηi ∈R, 0 < ξ1 < · · · < ξi < ξi+1 < · · · < 1 (i = 1, 2, . . .),
∑∞

i=1 ηiξ
α–β–1
i �= 1, Dα

0+ is the standard Riemann–Liouville derivative, f : [0, 1]× [0, +∞) →
[0, +∞) is continuous, a(t) ∈ C((0, 1), [0, +∞)) may be singular at t = 0, 1.

FDE serve as an excellent instrument for the description of memory and hereditary
properties of various materials and processes. During the last few decades, much atten-
tion has been paid to the study of boundary value problems (BVP for short) of fractional
differential equation, such as the nonlocal BVP [1, 3, 7, 13, 18], singular BVP [6, 8, 11,
19, 20, 25], semipositone BVP [14–16, 23], resonant BVP [2, 12], and impulsive BVP [10,
27]. Since only positive solutions are meaningful in most practical problems, some work
has been done to study the existence of positive solutions for fractional boundary value
problems by using the techniques of nonlinear analysis. In [16], the authors discussed the
following fractional m-point BVP:

⎧
⎨

⎩

Dα
0+u(t) + f (t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, Dβ
0+u(1) =

∑m–2
i=1 ηiDβ

0+u(ξi),

where 0 < β < α – 1, 0 < ξ1 < · · · < ξm–2 < 1 with
∑m–2

i=1 ηiξ
α–β–1
i < 1. Some new positive

properties of the corresponding Green function were established, and a number of theo-
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rems on the existence of positive solutions were obtained. However, there are few works
on the uniqueness of solution for fractional boundary value problems [4, 5, 9, 17, 21, 22,
24, 26]. To obtain the uniqueness of solution, the main tool used in most of the works in
literature is the Banach contraction map principle provided the nonlinearity satisfies the
Lipschitz condition. Liang and Zhang [9] studied the uniqueness of positive solution for
the following fractional three-point BVP:

⎧
⎨

⎩

Dα
0+u(t) + f (t, u(t)) = 0, 0 < t < 1, 3 < α ≤ 4,

u(0) = u′(0) = u′′(0) = 0, u′′(1) = βu′′(η),

where 0 < η < 1 with 0 < βηα–3 < 1, f : [0, 1] × [0, +∞) → [0, +∞) is continuous and non-
decreasing with respect to the second variable, and there exists

0 < λ <
(

2
(α – 2)�(α + 1)

+
βηα–3(1 – η)

(α – 2)(1 – βηα–3)�(α)

)–1

such that, for u, v ∈ [0, +∞) with u ≥ v and t ∈ [0, 1],

f (t, u) – f (t, v) ≤ λ ln(1 + u – v). (1.2)

It should be noted that (1.2) implies f (t, u) – f (t, v) ≤ λ(u – v) since ln(1 + x) ≤ x,∀x ≥ 0,
that is, f satisfies the Lipschitz condition.

Motivated by the above works, in this paper we aim to establish the existence of unique-
ness and the nonexistence of positive solution to BVP (1.1). It is well known that the cone
plays a very important role in seeking positive solution. Our analysis relies on the itera-
tive technique on the cone derived from the properties of the Green function. Our work
presented in this paper has the following features. Firstly, the uniqueness results are ob-
tained under some conditions concerning the spectral radius with respect to the relevant
linear operator. Secondly, the Lipschitz condition is generalized. In addition, the error es-
timation of iterative sequences is also given. Thirdly, the nonexistence results of positive
solution are obtained under conditions concerning the spectral radius of the relevant lin-
ear operator. Finally, we impose weaker positivity conditions on the nonlocal boundary
term, that is, some of the coefficients ηi can be negative.

2 Preliminaries and lemmas
In this section, we present some notations and lemmas that will be used in the proof of
our main results.

Definition 2.1 The fractional integral of order α > 0 of a function u : (0, +∞) → R is given
by

Iα
0+u(t) =

1
�(α)

∫ t

0
(t – s)α–1u(s) ds

provided that the right-hand side is point-wise defined on (0, +∞).
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Definition 2.2 The Riemann–Liouville fractional derivative of order α > 0 of a function
u : (0, +∞) → R is given by

Dα
0+u(t) =

1
�(n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1u(s) ds,

where n = [α] + 1, [α] denotes the integer part of number α, provided that the right-hand
side is point-wise defined on (0, +∞).

Set

K(t, s) =
1

�(α)

⎧
⎨

⎩

tα–1(1 – s)α–β–1, 0 ≤ t ≤ s ≤ 1,

tα–1(1 – s)α–β–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

p(s) =
∑

s≤ξi

ηi(ξi – s)α–β–1,

G(t, s) = K(t, s) + q(s)tα–1,

where

q(s) =
p(0)(1 – s)α–β–1 – p(s)

�(α)[1 – p(0)]
, p(0) =

∞∑

i=1

ηiξ
α–β–1
i .

Remark 2.1 Assume that
∑∞

i=1 ηiξ
α–β–1
i is convergent. Then p ∈ C[0, 1].

Remark 2.2 If ηi = 0 (i = 1, 2, . . .), we have p(s) ≡ 0 and q(s) ≡ 0; if ηi ≥ 0 (i = 1, 2, . . .) and
p(0) < 1, we have q(s) ≥ 0 on [0, 1].

For the convenience in presentation, we here list the assumption to be used throughout
the paper.

(A1) p(0) �= 1, q(s) ≥ 0 on [0, 1];
(A2) f : [0, 1] × [0, +∞) → [0, +∞) is continuous, a(t) ∈ C((0, 1), [0, +∞)), and

0 <
∫ 1

0
a(s) ds < +∞.

Lemma 2.1 Assume that y ∈ L[0, 1] and p(0) �= 1. Then the unique solution of the problem

⎧
⎨

⎩

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n–2)(0) = 0, Dβ
0+u(1) =

∑∞
i=1 ηiDβ

0+u(ξi),

is

u(t) =
∫ 1

0
G(t, s)y(s) ds.

Proof The proof is similar to Lemma 2.3 in [17], so we omit it. �

Lemma 2.2 The function K (t, s) has the following properties:
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(1) K(t, s) > 0, ∀t, s ∈ (0, 1);
(2) K(t, s) ≤ tα–1(1–s)α–β–1

�(α) , ∀t, s ∈ [0, 1];
(3) tα–1

�(α) h(s) ≤ K(t, s) ≤ M1
�(α) h(s), ∀t, s ∈ [0, 1], where

h(s) =
[
1 – (1 – s)β

]
(1 – s)α–β–1, M1 = max

{
1,β–1}.

Proof It is obvious that (1), (2) hold. In the following, we will prove (3).
Case (i): 0 < s ≤ t < 1.
If 0 < β < 1, we have

∂

∂t

[

tα–1 –
(t – s)α–1

(1 – s)α–2

]

= (α – 1)tα–2
[

1 –
(

t – s
t(1 – s)

)α–2]

≥ 0. (2.1)

It follows from

∂

∂s
[
βs + (1 – s)β

] ≤ 0, ∀s ∈ [0, 1)

that

s ≤ β–1[1 – (1 – s)β
]
, ∀s ∈ [0, 1]. (2.2)

It follows from (2.1) and (2.2) that

tα–1(1 – s)α–β–1 – (t – s)α–1 = (1 – s)α–β–1
[

tα–1 –
(t – s)α–1

(1 – s)α–β–1

]

≤ (1 – s)α–β–1
[

tα–1 –
(t – s)α–1

(1 – s)α–2

]

≤ s(1 – s)α–β–1

≤ β–1h(s). (2.3)

If β ≥ 1, we have

∂

∂t
[
tα–1(1 – s)α–β–1 – (t – s)α–1]

= (α – 1)
[
tα–2(1 – s)α–β–1 – (t – s)α–2]

≥ (α – 1)
[
(t – ts)α–2 – (t – s)α–2] ≥ 0.

Therefore,

tα–1(1 – s)α–β–1 – (t – s)α–1 ≤ (1 – s)α–β–1[1 – (1 – s)β
]

= h(s). (2.4)

On the other hand, noticing 0 < β < α – 1, we have

tα–1(1 – s)α–β–1 – (t – s)α–1

≥ tα–1(1 – s)α–β–1 – (t – s)β (t – ts)α–β–1
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=
[

1 –
(

1 –
s
t

)β]

tα–1(1 – s)α–β–1

≥ [
1 – (1 – s)β

]
tα–1(1 – s)α–β–1

= tα–1h(s). (2.5)

Case (ii): 0 ≤ t ≤ s ≤ 1.
If β ≥ 1, we have

tα–1(1 – s)α–β–1 ≤ sα–1(1 – s)α–β–1

≤ [
1 – (1 – s)β

]
(1 – s)α–β–1 = h(s). (2.6)

If 0 < β < 1. It follows from (2.2) that

tα–1(1 – s)α–β–1 ≤ sα–1(1 – s)α–β–1 ≤ s(1 – s)α–β–1 ≤ β–1h(s). (2.7)

On the other hand, noticing 0 < β < α – 1, we have

tα–1(1 – s)α–β–1 ≥ [
1 – (1 – s)β

]
tα–1(1 – s)α–β–1 = tα–1h(s). (2.8)

It follows from (2.3)–(2.8) that (3) holds. �

Lemma 2.3 The function G(t, s) has the following properties:
(1) G(t, s) > 0, ∀t, s ∈ (0, 1);
(2) G(t, s) ≤ tα–1	1(s), ∀t, s ∈ [0, 1];
(3) tα–1	2(s) ≤ G(t, s) ≤ M1	2(s), ∀t, s ∈ [0, 1],

where

	1(s) =
(1 – s)α–β–1

�(α)
+ q(s), 	2(s) =

h(s)
�(α)

+ q(s).

Proof It can be directly deduced from Lemma 2.2 and the definition of G(t, s), so we omit
the proof. �

Let E = C[0, 1] be endowed with the maximum norm ‖u‖ = max0≤t≤1 |u(t)|, Br = {u ∈ E :
‖u‖ < r}. Define cones P, Q by

P =
{

u ∈ E : u(t) ≥ 0
}

,

Q =
{

u ∈ E : u(t) ≥ M–1
1 tα–1‖u‖}.

Lemma 2.4 Define A : P → E as follows:

Au(t) =
∫ 1

0
G(t, s)a(s)f

(
s, u(s)

)
ds,

then A : P → Q is completely continuous.
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Proof By Lemma 2.3, it is easy to check that A : P → Q. By means of the Arzela–Ascoli
theorem, A : P → Q is completely continuous. �

Remark 2.3 Lemma 2.4 is valid if (A2) is replaced by (A′
2) f : [0, 1] × [0, +∞) → [0, +∞) is

continuous, a(t) ∈ C((0, 1), [0, +∞)) and

0 <
∫ 1

0
a(s)	i(s) ds < +∞, i = 1, 2.

Let

Tu(t) =
∫ 1

0
G(t, s)a(s)u(s) ds.

It is clear that T is a completely continuous linear operator and T(P) ⊂ Q. By virtue of the
Krein–Rutmann theorem and Lemma 2.3, we have the following lemma.

Lemma 2.5 The spectral radius r(T) > 0 and T has a positive eigenfunction ϕ1 correspond-
ing to its first eigenvalue (r(T))–1, that is, Tϕ1 = r(T)ϕ1.

3 Main results
3.1 Uniqueness results
Theorem 3.1 Suppose that f (t, 0) �≡ 0 on [0, 1], and there exists λ ∈ C(0, 1) ∩ L[0, 1] satis-
fying

0 <
∫ 1

0
a(s)λ(s) ds < +∞

such that

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ λ(t)|x – y|, t ∈ [0, 1], x, y ∈ [0,∞).

Then (1.1) has a unique positive solution if the spectral radius r(Lλ) ∈ (0, 1), where

Lλu(t) =
∫ 1

0
G(t, s)a(s)λ(s)u(s) ds.

Proof It follows from f (t, 0) �≡ 0 that θ is not a fixed point of A. Then we only need to prove
that A has a unique fixed point in Q.

Firstly, we will prove that A has a fixed point in Q.
Set

Q1 =
{

u ∈ P : ∃l1, l2 > 0 such that l2tα–1 ≤ u(t) ≤ l1tα–1}.

For any u ∈ Q \ {θ}, let

li(u) =
∫ 1

0
	i(s)a(s)λ(s)u(s) ds, i = 1, 2.
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It follows from Lemma 2.3 that l1(u), l2(u) > 0 and

l2(u)tα–1 ≤ (Lλu)(t) ≤ l1(u)tα–1. (3.1)

Therefore,

Lλ : Q \ {θ} → Q1.

Similar to Lemma 2.5, we have that the spectral radius r(Lλ) > 0 and Lλ has a positive
eigenfunction ψ1, that is, Lλψ1 = r(Lλ)ψ1. It is easy to see that

(
r(Lλ)

)–1l2(ψ1)tα–1 ≤ ψ1(t) ≤ (
r(Lλ)

)–1l1(ψ1)tα–1. (3.2)

For any u0 ∈ Q \ {θ}, let

un = A(un–1), n = 1, 2, . . . .

We may suppose that u1 – u0 �= θ (otherwise, the proof is finished). It follows from (3.1)
and (3.2) that

Lλ

(|u1 – u0|
) ≤ r(Lλ)l1(|u1 – u0|)

l2(ψ1)
ψ1. (3.3)

Then

|u2 – u1| =
∣
∣
∣
∣

∫ 1

0
G(t, s)a(s)

[
f
(
s, u1(s)

)
– f

(
s, u0(s)

)]
ds

∣
∣
∣
∣

≤
∫ 1

0
G(t, s)a(s)λ(s)

∣
∣u1(s) – u0(s)

∣
∣ds

= Lλ

(|u1 – u0|
)

≤ r(Lλ)l1(|u1 – u0|)
l2(ψ1)

ψ1, (3.4)

|u3 – u2| =
∣
∣
∣
∣

∫ 1

0
G(t, s)a(s)

[
f
(
s, u2(s)

)
– f

(
s, u1(s)

)]
ds

∣
∣
∣
∣

≤
∫ 1

0
G(t, s)a(s)λ(s)

∣
∣u2(s) – u1(s)

∣
∣ds

= Lλ

(|u2 – u1|
)

≤ r(Lλ)l1(|u1 – u0|)
l2(ψ1)

Lλψ1

=
[r(Lλ)]2l1(|u1 – u0|)

l2(ψ1)
ψ1,

· · · (3.5)

|um+1 – um| =
∣
∣
∣
∣

∫ 1

0
G(t, s)a(s)

[
f
(
s, um(s)

)
– f

(
s, um–1(s)

)]
ds

∣
∣
∣
∣
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≤
∫ 1

0
G(t, s)a(s)λ(s)

∣
∣um(s) – um–1(s)

∣
∣ds

= Lλ

(|um – um–1|
)

≤ [r(Lλ)]m–1l1(|u1 – u0|)
l2(ψ1)

Lλψ1

=
[r(Lλ)]ml1(|u1 – u0|)

l2(ψ1)
ψ1. (3.6)

By induction, we can get

|un+1 – un| ≤ [r(Lλ)]nl1(|u1 – u0|)
l2(ψ1)

ψ1, n = 1, 2, . . . . (3.7)

Then, for any n, m ∈N, we have

|un+m – un| ≤ |un+m – un+m–1| + · · · + |un+1 – un|

≤ ([
r(Lλ)

]n+m–1 + · · · +
[
r(Lλ)

]n) l1(|u1 – u0|)
l2(ψ1)

ψ1

≤ [r(Lλ)]nl1(|u1 – u0|)
[1 – r(Lλ)]l2(ψ1)

ψ1.

It follows from r(Lλ) < 1 that

‖un+m – um‖ → 0 (n → ∞),

which implies {un} is a Cauchy sequence. Therefore, there exists u∗ ∈ Q such that {un}
converges to u∗. Clearly u∗ is a fixed point of A.

In the following, we will prove that the fixed point of A is unique.
Suppose that v �= u∗ is a positive fixed point of A. Then there exists l1(|u∗ – v|) > 0 such

that

Lλ

(∣
∣u∗ – v

∣
∣
) ≤ r(Lλ)l1(|u∗ – v|)

l2(ψ1)
ψ1.

Therefore,

∣
∣Au∗ – Av

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G(t, s)a(s)

[
f
(
s, u∗(s)

)
– f

(
s, v(s)

)]
ds

∣
∣
∣
∣

≤
∫ 1

0
G(t, s)a(s)λ(s)

∣
∣u∗(s) – v(s)

∣
∣ds

≤ r(Lλ)l1(|u∗ – v|)
l2(ψ1)

ψ1.

Similar to the proof of (3.7), we can get

∣
∣Anu∗ – Anv

∣
∣ ≤ [r(Lλ)]nl1(|u∗ – v|)

l2(ψ1)
ψ1. (3.8)
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It follows from r(Lλ) < 1 that

∥
∥u∗ – v

∥
∥ =

∥
∥Anu∗ – Anv

∥
∥ → 0 (n → ∞),

which implies that the positive fixed point of A is unique. �

Remark 3.1 The unique positive solution u∗ of (1.1) can be approximated by the iterative
schemes: for any u0 ∈ Q \ {θ}, let

un = A(un–1), n = 1, 2, . . . ,

then un → u∗. Furthermore, we have error estimation

∣
∣un – u∗∣∣ ≤ [r(Lλ)]nl1(|u1 – u0|)

[1 – r(Lλ)]l2(ψ1)
ψ1,

and with the rate of convergence

∥
∥un – u∗∥∥ = O

([
r(Lλ)

]n).

Remark 3.2 The spectral radius satisfies r(Lλ) = limn→∞ ‖Ln
λ‖

1
n and r(Lλ) ≤ ‖Ln

λ‖
1
n . Partic-

ularly,

r(Lλ) ≤ ‖Lλ‖ = sup
0≤t≤1

∫ 1

0
G(t, s)a(s)λ(s) ds.

3.2 Nonexistence results
Theorem 3.2 Suppose that there exists b1 ∈ C(0, 1) ∩ L[0, 1] satisfying

0 <
∫ 1

0
a(s)b1(s) ds < +∞

such that

f (t, x) ≤ b1(t)x, t ∈ [0, 1], x ∈ [0,∞).

Then (1.1) has no positive solution if the spectral radius r(Lb1 ) ∈ (0, 1), where

Lb1 u(t) =
∫ 1

0
G(t, s)a(s)b1(s)u(s) ds.

Proof We only need to prove that A has no fixed point in Q1. If otherwise, there exists
v ∈ Q1 such that Av = v. Similar to Lemma 2.5, we have that the spectral radius r(Lb1 ) > 0
and Lb1 has a positive eigenfunction ϕb1 satisfying

Lb1ϕb1 = r(Lb1 )ϕb1 .

It is clear that v,ϕb1 ∈ Q1. Therefore, there exists c1 > 0 such that

v ≤ c1ϕb1 .
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By f (t, x) ≤ b1(t)x, we have v = Av ≤ Lb1 v. It is obvious that Lb1 is increasing in Q1. By
induction, we can get v ≤ Ln

b1
v, ∀n = 1, 2, 3, . . . . Then

v ≤ Ln
b1 v ≤ Ln

b1 c1ϕb1 = c1
[
r(Lb1 )

]n
ϕb1 , ∀n = 1, 2, 3, . . . .

Noticing r(Lb1 ) < 1, we have v = θ , which contradicts v ∈ Q1. �

Theorem 3.3 Suppose that there exists b2 ∈ C(0, 1) ∩ L[0, 1] satisfying

0 <
∫ 1

0
a(s)b2(s) ds < +∞

such that

f (t, x) ≥ b2(t)x, t ∈ [0, 1], x ∈ [0,∞).

Then (1.1) has no positive solution if the spectral radius r(Lb2 ) > 1, where

Lb2 u(t) =
∫ 1

0
G(t, s)a(s)b2(s)u(s) ds.

Proof The proof is just similar to Theorem 3.2, so we omit it. �

4 Example
Example 4.1 Consider the following problem:

⎧
⎨

⎩

D
5
2
0+u(t) + a(t)f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, D
1
2
0+u(1) =

∑∞
i=1 ηiD

1
2
0+u(ξi),

(4.1)

where

ηi =
1

24+i , ξi = 1 –
1
2i , i = 1, 2, . . . ,

a(t) =
√

100π

3t
, f (t, x) = 1 +

√
t| sin x|.

Let λ(t) =
√

t, we have

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ λ(t)|x – y|, t ∈ [0, 1], x, y ∈ [0,∞).

It is clear that

K(t, s) =
1

�( 5
2 )

⎧
⎨

⎩

t 3
2 (1 – s), 0 ≤ t ≤ s ≤ 1,

t 3
2 (1 – s) – (t – s) 3

2 , 0 ≤ s ≤ t ≤ 1,

p(0) =
∞∑

i=1

ηiξi =
1

24
,
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p(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑∞
i=1 ηi(ξi – s), s ∈ [0, ξ1],

∑∞
i=2 ηi(ξi – s), s ∈ (ξ1, ξ2],

· · ·
∑∞

i=n+1 ηi(ξi – s), s ∈ (ξn, ξn+1],

· · · ,

q(s) =
p(0)(1 – s) – p(s)

�
,

G(t, s) = K(t, s) + q(s)t
3
2 ,

where � := �( 5
2 )[1 – p(0)].

Let

h1(t) =
∫ 1

0
K(t, s) ds,

h2(t) =
∫ 1

0
K(t, s)

∫ 1

0
K(s, τ ) dτ ds.

Then

h1(t) =
1

�( 5
2 )

(
t 3

2

2
–

2t 5
2

5

)

,

h2(t) =
∫ 1

0
K(t, s)h1(s) ds =

32t 3
2

567π
–

t4

48
+

t5

120
.

By direct calculations, we have

max
0≤t≤1

h1(t) = h1

(
3
4

)

=
√

3
10

√
π

,

max
0≤t≤1

h2(t) ≈ h2(0.7744) ≈ 0.0070708134,

and

∫ 1

0
q(s) ds =

p(0)
2�

–
1
�

∞∑

i=1

ηiξ
2
i

2

=
1

2�

∞∑

i=1

ηiξi(1 – ξi)

≈ 0.00467238.

It is clear that

‖Lλ‖ = sup
0≤t≤1

∫ 1

0

√
100π

3
G(t, s) ds

≥
∫ 1

0

√
100π

3
G

(
3
4

, s
)

ds



Wang and Liu Boundary Value Problems  (2018) 2018:118 Page 12 of 14

=
√

100π

3
h1

(
3
4

)

+
√

100π

3

(
3
4

) 3
2
∫ 1

0
q(s) ds

>
√

100π

3
h1

(
3
4

)

= 1.

On the other hand, we have

∥
∥L2

λ

∥
∥ = sup

0≤t≤1

∫ 1

0

√
100π

3
G(t, s)

∫ 1

0

√
100π

3
G(s, τ ) dτ ds.

Noticing that

G(t, s) = K(t, s) + q(s)t
3
2 ≤ K(t, s) + q(s),

we have

∫ 1

0

√
100π

3
G(t, s)

∫ 1

0

√
100π

3
G(s, τ ) dτ ds

=
100π

3

∫ 1

0
G(t, s)

∫ 1

0
G(s, τ ) dτ ds

≤ 100π

3

∫ 1

0

[
K(t, s) + q(s)

]
∫ 1

0

[
K(s, τ ) + q(τ )

]
dτ ds

=
100π

3

[

h2(t) + h1(t)
∫ 1

0
q(τ ) dτ +

∫ 1

0
q(s)h1(s) ds +

(∫ 1

0
q(s) ds

)2]

≤ 100π

3

[

‖h2‖ + 2‖h1‖
∫ 1

0
q(s) ds +

(∫ 1

0
q(s) ds

)2]

≈ 0.83837,

which implies that

∥
∥L2

λ

∥
∥

1
2 < 1.

It follows from Lemma 2.5 and Remark 3.2 that

0 < r(Lλ) ≤ ∥
∥L2

λ

∥
∥

1
2 < 1 < ‖Lλ‖.

Therefore the assumptions of Theorem 3.1 are satisfied. Thus Theorem 3.1 ensures that
BVP (4.1) has a unique positive solution.

5 Conclusions
In this paper, we consider both the existence of uniqueness and the nonexistence of posi-
tive solution for fractional differential equations with infinite-point boundary value con-
ditions. The interesting point lies in that both the existence of uniqueness and the nonex-
istence of positive solution are closely associated with the spectral radius with respect to
the relevant linear operator.
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