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Abstract
We use the non-Nehari manifold method to deal with the system

{
–�u + V(x)u + φu = (

∫
R3

Q(y)F(u(y))
|x–y|μ dy)Q(x)f (u(x)), x ∈R

3,

–�φ = u2, u ∈ H1(R3),

where V(x) and Q(x) are periodic and asymptotically periodic in x. Under some mild
conditions on f , we establish the existence of the Nehari type ground state solutions
in two cases: the periodic one and the asymptotically periodic case.

Keywords: Schrödinger–Poisson system; Asymptotically periodic; Hartree-type
nonlinearity; Ground state solutions

1 Introduction
In this paper, we are concerned with the existence of ground state solutions for the non-
linear system

⎧⎨
⎩–�u + V (x)u + φu = (

∫
R3

Q(y)F(u(y))
|x–y|μ dy)Q(x)f (u(x)), x ∈R

3,

–�φ = u2, u ∈ H1(R3),
(1.1)

where 0 < μ < 3, V , Q : R3 → R, f : R → R, and F(s) =
∫ s

0 f (t) dt satisfy the following as-
sumptions, respectively:

(V0) V ∈ L∞(R3) and infx∈R3 V (x) > 0;
(Q0) Q ∈ L∞(R3) and infx∈R3 Q(x) > 0;
(F1) There exist 2 – μ

3 < q < 6 – μ and c0 > 0 such that |f (s)| ≤ c0(|s|1– μ
3 + |s|q–1).

Consider the Sobolev space H1(R3) endowed with the following norm and inner product:

〈u, v〉 =
∫
R3

[∇u∇v + V (x)uv
]

dx, ‖u‖2 =
∫
R3

[|∇u|2 + V (x)u2]dx.

In view of (Q0), the norm ‖·‖ is equivalent to the standard norm in H1(R3).
It is well known that for any u ∈ H1(R3), there exists unique φu ∈ D1,2(R3) such that

–�φ = u2 by using the Lax–Milgram theorem. Inserting it into the first equation of (1.1),
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we have

–�u + V (x)u + φu(x)u =
(∫

R3

Q(y)F(u(y))
|x – y|μ dy

)
Q(x)f

(
u(x)

)
, (1.2)

which is variational under our assumptions. Besides, its solution is the critical point of the
functional defined in H1(R3) by

I(u) =
1
2

∫
R3

(|∇u|2 + V (x)u2) +
1
4

∫
R3

φu(x)u2 dx

–
1
2

∫
R3

∫
R3

Q(y)F(u(y))
|x – y|μ Q(x)F

(
u(x)

)
dx dy. (1.3)

Under our assumptions and Hardy–Littlewood–Sobolev inequality (see the following part
of this paper), we know that I(u) ∈ C1(H1(R3),R). Furthermore, for any v ∈ H1(R3),

〈
I ′(u), v

〉
=

∫
R3

[∇u∇v + V (x)uv
]

dx +
∫
R3

φu(x)uv dx

–
∫
R3

∫
R3

Q(y)F(u(y))
|x – y|μ Q(x)f

(
u(x)

)
v(x) dx dy, (1.4)

and the corresponding Nehari manifold is defined by

N =
{

u ∈ H1(
R

3) \ {0} :
〈
I ′(u), u

〉
= 0

}
. (1.5)

Therefore, if u ∈ H1(R3) is a critical point of (1.3), then the pair (u,φu) ∈ H1(R3)×D1,2(R3)
is a solution of (1.1). So we just say u ∈ H1(R3) is a weak solution of (1.1) in many cases
for simplicity.

When φ is absent, System (1.1) will reduce to the generalized Choquard equation:

–�u + V (x)u =
(∫

R3

Q(y)F(u(y))
|x – y|μ dy

)
Q(x)f

(
u(x)

)
, u ∈ H1(

R
3), (1.6)

where V (x) is an external potential and F is a primitive function of f . System (1.6) can
be described as an approximation to Hartree–Fock theory of a one component plasma
and arises in various branches of mathematical physics, see [1, 2]. It was also called
Schrödinger–Newton equation when V (x) = Q(x) ≡ 1 and f (s) = s. Zhang [3] proved
the existence and multiplicity of solutions for (1.6). By variational method, Alves and
Yang [4] established a new concentration behavior of nontrivial solutions for quasilin-
ear Choquard equations. We point out that the generalized Hartree-type nonlinearity
(
∫
R3

Q(y)F(u(y))
|x–y|μ dy)Q(x)f (u(x)) was widely applied in many physical and biological models.

For example, Lu [5] obtained ground state solutions of a Kirchhoff-type equation with a
Hartree-type nonlinearity.

On the other hand, when μ → 3, System (1.1) will transform to the Schrödinger–Poisson
system

⎧⎨
⎩–�u + V (x)u + φ(x)u = g(x, u), x ∈R

3,

–�φ = u2, u ∈R
3,

(1.7)
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with g(x, u) = Q(x)2F(u)f (u). System (1.7) is also known as Schrödinger–Maxwell equa-
tions. It arises in quantum mechanics which is related to the study of nonlinear stationary
Schrödinger equations interacting with the electrostatic field or the Hartree–Fock equa-
tion. The nonlinear term g(x, u) is used in the Schrödinger equation to model the interac-
tion among particles or an external nonlinear perturbation. For more details in the physical
aspects, we refer readers to [6–8].

In recent years, enormous results have been obtained for System (1.7). When V (x) ≡ 1
and g(x, u) = |u|p–2u, a radial positive solution was obtained for 4 < p < 6 in [9, 10]. Later,
Ruiz [11] proved the existence of a positive radial solution for 3 < p ≤ 4 by introducing
the Nehari–Pohozaev manifold and establishing a key inequality. For more results on the
Schrödinger–Maxwell system and related systems, we refer the readers to [12–27]. In [28],
Azzollini and Pomponio obtained the existence of a ground state solution for the subcrit-
ical cases 3 < p < 5 and the critical case g(x, u) = |u|p–2u + u5 with 4 < p < 6. When V (x) is
periodic, that is,

(V1) V ∈ C(R3, (0,∞)) and V (x) is 1-periodic in x1, x2, and x3,
Zhao and Zhao [29] proved the existence of solutions by using the Nehari manifold ap-
proach. Sun and Ma [30] proved that System (1.7) has a ground state solution under the
following assumption:

(f1) g(x,t)
|t|3 is increasing in t on R \ {0} for every x ∈R

3,
and some other hypotheses. It should be noted that the starting point of their approach is
to show that for every u ∈ H1(R3) \ {0}, under assumption (f1), there exists unique t(u) > 0
such that t(u)u ∈ N , which is important in the remaining proof. Using the non-Nehari
manifold approach, Chen and Tang [31] weakened (f1) to the following assumption:

(f2) There exists θ0 ∈ (0, 1) such that

[
f (x, τ )

τ 3 –
f (x, tτ )
(tτ )3

]
sign(1 – t) + θ0V (x)

1 – t2

(tτ )2 ≥ 0, ∀x ∈ R
3, t > 0, τ �= 0.

Motivated by the works mentioned above, in this paper, we intend to generalize the
results obtained in [29–31] to System (1.1). There are several pivotal difficulties we must
overcome in the process. First, due to the competing effect between the two nonlocal terms∫
R3 φu(x)u2 dx and (

∫
R3

Q(y)F(u(y))
|x–y|μ dy)Q(x)f (u(x)), the methods dealing with (1.6) become

invalid. Secondly, the methods used in [29–31] rely heavily on assumptions (f1) or the
weaker case (f2), so the approaches used in [29–31] cannot be applied directly to System
(1.1) which involves a Hartree-type nonlinearity. Therefore, some new methods and tricks
are required to address the existence of ground state solutions for (1.1). To the best of our
knowledge, it seems that there is no work on the existence of ground state solutions of
System (1.1). Before stating our results, we introduce some hypotheses on the functions
Q and f .

(Q1) Q ∈ C(R3, (0,∞)) and Q(x) is 1-periodic in x1, x2, and x3.
(F2) f (s) = o(|s|1– μ

3 ) as |s| → 0.
(F3) f (s)

|s| is nondecreasing in (–∞, 0) ∪ (0, +∞).
(F4) F(s)

|s|σ → +∞ as |s| → +∞, where F(s) =
∫ s

0 f (t) dt and σ = min{2, 9–μ

4 }.
Now we are in a position to present our first result. In the periodic case, we establish the

following theorem.
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Theorem 1.1 Assume that V , Q, and f satisfy (V1), (Q1), and (F1)–(F4). Then System
(1.1) has a solution ũ ∈ H1(R3) such that I(ũ) = infN I > 0.

Under assumptions (V1), (Q1), and (F1)–(F4), we prove that, for every u ∈ H1(R3), there
exists unique t(u) > 0 such that t(u)u ∈ N by establishing a key inequality related to I(u),
I(tu), and 〈I ′(u), u〉. Then, using the non-Nehari manifold approach developed by Tang
[32, 33] and the concentration compactness principle, we obtain a ground state solution
for System (1.1) (see Sects. 2, 3).

In the next part, we consider the asymptotically periodic case. The situation becomes
more complex when V (x) and Q(x) are asymptotically periodic due to the loss of Z3-
translation invariance of functional I . Consequently, many effective methods applied in
periodic problems become invalid. So we shall adopt other methods to overcome the dif-
ficulties caused by the dropping of the periodicity of V (x) and Q(x).

First, we define a set as follows:

� :=
{

g(x) ∈ C
(
R

3) ∩ L∞(
R

3)| for every ε > 0, the set
{

x ∈R
3 :

∣∣g(x)
∣∣ ≥ ε

}
has a finite measure

}
.

To state our results, we make the following assumptions in the asymptotically periodic
case:

(V2) V (x) = V0(x) + V1(x), V0, V1 ∈ C(R3,R), V0(x) is 1-periodic in x1, x2, and x3, and
–V0(x) < V1(x) ≤ 0 for x ∈R

3, V1(x) ∈ �.
(Q2) Q(x) = Q0(x) + Q1(x), Q0, Q1 ∈ C(R3,R), Q0(x) is 1-periodic in x1, x2, and x3, and

Q0(x) ≥ 0, Q1(x) ≥ 0 for x ∈R
3, Q1(x) ∈ �.

Then we give our second result as follows.

Theorem 1.2 Assume that V , Q, and f satisfy (V2), (Q2), and (F1)–(F4). Then System
(1.1) has a solution ũ ∈ H1(R3) such that I(ũ) = infN I > 0.

Example 1.3 There are indeed functions satisfying (F1)–(F4). A simple example is given
by f (s) = s ln(1 + |s|).

The paper is organized as follows. In Sect. 2, we give some notations and preliminaries.
In Sect. 3 and Sect. 4, Theorem 1.1 and Theorem 1.2 will be proved, respectively.

In this paper, the norm of Lp(R3) is denoted by ‖u‖p for 1 ≤ p < ∞. We denote the ball
centered at x with the radius r by Br(x) and use C to indicate all positive constants in
estimates while it does not lead to confusion.

2 Notations and preliminaries
Lemma 2.1 Under assumption (F2) and (F3), we can obtain:

(i) f (s)
s is nonincreasing in (–∞, 0), and nondecreasing in (0, +∞).

(ii) f (s)s ≥ 2F(s) ≥ 0, ∀s ∈R.
(iii) F(s)

s2 is nonincreasing in (–∞, 0), and nondecreasing in (0, +∞).

The proof is elementary, so we omit here.



Wen and Chen Boundary Value Problems  (2018) 2018:110 Page 5 of 15

Lemma 2.2 Under assumptions (V0), (Q0), and (F1)–(F3),

I(u) ≥ I(tu) +
1 – t4

4
〈
I ′(u), u

〉
+

(1 – t2)2

4
‖u‖2, ∀u ∈ H1(

R
3), t ≥ 0. (2.1)

Proof Note that

I(u) =
1
2
‖u‖2 +

1
4

∫
R3

φu(x)u2 dx –
1
2

∫
R3

∫
R3

Q(y)F(u(y))
|x – y|μ Q(x)F

(
u(x)

)
dx dy (2.2)

and

〈
I ′(u), u

〉
= ‖u‖2 +

∫
R3

φu(x)u2 dx –
∫
R3

∫
R3

Q(y)F(u(y))
|x – y|μ Q(x)f

(
u(x)

)
u(x) dx dy. (2.3)

Thus, from (2.2) and (2.3), one has

I(u) – I(tu) =
1 – t2

2
‖u‖2 +

1 – t4

4

∫
R3

φu(x)u2 dx

–
1
2

∫
R3

∫
R3

Q(y)F(u(y))
|x – y|μ Q(x)F

(
u(x)

)
dx dy

+
1
2

∫
R3

∫
R3

Q(y)F(tu(y))
|x – y|μ Q(x)F

(
tu(x)

)
dx dy

=
1 – t2

4
〈
I ′(u), u

〉
+

(1 – t2)2

4
‖u‖2

+
∫
R3

∫
R3

[
1 – t4

4
Q(y)F(u(y))

|x – y|μ Q(x)f
(
u(x)

)(
u(x)

)

+
1
2

Q(y)F(tu(y))
|x – y|μ Q(x)F

(
tu(x)

)
–

1
2

Q(y)F(u(y))
|x – y|μ Q(x)F

(
u(x)

)]
dx dy.

Define a function

h(t, u) =
∫
R3

∫
R3

[
1 – t4

4
Q(y)F(u(y))

|x – y|μ Q(x)f
(
u(x)

)(
u(x)

)
+

1
2

Q(y)F(tu(y))
|x – y|μ Q(x)F

(
tu(x)

)

–
1
2

Q(y)F(u(y))
|x – y|μ Q(x)F

(
u(x)

)]
dx dy, ∀t ≥ 0, u ∈ H1(

R
3).

By (Q0), Lemma 2.1, and elementary computations, we have

h′(t) =
∫
R3

∫
R3

[
Q(y)F(tu(y))

|x – y|μ Q(x)f
(
tu(x)

)
u(x) dx dy

– t3 Q(y)F(u(y))
|x – y|μ Q(x)f

(
u(x)

)
u(x)

]
dx dy

= t3
∫
R3

∫
R3

Q(x)Q(y)u2(x)u2(y)
|x – y|μ

[
F(tu(y))
(t2(u(y))

(
f (tu(x))

tu(x)
–

f (u(x))
u(x)

)

+
f (u(x))

u(x)

(
F(tu(y))
tu2(y)

–
F(u(y))
u2(y)

)]
dx dy

⎧⎨
⎩≥ 0, t ≥ 1,

< 0, 0 < t < 1,

which yields h(t) ≥ h(1) = 0. Therefore, we have (2.1) holds. �
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Corollary 2.3 Under assumptions (V0), (Q0), and (F1)–(F3), for any u ∈N ,

I(u) = max
t≥0

I(tu). (2.4)

Lemma 2.4 (Hardy–Littlewood–Sobolev inequality [8]) Let s, r > 1, and 0 < μ < N with
1
s + μ

N + 1
r = 2, f ∈ Ls(RN ) and h ∈ Lr(RN ). Then there exists a sharp constant C(s, N ,μ, r)

independent of f , h such that

∫
RN

∫
RN

f (x)h(y)
|x – y|μ ≤ C(s, N ,μ, r)‖f ‖s‖h‖r .

In the sequel, we set N = 3 and r = 6
6–μ

(we take the same value for r in the following
part of this paper). It follows from (F1) that 2 < rq < 2∗. So, for any u ∈ H1(R3), by an
elementary computation, we have

∥∥F(u)
∥∥

r ≤ C
(‖u‖2– μ

3
2 + ‖u‖q

rq
)
. (2.5)

By (Q0), (2.5), and Hardy–Littlewood–Sobolev inequality, we can obtain

∣∣∣∣
∫
R3

∫
R3

Q(y)F(u(y))
|x – y|μ Q(x)F

(
u(x)

)
dx dy

∣∣∣∣ ≤ C
∥∥F(u)

∥∥2
r ≤ C

(‖u‖4– 2μ
3

2 + ‖u‖2q
rq

)
. (2.6)

Similarly,

∣∣∣∣
∫
R3

∫
R3

Q(y)F(u(y))
|x – y|μ Q(x)f

(
u(x)

)
u(x) dx dy

∣∣∣∣ ≤ C
∥∥F(u)

∥∥2
r ≤ C

(‖u‖4– 2μ
3

2 + ‖u‖2q
rq

)
. (2.7)

To show N �= ∅ in our situation, we define a set as follows:

J :=

⎧⎪⎪⎨
⎪⎪⎩

H1(R3) \ {0}, if μ < 1;

{u ∈ H1(R3) :
∫
R3 φu(x)u2 dx

–
∫
R3

∫
R3

Q(y)F(u(y))
|x–y|μ Q(x)f (u(x))u(x) dx dy < 0}, if 1 ≤ μ < 3.

Lemma 2.5 Under assumptions (V0), (Q0), and (F1)–(F4), (i) N ⊂ J �= ∅; (ii) for any u ∈
J , there exists unique t(u) > 0 such that t(u)u ∈N .

Proof (i) It is easy to see that J �= ∅ if μ < 1. Next, we consider that 1 ≤ μ < 3. From
Lemma 2.4 and Sobolev imbedding theorem, there exists C > 0 such that

∫
R3 φu(x)u2 dx ≤

C‖u‖4 for any u ∈ H1(R3). Fix v ∈ H1(R3) and v(x) > 0 for any x ∈ R
3 and set vt(x) = v(tx)

for t > 0. By (Q0), one has

∫
R3

φ(t2vt )(x)
(
t2vt

)2 dx –
∫
R3

∫
R3

Q(y)F(t2vt(y))
|x – y|μ Q(x)f

(
t2vt(x)

)
t2vt(x) dx dy

= t3
∫
R3

φv(x)v2 dx – tμ–6
∫
R3

∫
R3

Q(t–1y)F(t2v(y))
|x – y|μ Q

(
t–1x

)
f
(
t2v(x)

)
t2v(x) dx dy

≤ t3
(

C‖v‖4 – Q2
∞

∫
R3

∫
R3

F(t2v(y))

(t2v(y))
9–μ

4

f (t2v(x))t2v(x)

(t2v(x))
9–μ

4

[v(x)v(y)]
9–μ

4

|x – y|μ
)

dx dy, (2.8)
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where Q∞ = infx∈R3 Q(x). Since 1 ≤ μ < 3, then σ = 9–μ

4 in (F4), and so

F(t2v(y)))

(t2v(y))
9–μ

4
→ +∞ and

f (t2v(x)))t2v(x))

(t2v(x))
9–μ

4
→ +∞ as t → +∞, (2.9)

which, together with (Q0), (2.8), and (2.9), implies

∫
R3

φ(t2vt )(x)
(
t2vt

)2 dx –
∫
R3

∫
R3

Q(y)F(t2vt(y))
|x – y|μ Q(x)f

(
t2vt(x)

)
t2vt(x) dx dy

→ –∞ as t → +∞.

Thus taking u = t2vt for t large enough, we have u ∈ J , and so J �= ∅ in the case 1 ≤ μ < 3.
From (2.3), it is easy to see that N ⊂ J .

(ii) First, we prove the existence of t(u). Since σ = 2 in (F4) if μ < 1, then through a
standard argument, the existence of t(u) can be proved easily. After that, we consider the
case 1 ≤ μ < 3. Let u ∈ J be fixed and define a function g(t) = 〈I ′(tu), tu〉 on [0, +∞). By
(2.3), Lemma 2.4, and Sobolev imbedding theorem, one has

g(t) = t2‖u‖2 + t4
∫
R3

φu(x)u2 dx –
∫
R3

∫
R3

Q(y)F(tu(y))
|x – y|μ Q(x)f

(
tu(x)

)
tu(x) dx dy

≥ t2‖u‖2 – C
(
t4– 2μ

3 ‖u‖4– 2μ
3

2 + t2q‖u‖2q
rq

)
≥ t2‖u‖2 – C

(
t4– 2μ

3 ‖u‖4– 2μ
3 + t2q‖u‖2q). (2.10)

By (2.3) and Lemma 2.1, we have

g(t) = t2‖u‖2 + t4
∫
R3

φu(x)u2 dx

–
∫
R3

∫
R3

Q(y)F(tu(y))
|x – y|μ Q(x)f

(
tu(x)

)
tu(x) dx dy

≤ t2‖u‖2 + t4
∫
R3

φu(x)u2 dx

– t4
∫
R3

∫
R3

Q(x)Q(y)u2(x)u2(y)
|x – y|μ

F(tu(y))
(tu(y))2

f (tu(x))
tu(x)

dx dy

≤ t2‖u‖2 + t4
∫
R3

φu(x)u2 dx

– t4
∫
R3

∫
R3

Q(x)Q(y)u2(x)u2(y)
|x – y|μ

F(u(y))
(u(y))2

f (u(x))
u(x)

dx dy

≤ t2‖u‖2 + t4
(∫

R3
φu(x)u2 dx

–
∫
R3

∫
R3

Q(y)F(u(y))
|x – y|μ Q(x)f

(
u(x)

)
u(x) dx dy

)
, ∀t ≥ 1. (2.11)

It follows from (2.10) and (2.11) that g(t) > 0 for t > 0 small, and g(t) < 0 for t large due to
u ∈ J . Therefore, there exists t0 = t(u) > 0 such that g(t0) = 0 and t(u)u ∈N .
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Next, we prove that t(u) is unique for any u ∈ J . For any given u ∈N , let t1, t2 > 0 such
that g(t1) = g(t2) = 0. Jointly with (2.1), we have

I(t1u) ≥ I(t2u) +
t4
1 – t4

2
4t4

1

〈
I ′(t1u), t1u

〉
+

(t2
1 – t2

2)2

4t2
1

‖u‖2

= I(t2u) +
(t2

1 – t2
2)2

4t2
1

‖u‖2, (2.12)

and

I(t2u) ≥ I(t1u) +
t4
2 – t4

1
4t4

2

〈
I ′(t2u), t2u

〉
+

(t2
2 – t2

1)2

4t2
2

‖u‖2

= I(t1u) +
(t2

2 – t2
1)2

4t2
2

‖u‖2. (2.13)

Equations (2.12) and (2.13) imply t1 = t2. Hence, t(u) > 0 is unique for any u ∈ J . �

Lemma 2.6 Under assumptions (V0), (Q0), and (F1)–(F4), then

inf
u∈N

I(u) := c = inf
u∈J ,u�=0

max
t≥0

I(tu) > 0. (2.14)

The proof is standard, so we omit here.

Lemma 2.7 Under assumptions (V0), (Q0), and (F1)–(F4), there exist a constant c∗ ∈ (0, c]
and a sequence {un} ⊂ H1(R3) satisfying

I(un) → c∗,
∥∥I ′(un)

∥∥(
1 + ‖un‖

) → 0. (2.15)

Proof It follows from Lemma 2.4 and Sobolev imbedding theorem that

I(u) =
1
2
‖u‖2 +

1
4

∫
R3

φu(x)u2 dx –
1
2

∫
R3

∫
R3

Q(y)F(u(y))
|x – y|μ Q(x)F

(
u(x)

)
dx dy.

≥ 1
2
‖u‖2 – C

(‖u‖4– 2μ
3

2 + ‖u‖2q
rq

)
≥ 1

2
‖u‖2 – C

(‖u‖4– 2μ
3 + ‖u‖2q). (2.16)

From (F1), we know that there exist δ0 > 0 and ρ0 > 0 such that

I(u) ≥ ρ0, ‖u‖ = δ0. (2.17)

In view of Lemmas 2.5 and 2.6, we may choose vk ∈N ⊂ J such that

c –
1
k

< I(vk) < c +
1
k

, k ∈N. (2.18)

Using Lemma 2.2 and (2.17), we can obtain that I(tvk) > 0 for small t > 0 and I(tvk) < 0 for
large t > 0 due to vk ∈N . Since I(0) = 0, then the mountain pass lemma implies that there
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exists a sequence {uk,n} ⊂ H1(R3) satisfying

I(uk,n) → ck ,
∥∥I ′(uk,n)

∥∥(
1 + ‖uk,n‖

) → 0, k ∈N, (2.19)

where ck ∈ [ρ0, supt≥0 I(tvk)]. As a result of Corollary 2.3, we have I(vk) = supt≥0 I(tvk).
Then, by (2.18) and (2.19), one has

I(uk,n) → ck ∈
[
ρ0, c +

1
k

)
,

∥∥I ′(uk,n)
∥∥(

1 + ‖uk,n‖
) → 0, k ∈N. (2.20)

Choose a sequence {nk} ⊂N such that

I(uk,nk ) → ck ∈
[
ρ0, c +

1
k

)
,

∥∥I ′(uk,nk )
∥∥(

1 + ‖uk,nk ‖
)

<
1
k

, k ∈N. (2.21)

Let uk = uk,nk , k ∈N. Then, going if necessary to a subsequence, we have

I(un) → c∗ ∈ [ρ0, c],
∥∥I ′(un)

∥∥(
1 + ‖un‖

) → 0. �

Lemma 2.8 Under assumptions (V0), (Q0), and (F1)–(F4), any sequence {un} ⊂ H1(R3)
satisfying (2.15) is bounded in H1(R3).

Proof By Lemma 2.2, one has

c∗ + o(1) = I(un) –
1
4
〈
I ′(un), un

〉 ≥ 1
4
‖un‖2.

This shows that the sequence {un} is bounded in H1(R3). �

Similar to the proof of [31, Lemma 2.7], we can obtain the following lemma.

Lemma 2.9 Under assumptions (V0), (Q0), and (F1)–(F4), if u0 ∈ N and I(u0) = c, then
u0 is a critical point of I .

3 The period case
In this section, we give the proof of Theorem 1.1.

Proof of Theorem 1.1 Lemma 2.7 implies that there exists a sequence {un} ⊂ H1(R3) sat-
isfying (2.15), then

I(un) → c∗ > 0,
〈
I ′(un), un

〉 → 0. (3.1)

By Lemma 2.8, {un} is bounded in H1(R3). Suppose that

δ := lim
n→∞ sup

y∈R3

∫
B1(y)

∣∣un(x)
∣∣2 dx = 0,

then, by Lion’s concentration compactness principle, un → 0 in Ls(R3) for 2 < s < 6. For
any ε > 0, by (F1) and (F2), there exists Cε such that

∣∣f (un)
∣∣ ≤ ε|un|1– μ

3 + Cε|un|q–1. (3.2)
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Then, from Lemma 2.5 and (3.2), one has

∫
R3

∫
R3

Q(y)F(un(y))
|x – y|μ Q(x)

[
f
(
un(x)

)
un(x) – F

(
un(x)

)]
dx dy

≤ C
∥∥F(un)

∥∥2
6

6–μ
≤ C1ε + o(1).

Fix ε = 3c∗
2C1

, we have

lim
n→∞

∫
R3

∫
R3

Q(y)F(un(y))
|x – y|μ Q(x)

[
f
(
un(x)

)
un(x) – F

(
un(x)

)]
dx dy ≤ 3

2
c∗. (3.3)

By Hardy–Littlewood–Sobolev theorem and Sobolev imbedding theorem, one has

lim
n→∞

∫
R3

φun (x)u2
n dx = lim

n→∞

∫
R3

∫
R3

u2
n(x)u2

n(y)
|x – y|μ dx dy

≤ C lim
n→∞‖un‖4

12
5

= 0. (3.4)

For any ε > 0, from (2.2), (2.3), (3.1), (3.3), and (3.4), it follows that

c∗ = I(un) –
1
2
〈
I ′(un), un

〉
+ o(1)

= –
1
4

∫
R3

φun (x)u2
n dx +

1
2

∫
R3

∫
R3

Q(y)F(un(y))
|x – y|μ

× Q(x)
[
f
(
un(x)

)
un(x) – F

(
un(x)

)]
dx dy + o(1)

≤ 3
4

c∗ + o(1),

which is a contradiction, so δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ Z

3 such that

∫
B1(kn)

∣∣un(x)
∣∣2 dx >

δ

3
. (3.5)

Let vn(x) = un(x + kn), then

∫
B1(0)

∣∣vn(x)
∣∣2 dx >

δ

3
. (3.6)

Since V (x), Q(x) are periodic on x, we have

I(vn) → c∗ ∈ (0, c],
∥∥I ′(vn)

∥∥(
1 + ‖vn‖

) → 0.

Passing to a subsequence, we have vn ⇀ ṽ in H1(R3), vn → v0 in Ls
loc(R3), 2 ≤ s < 6, and

vn → ṽ a.e. on R
3. Thus, (3.6) implies that ṽ �= 0. For any ϕ ∈ C∞

0 (R3), we have

〈
I ′(ṽ),ϕ

〉
= lim

n→∞
〈
I ′(vn),ϕ

〉
= 0.
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Hence I ′(ṽ) = 0. This implies that ṽ ∈N is a nontrivial solution of System (1.1) and I(ṽ) ≥ c.
It follows from Lemma 2.1 and Fatou’s lemma that

c ≥ c∗ = lim
n→∞

[
I(vn) –

1
4
〈
I ′(vn), vn

〉]

= lim
n→∞

{
1
4
‖vn‖2 +

1
4

∫
R3

∫
R3

Q(y)F(vn(y))
|x – y|μ Q(x)

[
f
(
vn(x)

)
vn(x) – 2F

(
vn(x)

)]
dx dy

}

≥ 1
4
‖v0‖2 +

1
4

∫
R3

∫
R3

Q(y)F(ṽ(y))
|x – y|μ Q(x)

[
f
(
ṽ(x)

)
ṽ(x) – 2F

(
ṽ(x)

)]
dx dy

= I(ṽ) –
1
4
〈
I ′(ṽ), ṽ

〉
= I(ṽ).

This shows that I(ṽ) ≤ c, so I ′(ṽ) = 0 and I(ṽ) = c = infN I > 0. �

4 The asymptotically period case
In this section, we have V (x) = V0(x) + V1(x) and Q(x) = Q0(x) + Q1(x). Define a functional
I0 as follows:

I0(u) =
1
2

∫
R3

(|∇u|2 + V0(x)u2)dx +
1
4

∫
R3

φu(x)u2 dx

–
1
2

∫
R3

∫
R3

Q0(y)F(u(y))
|x – y|μ Q0(x)F

(
u(x)

)
dx dy, (4.1)

where F(u) =
∫ u

0 f (s) ds. Then (V2), (Q2), and (F2) imply that I0 ∈ C1(H1(R3),R) and

〈
I ′

0(u), v
〉

=
∫
R3

(∇u∇v + V0uv) dx +
∫
R3

φu(x)uv dx

–
∫
R3

∫
R3

Q0(y)F(u(y))
|x – y|μ Q0(x)f

(
u(x)

)
v(x) dx dy. (4.2)

Through a standard proof, we can obtain the following lemma.

Lemma 4.1 Under assumptions (V2), (Q2), and (F1), if un ⇀ 0, then

lim
n→∞

∫
R3

V1(x)u2
n dx = 0, lim

n→∞

∫
R3

V1(x)unvdx = 0, ∀v ∈ H1(
R

3), (4.3)

lim
n→∞

∫
R3

∫
R3

Q1(y)F(un(y))
|x – y|μ Q0(x)F

(
un(x)

)
dx dy = 0, (4.4)

lim
n→∞

∫
R3

∫
R3

Q1(y)F(un(y))
|x – y|μ Q1(x)F

(
un(x)

)
dx dy = 0, (4.5)

lim
n→∞

∫
R3

∫
R3

Q1(y)F(un(y))
|x – y|μ Q0(x)f

(
un(x)

)
v(x) dx dy = 0, ∀v ∈ H1(

R
3), (4.6)

lim
n→∞

∫
R3

∫
R3

Q1(y)F(un(y))
|x – y|μ Q1(x)f

(
un(x)

)
v(x) dx dy = 0, ∀v ∈ H1(

R
3), (4.7)

lim
n→∞

∫
R3

∫
R3

Q0(y)F(un(y))
|x – y|μ Q1(x)f

(
un(x)

)
v(x) dx dy = 0, ∀v ∈ H1(

R
3). (4.8)
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Proof of Theorem 1.2 Lemma 2.7 implies the existence of a sequence {un} ∈ H1(R3) satis-
fying (2.15), then

I(un) → c∗,
〈
I ′(un), un

〉 → 0.

By Lemma 2.8, {un} is bounded in H1(R3). Passing to a subsequence, we have un ⇀ ũ in
H1(R3), un → ũ in Ls

loc(R3) for 2 ≤ s < 6, and un → ũ a.e. on R
3. There are two possible

cases: (i) ũ = 0; (ii) ũ �= 0.
Case (i). In this case, we have un ⇀ 0 in H1(R3), un → 0 in Ls

loc(R3), 2 ≤ s < 6, and un → 0
a.e. on R

3. Note that

‖u‖2 =
∫
R3

(|∇u|2 + V0(x)u2)dx +
∫
R3

V1(x)u2 dx, u ∈ H1(
R

3), (4.9)

I0(u) = I(u) –
1
2

∫
R3

V1(x)u2 dx

+
1
2

∫
R3

∫
R3

F(u(y))F(u(x))
|x – y|μ

[
2Q0(x)Q1(y) + Q1(x)Q1(y)

]
dx dy, (4.10)

〈
I ′

0(u), v
〉

=
〈
I ′(u), v

〉
–

∫
R3

V1(x)uv dx

+
∫
R3

∫
R3

F(u(y)f (u(x))v(x)
|x – y|μ

× [
Q1(y)Q0(x) + Q0(y)Q1(x) + Q1(x)Q1(y)

]
dx dy. (4.11)

Using (2.15), (4.3)–(4.8), (4.10), and (4.11), one has

I0(un) → c∗,
∥∥I ′

0(un)
∥∥(

1 + ‖un‖
) → 0. (4.12)

As the proof of (3.5), there exists kn ∈ Z
3, going if necessary to a subsequence, such that

∫
B1(kn)

|un|2 dx >
δ

2
> 0. (4.13)

Define vn(x) = un(x + kn), then

∫
B1(0)

|vn|2 dx >
δ

2
. (4.14)

Since V0(x), Q0(x) are 1-periodic on x, we have

I0(vn) → c∗ ∈ (0, c],
∥∥I ′

0(vn)
∥∥(

1 + ‖vn‖
) → 0.

Passing to a subsequence, we have vn ⇀ ṽ in H1(R3), vn → ṽ in Ls
loc(R3), 2 ≤ s < 6, and

vn → ṽ a.e. on R
3. Thus, (4.14) implies that ṽ �= 0. For any ϕ ∈ C∞

0 (R3), we have

〈
I ′

0(ṽ),ϕ
〉

= lim
n→∞

〈
I ′

0(vn),ϕ
〉

= 0,



Wen and Chen Boundary Value Problems  (2018) 2018:110 Page 13 of 15

then I ′
0(ṽ) = 0. It follows from Lemma 2.1 and Fatou’s lemma that

c ≥ c∗ = lim
n→∞

[
I0(vn) –

1
4
〈
I ′

0(vn), vn
〉]

= lim
n→∞

{
1
4

∫
R3

[|∇vn|2 + V0(x)v2
n
]

dx +
1
4

∫
R3

∫
R3

Q0(y)F(vn(y))
|x – y|μ Q0(x)

[
f
(
vn(x)

)
vn(x)

– 2F
(
vn(x)

)]
dx dy

}

≥ 1
4

∫
R3

[|∇ ṽ|2 + V0(x)ṽ2]dx

+
1
4

∫
R3

∫
R3

Q0(y)F(ṽ(y))
|x – y|μ Q0(x)

[
f
(
ṽ(x)

)
ṽ(x) – 2F

(
ṽ(x)

)]
dx dy

= I0(ṽ) –
1
4
〈
I ′

0(ṽ), ṽ
〉

= I0(ṽ).

This means that I0(ṽ) ≤ c. Since I ′
0(ṽ) = 0, it follows from (Q2), (V2) that

〈
I ′(ṽ), ṽ

〉
= ‖ṽ‖2 +

∫
R3

φṽ(x)ṽ2 dx –
∫
R3

∫
R3

Q(y)F(ṽ(y))
|x – y|μ Q(x)f

(
ṽ(x)

)
ṽ(x) dx dy

≤ 〈
I0(ṽ), ṽ

〉
= 0, (4.15)

which means
∫
R3

φṽ(x)ṽ2 dx –
∫
R3

∫
R3

Q(y)F(ṽ(y))
|x – y|μ Q(x)f

(
ṽ(x)

)
ṽ(x) dx dy < 0,

and then we have ṽ ∈ J . According to Lemma 2.5, there exists t0 = t(ṽ) > 0 such that t0ṽ ∈
N , and so I(t0ṽ) ≥ c. From (V2), (Q2), (4.10), and (4.11), we have

c ≥ I0(ṽ)

= I0(t0ṽ) +
1 – t4

0
4

〈
I ′

0(ṽ, ṽ)
〉
+

(1 – t2)2

4

∫
R3

[|∇ ṽ|2 + V0(x)ṽ2]dx

+
∫
R3

∫
R3

[
1 – t4

4
Q(y)F(ṽ(y))

|x – y|μ Q(x)f
(
ṽ(x)

)
ṽ(x) +

1
2

Q(y)F(tṽ(y))
|x – y|μ Q(x)F

(
tṽ(x)

)

–
1
2

Q(y)F(ṽ(y))
|x – y|μ Q(x)F

(
ṽ(x)

)]
dx dy

≥ I0(t0ṽ)

= I(t0ṽ) –
t2
0
2

∫
R3

V1(x)ṽ2 dx

+
1
2

∫
R3

∫
R3

F(t0ṽ(y))F(t0ṽ(x))
|x – y|μ

[
2Q0(x)Q1(y) + Q1(x)Q1(y)

]
dx dy

≥ I(t0ṽ) ≥ c,

which implies I(t0ṽ) = c. Let ũ = t0ṽ, then ũ ∈N and I(ũ) = c. In view of Lemma 2.9, I ′(ũ) =
0, which means ũ ∈ H1(R3) is a solution for System (1.1) with I(ũ) = infN I > 0.
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Case (ii). Following the same process as in the last part of the proof of Theorem 1.1, we
can obtain that I ′(ũ) = 0 and I(ũ) = c = infN I , which means that ũ ∈ H1(R3) is a solution
for System (1.1) with I(ũ) = infN I > 0. �

5 Conclusion
In this paper, by using the variational methods and non-Nehari manifold methods, the
existence of ground state solutions for System (1.1) are established. We consider periodic
and asymptotically periodic Schrödinger–Poisson system involving Hartree-type nonlin-
earities, and generalize some previous results.
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