RESEARCH

Open Access

Two positive solutions for quasilinear elliptic equations with singularity and critical exponents

Yanbin Sang^{1*}, Xiaorong Luo¹ and Zongyuan Zhu^{2,3}

*Correspondence: syb6662004@163.com 1 Department of Mathematics, School of Science, North University of China, Taiyuan, China Full list of author information is available at the end of the article

Abstract

In this paper, we consider the quasilinear elliptic equation with singularity and critical exponents

$$\begin{cases} -\Delta_p u - \mu \frac{|u|^{p-2}u}{|x|^p} = Q(x) \frac{|u|^{p^*(t)-2}u}{|x|^t} + \lambda u^{-s}, & \text{in } \Omega, \\ u > 0, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \end{cases}$$

where $\Delta_p = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is a *p*-Laplace operator with $1 . <math>p^*(t) := \frac{p(N-t)}{N-p}$ is a critical Sobolev–Hardy exponent. We deal with the existence of multiple solutions for the above problem by means of variational and perturbation methods.

Keywords: Quasilinear; Singularity; Critical; Sobolev-Hardy exponent

1 Introduction and preliminaries

The main goal of this paper is to consider the following singular boundary value problem:

$$\begin{cases} -\Delta_{p}u - \mu \frac{|u|^{p-2}u}{|x|^{p}} = Q(x) \frac{|u|^{p^{*}(t)-2}u}{|x|^{t}} + \lambda u^{-s}, & \text{in } \Omega, \\ u > 0, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where Ω is a bounded domain in \mathbb{R}^N , $\Delta_p = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is a *p*-Laplace operator with $1 . <math>\lambda > 0$, 0 < s < 1, $0 \le t < p$, and $0 \le \mu < \overline{\mu} := (\frac{N-p}{p})^p$. $p^*(t) := \frac{p(N-t)}{N-p}$ is a critical Sobolev–Hardy exponent, $Q(x) \in C(\overline{\Omega})$ and Q(x) is positive on $\overline{\Omega}$.

In recent years, the elliptic boundary value problems with critical exponents and singular potentials have been extensively studied [2, 6, 7, 10–23, 25, 26, 28, 30–34]. In [19], Han considered the following quasilinear elliptic problem with Hardy term and critical exponent:

$$\begin{cases} -\Delta_p u - \mu \frac{|u|^{p-2}u}{|x|^p} = Q(x)|u|^{p^*-2}u + \lambda|u|^{p-2}u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
(1.2)

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

where 1 . The existence of multiple positive solutions for (1.2) was established.Furthermore, Hsu [21] studied the following quasilinear equation:

$$\begin{cases} -\Delta_p u - \mu \frac{|u|^{p-2}u}{|x|^p} = Q(x)|u|^{p^*-2}u + \lambda f(x)|u|^{q-2}u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
(1.3)

where 1 < q < p < N. We should point out that the authors of [19, 21] both investigated the effect of Q(x). If p = 2, $\mu = 0$, and t = 0, Liao et al. [27] proved the existence of two solutions for problem (1.1) by the constrained minimizer and perturbation methods.

Compared with [2, 4, 8, 12, 19, 21, 22, 29], problem (1.1) contains the singular term λu^{-s} . Thus, the functional corresponding to (1.1) is not differentiable on $W_0^{1,p}(\Omega)$. We will remove the singularity by the perturbation method. Our idea comes from [24, 27].

Definition 1.1 A function $u \in W_0^{1,p}(\Omega)$ is a weak solution of problem (1.1) if, for every $\varphi \in W_0^{1,p}(\Omega)$, there holds

$$\int_{\Omega} \left(|\nabla u|^{p-2} \nabla u \nabla \varphi - \mu \frac{|u|^{p-2} u \varphi}{|x|^p} \right) dx = \int_{\Omega} \left(\frac{Q(x)(u^+)^{p^*(t)-1} \varphi}{|x|^t} + \lambda (u^+)^{-s} \varphi \right) dx.$$

The energy functional corresponding to (1.1) is defined by

$$I_{\lambda,\mu}(u) = \frac{1}{p} \int_{\Omega} \left(|\nabla u|^p - \mu \frac{|u|^p}{|x|^p} \right) dx - \frac{1}{p^*(t)} \int_{\Omega} Q(x) \frac{(u^+)^{p^*(t)}}{|x|^t} dx - \frac{\lambda}{1-s} \int_{\Omega} (u^+)^{1-s} dx.$$

Throughout this paper, Q satisfies

 $(Q_1) \quad Q(0) = Q_M = \max_{x \in \overline{\Omega}} Q(x)$ and there exists $\beta \ge p(b(\mu) - \frac{N-p}{p})$ such that

$$Q(x) - Q(0) = o(|x|^{\beta}), \quad \text{as } x \to 0,$$

where $b(\mu)$ is given in Sect. 1.

In this paper, we use the following notations:

- (i) $||u||^p = \int_{\Omega} (|\nabla u|^p \mu \frac{|u|^p}{|x|^p}) dx$ is the norm in $W_0^{1,p}(\Omega)$, and the norm in $L^p(\Omega)$ is denoted by $|\cdot|_p$;
- (ii) C, C_1, C_2, C_3, \ldots denote various positive constants;
- (iii) $u_n^+(x) = \max\{u_n, 0\}, u_n^-(x) = \max\{0, -u_n\};$
- (iv) We define

$$\partial B_r = \{ u \in W_0^{1,p}(\Omega) : ||u|| = r \}, \qquad B_r = \{ u \in W_0^{1,p}(\Omega) : ||u|| \le r \}.$$

Let *S* be the best Sobolev–Hardy constant

$$S := \inf_{u \in W_0^{1,p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} (|\nabla u|^p - \mu \frac{|u|^p}{|x|^p}) \, dx}{(\int_{\Omega} \frac{|u|^{p^*(t)}}{|x|^t} \, dx)^{\frac{p}{p^*(t)}}}.$$
(1.4)

Our main result is the following theorem.

Theorem 1.1 Suppose that (Q_1) is satisfied. Then there exists $\Lambda > 0$ such that, for every $\lambda \in (0, \Lambda)$, problem (1.1) has at least two positive solutions.

The following well-known Brézis–Lieb lemma and maximum principle will play fundamental roles in the proof of our main result.

Proposition 1.1 ([3]) Suppose that u_n is a bounded sequence in $L^p(\Omega)$ $(1 \le p < \infty)$, and $u_n(x) \to u(x)$ a.e. $x \in \Omega$, where $\Omega \subset \mathbb{R}^N$ is an open set. Then

$$\lim_{n\to\infty}\left(\int_{\Omega}|u_n|^p\,dx-\int_{\Omega}|u_n-u|^p\,dx\right)=\int_{\Omega}|u|^p\,dx.$$

Proposition 1.2 ([23]) Assume that $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary, $0 \in \Omega$, $u \in C^1(\Omega \setminus \{0\})$, $u \ge 0$, $u \ne 0$, and

$$-\Delta_p u \ge 0$$
 in Ω .

Then u > 0 in Ω .

By [22, 23], we assume that $1 , <math>0 \le t < p$, and $0 \le \mu < \overline{\mu}$. Then the limiting problem

$$\begin{cases} -\Delta_p u - \mu \frac{u^{p-1}}{|x|^p} = \frac{u^{p^*(t)-1}}{|x|^t}, & \text{in } \mathbb{R}^N \setminus \{0\}, \\ u > 0, & \text{in } \mathbb{R}^N \setminus \{0\}, \quad u \in D^{1,p}(\mathbb{R}^N) \end{cases}$$

has positive radial ground states

$$V_{\epsilon}(x) = \epsilon^{\frac{p-N}{p}} U_{p,\mu}\left(\frac{x}{\epsilon}\right) = \epsilon^{\frac{p-N}{p}} U_{p,\mu}\left(\frac{|x|}{\epsilon}\right) \quad \forall \epsilon > 0$$

that satisfy

$$\int_{\Omega} \left(\left| \nabla V_{\epsilon}(x) \right|^{p} - \mu \frac{|V_{\epsilon}(x)|^{p}}{|x|^{p}} \right) dx = \int_{\Omega} \left(\frac{|V_{\epsilon}(x)|^{p^{*}(t)}}{|x|^{t}} \right) dx = S^{\frac{N-t}{p-t}},$$

where the function $U_{p,\mu}(x) = U_{p,\mu}(|x|)$ is the unique radial solution of the above limiting problem with

$$\mathcal{U}_{p,\mu}(1) = \left(\frac{(N-t)(\overline{\mu}-\mu)}{N-p}\right)^{\frac{1}{p^*(t)-p}},$$

and

$$\begin{split} &\lim_{r \to 0^+} r^{a(\mu)} U_{p,\mu}(r) = c_1 > 0, \qquad \lim_{r \to 0^+} r^{a(\mu)+1} \left| U'_{p,\mu}(r) \right| = c_1 a(\mu) \ge 0, \\ &\lim_{r \to +\infty} r^{b(\mu)} U_{p,\mu}(r) = c_2 > 0, \qquad \lim_{r \to +\infty} r^{b(\mu)+1} \left| U'_{p,\mu}(r) \right| = c_2 b(\mu) \ge 0, \\ &c_3 \le U_{p,\mu}(r) \left(r^{\frac{a(\mu)}{\nu}} + r^{\frac{b(\mu)}{\nu}} \right)^{\nu} \le c_4, \qquad \nu := \frac{N-p}{p}, \end{split}$$

where c_i (i = 1, 2, 3, 4) are positive constants depending on N, μ , and p, and $a(\mu)$ and $b(\mu)$ are the zeros of the function

$$h(t) = (p-1)t^{p} - (N-p)t^{p-1} + \mu, \quad t \ge 0,$$

satisfying $0 \le a(\mu) < \nu < b(\mu) \le \frac{N-p}{p-1}$.

Take $\rho > 0$ small enough such that $B(0, \rho) \subset \Omega$, and define the function

$$u_{\epsilon}(x) = \eta(x)V_{\epsilon}(x) = \epsilon^{\frac{p-N}{p}}\eta(x)U_{p,\mu}\left(\frac{|x|}{\epsilon}\right),$$

where $\eta \in C_0^{\infty}(\Omega)$ is a cutoff function

$$\eta(x) = egin{cases} 1, & |x| \leq rac{
ho}{2}, \ 0, & |x| >
ho. \end{cases}$$

The following estimates hold when $\epsilon \rightarrow 0$:

$$\begin{aligned} \|u_{\epsilon}\|^{p} &= S^{\frac{N-t}{p-t}} + O(\epsilon^{b(\mu)p+p-N}), \\ \int_{\Omega} \frac{|u_{\epsilon}|^{p^{*}(t)}}{|x|^{t}} dx &= S^{\frac{N-t}{p-t}} + O(\epsilon^{b(\mu)p^{*}(t)-N+t}) \end{aligned}$$

2 Existence of the first solution of problem (1.1)

In this section, we will get the first solution which is a local minimizer in $W_0^{1,p}(\Omega)$ for (1.1).

Lemma 2.1 There exist $\lambda_0 > 0$, R, $\rho > 0$ such that, for every $\lambda \in (0, \lambda_0)$, we have

$$I_{\lambda,\mu}(u)|_{u\in\partial B_R}\geq
ho,\qquad \inf_{u\in B_R}I_{\lambda,\mu}(u)<0.$$

Proof We can deduce from Hölder's inequality that

$$\begin{split} I_{\lambda,\mu}(u) &\geq \frac{1}{p} \|u\|^p - \frac{1}{p^*(t)} Q_M S^{-\frac{p^*(t)}{p}} \|u\|^{p^*(t)} - \frac{\lambda}{1-s} C_0 \|u\|^{1-s} \\ &= \|u\|^{1-s} \bigg(\frac{1}{p} \|u\|^{-1+s+p} - \frac{1}{p^*(t)} Q_M S^{-\frac{p^*(t)}{p}} \|u\|^{-1+s+p^*(t)} - \frac{\lambda}{1-s} C_0 \bigg), \end{split}$$

where C_0 is a positive constant. Put $f(x) = \frac{1}{p}x^{-1+s+p} - \frac{1}{p^*(t)}Q_MS^{-\frac{p^*(t)}{p}}x^{-1+s+p^*(t)}$, we find that there is a constant $R = [\frac{p^*(t)S^{\frac{p^*(t)}{p}}(-1+s+p)}{pQ_M(-1+s+p^*(t))}]^{\frac{1}{p^*(t)-p}} > 0$ such that $f(R) = \max_{x>0} f(x) > 0$. Letting $\lambda_0 = \frac{(1-s)f(R)}{C_0}$, we have that there is a constant $\rho > 0$ such that $I_{\lambda,\mu}(u)|_{u\in\partial B_R} \ge \rho$ for every $\lambda \in (0, \lambda_0)$.

For given *R*, choosing $u \in B_R$ with $u^+ \neq 0$, we have

$$\lim_{r \to 0} \frac{I_{\lambda,\mu}(ru)}{r^{1-s}} = \lim_{r \to 0} \frac{\frac{1}{p} r^p \|u\|^p - \frac{\lambda r^{1-s}}{1-s} \int_{\Omega} (u^+)^{1-s} dx - \frac{r^{p^{*}(t)}}{p^{*}(t)} \int_{\Omega} Q(x) \frac{(u^+)^{p^{*}(t)}}{|x|^t} dx}{r^{1-s}}$$
$$= -\frac{\lambda}{1-s} \int_{\Omega} (u^+)^{1-s} dx < 0,$$

since $p^*(t) > p > 1 > s > 0$ for $0 \le t < p$. For all $u^+ \ne 0$ such that $I_{\lambda,\mu}(ru) < 0$ as $r \to 0$, that is, ||u|| sufficiently small, we have

$$\Gamma = \inf_{u \in B_R} I_{\lambda,\mu}(u) < 0.$$
(2.1)

The proof of Lemma 2.1 is completed.

Theorem 2.2 Problem (1.1) has a positive solution $u_1 \in W_0^{1,p}(\Omega)$ with $I_{\lambda,\mu}(u_1) < 0$ for $\lambda \in (0, \lambda_0)$, where λ_0 is defined in Lemma 2.1.

Proof By Lemma 2.1, we have

$$\frac{1}{p} \|u\|^{p} - \frac{1}{p^{*}(t)} \int_{\Omega} Q(x) \frac{(u^{+})^{p^{*}(t)}}{|x|^{t}} dx \ge \rho, \quad \forall u \in \partial B_{R},$$

$$\frac{1}{p} \|u\|^{p} - \frac{1}{p^{*}(t)} \int_{\Omega} Q(x) \frac{(u^{+})^{p^{*}(t)}}{|x|^{t}} dx \ge 0, \quad \forall u \in B_{R}.$$
(2.2)

From (2.1) we guarantee that there exists a minimizing sequence $\{u_n\} \subset B_R$ such that $\lim_{n\to\infty} I_{\lambda,\mu}(u_n) = \Gamma < 0$. Obviously, the minimizing sequence is a closed convex set in B_R . Going if necessary to a sequence still called $\{u_n\}$, there exists $u_1 \in W_0^{1,p}(\Omega)$ such that

$$\begin{cases}
 u_n \rightharpoonup u_1, & \text{in } W_0^{1,p}(\Omega), \\
 u_n \longrightarrow u_1, & \text{in } L^{p'}(\Omega, |x|^{-t}), \quad 1 \le p' < p^*(t), \\
 u_n(x) \longrightarrow u_1(x), \quad \text{a.e. in } \Omega,
 \end{cases}$$
(2.3)

and

$$\begin{cases} \nabla u_n(x) \longrightarrow \nabla u_1(x), & \text{a.e. in } \Omega, \\ \frac{|u_n|^{p-2}u_n}{|x|^{p-1}} \longrightarrow \frac{|u_1|^{p-2}u_1}{|x|^{p-1}}, & \text{in } L^{\frac{p}{p-1}}(\Omega), \\ \int_{\Omega} \frac{|u_n|^{p^*(t)-2}u_n}{|x|^t} v \, dx \longrightarrow \int_{\Omega} \frac{|u_1|^{p^*(t)-2}u_1}{|x|^t} v \, dx, \quad \forall v \in W_0^{1,p}(\Omega). \end{cases}$$

For $s \in (0, 1)$, applying Hölder's inequality, we obtain that

$$\begin{split} \int_{\Omega} (u_n^+)^{1-s} \, dx &- \int_{\Omega} (u_1^+)^{1-s} \, dx \leq \int_{\Omega} \left| \left(u_n^+ \right)^{1-s} - \left(u_1^+ \right)^{1-s} \right| \, dx \\ &\leq \int_{\Omega} \left| u_n^+ - u_1^+ \right|^{1-s} \, dx \\ &\leq \left| u_n^+ - u_1^+ \right|_p^{1-s} |\Omega|^{\frac{1+s}{p}}, \end{split}$$

thus,

$$\int_{\Omega} \left(u_n^+ \right)^{1-s} dx = \int_{\Omega} \left(u_1^+ \right)^{1-s} dx + o(1).$$
(2.4)

Let $\omega_n = u_n - u_1$, by the Brézis–Lieb lemma, one has

$$\int_{\Omega} |\nabla u_n|^p \, dx = \int_{\Omega} |\nabla \omega_n|^p \, dx + \int_{\Omega} |\nabla u_1|^p \, dx + o(1), \tag{2.5}$$

$$\int_{\Omega} Q(x) \frac{(u_n^+)^{p^*(t)}}{|x|^t} \, dx = \int_{\Omega} Q(x) \frac{(\omega_n^+)^{p^*(t)}}{|x|^t} \, dx + \int_{\Omega} Q(x) \frac{(u_1^+)^{p^*(t)}}{|x|^t} \, dx + o(1).$$
(2.6)

Noting that $||u_1||^p = |\nabla u_1|_p^p - \mu |u_1/x|_p^p$, we have that

$$\lim_{n \to \infty} (\|u_n\|^p - \|\omega_n\|^p) = \|u_1\|^p.$$

If $u_1 = 0$, then $\omega_n = u_n$, it follows that $\omega_n \in B_R$. If $u_1 \neq 0$, from (2.2), we derive that

$$\frac{1}{p} \|\omega_n\|^p - \frac{1}{p*(t)} \int_{\Omega} Q(x) \frac{(\omega_n^+)^{p^*(t)}}{|x|^t} \, dx \ge 0.$$
(2.7)

By (2.3)–(2.7), we have

$$\begin{split} \Gamma &= I_{\lambda,\mu}(u_n) + o(1) \\ &= \frac{1}{p} \|u_n\|^p - \frac{1}{p^*(t)} \int_{\Omega} Q(x) \frac{(u_n^+)^{p^*(t)}}{|x|^t} \, dx - \frac{\lambda}{1-s} \int_{\Omega} (u_n^+)^{1-s} \, dx + o(1) \\ &= I_{\lambda,\mu}(u_1) + \frac{1}{p} \|\omega_n\|^p - \frac{1}{p^*(t)} \int_{\Omega} Q(x) \frac{(\omega_n^+)^{p^*(t)}}{|x|^t} \, dx - \frac{\lambda}{1-s} \int_{\Omega} (\omega_n^+)^{1-s} \, dx + o(1) \\ &\ge I_{\lambda,\mu}(u_1) + o(1). \end{split}$$

Consequently, $\Gamma \ge I_{\lambda,\mu}(u_1)$ as $n \to \infty$. Since B_R is convex and closed, so $u_1 \in B_R$. We get that $I_{\lambda,\mu}(u_1) = \Gamma < 0$ from (2.1) and $u_1 \not\equiv 0$. It means that u_1 is a local minimizer of $I_{\lambda,\mu}$.

Now, we claim that u_1 is a solution of (1.1) and $u_1 > 0$. Letting r > 0 small enough, and for every $\varphi \in W_0^{1,p}(\Omega)$, $\varphi \ge 0$ such that $(u_1 + r\varphi) \in B_R$, one has

$$0 < I_{\lambda,\mu}(u_{1} + r\varphi) - I_{\lambda,\mu}(u_{1})$$

$$= \frac{1}{p} \|u_{1} + r\varphi\|^{p} - \frac{1}{p^{*}(t)} \int_{\Omega} Q(x) \frac{((u_{1} + r\varphi)^{+})^{p^{*}(t)}}{|x|^{t}} dx - \frac{\lambda}{1 - s} \int_{\Omega} ((u_{1} + r\varphi)^{+})^{1 - s} dx$$

$$- \frac{1}{p} \|u_{1}\|^{p} + \frac{1}{p^{*}(t)} \int_{\Omega} Q(x) \frac{(u_{1}^{+})^{p^{*}(t)}}{|x|^{t}} dx + \frac{\lambda}{1 - s} \int_{\Omega} (u_{1}^{+})^{1 - s} dx$$

$$\leq \frac{1}{p} \|u_{1} + r\varphi\|^{p} - \frac{1}{p} \|u_{1}\|^{p}.$$
(2.8)

Next we prove that u_1 is a solution of (1.1). According to (2.8), we have

$$\frac{\lambda}{1-s} \int_{\Omega} \left[\left((u_1 + r\varphi)^+ \right)^{1-s} - \left(u_1^+ \right)^{1-s} \right] dx$$

$$\leq \frac{1}{p} \left[\|u_1 + r\varphi\|^p - \|u_1\|^p \right] - \frac{1}{p^*(t)} \int_{\Omega} Q(x) \frac{\left[((u_1 + r\varphi)^+)^{p^*(t)} - (u_1^+)^{p^*(t)} \right]}{|x|^t} dx.$$

Dividing by r > 0 and taking limit as $r \rightarrow 0^+$, we have

$$\frac{\lambda}{1-s} \liminf_{r \to 0^+} \int_{\Omega} \frac{((u_1 + r\varphi)^+)^{1-s} - (u_1^+)^{1-s}}{t} dx \\
\leq \int_{\Omega} \left(|\nabla u_1|^{p-2} \nabla u_1 \nabla \varphi - \mu \frac{|u_1|^{p-2} u_1 \varphi}{|x|^p} \right) dx \\
- \int_{\Omega} Q(x) \frac{(u_1^+)^{p^*(t)-1} \varphi}{|x|^t} dx.$$
(2.9)

However,

$$\frac{\lambda}{1-s}\frac{((u_1+r\varphi)^+)^{1-s}-(u_1^+)^{1-s}}{t}=\lambda\int_{\Omega}\left((u_1+\xi r\varphi)^+\right)^{-s}\varphi\,dx,$$

where $\xi \to 0^+$ and $\lim_{r \to 0^+} ((u_1 + \xi r \varphi)^+)^{-s} \varphi = (u_1^+)^{-s} \varphi$ ($\xi \to 0^+$) a.e. $x \in \Omega$. Since $((u_1 + \xi r \varphi)^+)^{-s} \varphi \ge 0$. By Fatou's lemma, we obtain that

$$\lambda \int_{\Omega} (u_1^+)^{-s} \varphi \, dx \leq \frac{\lambda}{1-s} \liminf_{r \to 0^+} \int_{\Omega} \frac{((u_1 + r\varphi)^+)^{1-s} - (u_1^+)^{1-s}}{t} \, dx.$$

Hence, from (2.9), we obtain that

$$\int_{\Omega} \left(|\nabla u_1|^{p-2} \nabla u_1 \nabla \varphi - \mu \frac{|u_1|^{p-2} u_1 \varphi}{|x|^p} \right) dx - \lambda \int_{\Omega} \left(u_1^* \right)^{-s} \varphi \, dx$$
$$- \int_{\Omega} Q(x) \frac{(u_1^*)^{p^*(t)-1} \varphi}{|x|^t} \, dx \ge 0$$
(2.10)

for $\varphi \ge 0$. Since $I_{\lambda,\mu}(u_1) < 0$, combining with Lemma 2.1, we can derive that $u_1 \notin \partial B_R$, thus $||u_1|| < R$. There exists $\delta_1 \in (0, 1)$ such that $(1 + \theta)u_1 \in B_R$ ($|\theta| \le \delta_1$). Let $h(\theta) = I_{\lambda,\mu}((1 + \theta)u_1)$. Apparently, $h(\theta)$ attains its minimum at $\theta = 0$. Note that

$$\begin{split} h'(\theta) &= \frac{d}{d\theta} \big(I_{\lambda,\mu} (1+\theta) u_1 \big) \\ &= (1+\theta)^{p-1} \| u_1 \|^p - (1+\theta)^{p^*(t)-1} \int_{\Omega} Q(x) \frac{(u_1^+)^{p^*(t)}}{|x|^t} \, dx - \lambda (1+\theta)^{-s} \int_{\Omega} (u_1^+)^{1-s} \, dx. \end{split}$$

Furthermore,

$$h'(\theta)|_{\theta=0} = ||u_1||^p - \int_{\Omega} Q(x) \frac{(u_1^+)^{p^*(t)}}{|x|^t} \, dx - \lambda \int_{\Omega} (u_1^+)^{1-s} \, dx = 0.$$
(2.11)

Define $\Psi \in W_0^{1,p}(\Omega)$ by

$$\Psi = \left(u_1^+ + \varepsilon \psi\right)^+, \quad \text{for every } \psi \in W_0^{1,p}(\Omega) \text{ and } \varepsilon > 0,$$

where $(u_1^+ + t\psi)^+ = \max\{u_1^+ + t\psi, 0\}$. We deduce from (2.10) and (2.11) that

$$\begin{split} 0 &\leq \int_{\Omega} \left(|\nabla u_1|^{p-2} \nabla u_1 \nabla \Psi - \mu \frac{|u_1|^{p-2} u_1 \Psi}{|x|^p} \right) dx - \int_{\Omega} Q(x) \frac{(u_1^+)^{p^*(t)-1} \Psi}{|x|^t} dx \\ &\quad - \lambda \int_{\Omega} (u_1^+)^{-s} \Psi dx \\ &= \int_{\{x|u_1^++\varepsilon\psi>0\}} \left[|\nabla u_1|^{p-2} \nabla u_1 \nabla (u_1^++\varepsilon\psi) - \mu \frac{|u_1|^{p-2} u_1(u_1^++\varepsilon\psi)}{|x|^p} \right. \\ &\quad - Q(x) \frac{(u_1^+)^{p^*(t)-1} (u_1^++\varepsilon\psi)}{|x|^t} - \lambda (u_1^+)^{-s} (u_1^++\varepsilon\psi) \right] dx \\ &= \left(\int_{\Omega} - \int_{\{x|u_1^++\varepsilon\psi\le0\}} \right) \left[|\nabla u_1|^{p-2} \nabla u_1 \nabla (u_1^++\varepsilon\psi) - \mu \frac{|u_1|^{p-2} u_1(u_1^++\varepsilon\psi)}{|x|^p} dx \right] dx \end{split}$$

$$-Q(x)\frac{(u_{1}^{+})^{p^{*}(t)-1}(u_{1}^{+}+\varepsilon\psi)}{|x|^{t}} - \lambda(u_{1}^{+})^{-s}(u_{1}^{+}+\varepsilon\psi)\Big]dx$$

$$\leq ||u_{1}||^{p} - \int_{\Omega}Q(x)\frac{(u_{1}^{+})^{p^{*}(t)}}{|x|^{t}}dx - \lambda\int_{\Omega}(u_{1}^{+})^{1-s}dx + \varepsilon\int_{\Omega}\Big[|\nabla u_{1}|^{p-2}\nabla u_{1}\nabla\psi$$

$$-\mu\frac{|u_{1}|^{p-2}u_{1}\psi}{|x|^{p}} - Q(x)\frac{(u_{1}^{+})^{p^{*}(t)-1}\psi}{|x|^{t}} - \lambda(u_{1}^{+})^{-s}\psi\Big]dx$$

$$-\int_{\{x|u_{1}^{+}+\varepsilon\psi\leq0\}}\Big[|\nabla u_{1}|^{p-2}\nabla u_{1}\nabla(u_{1}^{+}+\varepsilon\psi) - \mu\frac{|u_{1}|^{p-2}u_{1}(u_{1}^{+}+\varepsilon\psi)}{|x|^{p}}\Big]dx$$

$$+\int_{\{x|u_{1}^{+}+\varepsilon\psi\leq0\}}\Big[Q(x)\frac{(u_{1}^{+})^{p^{*}(t)-1}(u_{1}^{+}+\varepsilon\psi)}{|x|^{t}} + \lambda(u_{1}^{+})^{-s}(u_{1}^{+}+\varepsilon\psi)\Big]dx$$

$$\leq \varepsilon\int_{\Omega}\Big[|\nabla u_{1}|^{p-2}\nabla u_{1}\nabla\psi - \mu\frac{|u_{1}|^{p-2}u_{1}\psi}{|x|^{p}} - Q(x)\frac{(u_{1}^{+})^{p^{*}(t)-1}\psi}{|x|^{t}} - \lambda(u_{1}^{+})^{-s}\psi\Big]dx$$

$$-\varepsilon\int_{\{x|u_{1}^{+}+\varepsilon\psi\leq0\}}\Big[|\nabla u_{1}|^{p-2}\nabla u_{1}\nabla\psi - \mu\frac{|u_{1}|^{p-1}u_{1}\psi}{|x|^{p}}\Big]dx.$$
(2.12)

Since the measure of $\{x \mid u_1^+ + \varepsilon \psi \le 0\} \to 0$ as $\varepsilon \to 0$, we have

$$\lim_{\varepsilon \to 0} \int_{\{x|u_1^+ + \varepsilon \psi \le 0\}} \left[|\nabla u_1|^{p-2} \nabla u_1 \nabla \psi - \mu \frac{|u_1|^{p-2} u_1 \psi}{|x|^p} \right] dx = 0.$$

Dividing by ε and letting $\varepsilon \to 0^+$ in (2.12), we deduce that

$$\int_{\Omega} \left[|\nabla u_1|^{p-2} \nabla u_1 \nabla \psi - \mu \frac{|u_1|^{p-2} u_1 \psi}{|x|^p} - Q(x) \frac{(u_1^+)^{p^*(t)-1}}{|x|^t} \psi - \lambda (u_1^+)^{-s} \psi \right] dx \ge 0.$$

Since $\psi \in W_0^{1,p}(\Omega)$ is arbitrary, replacing ψ with $-\psi$, we have

$$\int_{\Omega} \left[|\nabla u_1|^{p-2} \nabla u_1 \nabla \psi - \mu \frac{|u_1|^{p-2} u_1 \psi}{|x|^p} - Q(x) \frac{(u_1^+)^{p^*(t)-1} \psi}{|x|^t} - \lambda (u_1^+)^{-s} \psi \right] dx = 0, \quad \forall \psi \in W_0^{1,p}(\Omega),$$
(2.13)

which implies that u_1 is a weak solution of problem (1.1). Putting the test function $\psi = u_1^-$ in (2.13), we obtain that $u_1 \ge 0$. Noting that $I_{\lambda,\mu}(u_1) = \Gamma < 0$, then $u_1 \ne 0$. In terms of the maximum principle, we have that $u_1 > 0$, a.e. $x \in \Omega$.

The proof of Theorem 2.2 is completed.

3 Existence of a solution of the perturbation problem

In order to find another solution, we consider the following problem:

$$\begin{cases} -\Delta_p u - \mu \frac{|u|^{p-2}u}{|x|^p} = Q(x) \frac{(u^+)^{p^*(t)-1}}{|x|^t} + \lambda (u^+ + \gamma)^{-s}, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \end{cases}$$
(3.1)

where $\gamma > 0$ is small. The solution of (3.1) is equivalent to the critical point of the following C^1 -functional on $W_0^{1,p}(\Omega)$:

$$I_{\gamma}(u) = \frac{1}{p} \|u\|^{p} - \frac{1}{p^{*}(t)} \int_{\Omega} Q(x) \frac{(u^{+})^{p^{*}(t)}}{|x|^{t}} dx - \frac{\lambda}{1-s} \int_{\Omega} \left[\left(u^{+} + \gamma\right)^{1-s} - \gamma^{1-s} \right] dx.$$

For every $\varphi \in W_0^{1,p}(\Omega)$, the definition of weak solution $u \in W_0^{1,p}(\Omega)$ gives that

$$\int_{\Omega} \left(|\nabla u|^{p-2} \nabla u \nabla \varphi - \mu \frac{|u|^{p-2} u \varphi}{|x|^p} \right) - \lambda \int_{\Omega} \left(u^+ + \gamma \right)^{-s} \varphi - \int_{\Omega} Q(x) \frac{(u^+)^{p^*(t)-1} \varphi}{|x|^t} = 0.$$
(3.2)

Lemma 3.1 For $R, \rho > 0$, suppose that $\lambda < \lambda_0$, then I_{γ} satisfies the following properties:

- (i) $I_{\gamma}(u) \ge \rho > 0$ for $u \in \partial B_R$;
- (ii) There exists $u_2 \in W_0^{1,p}(\Omega)$ such that $||u_2|| > R$ and $I_{\gamma}(u_2) < \rho$,

where R, ρ , and λ_0 are given in Lemma 2.1.

Proof (i) By the subadditivity of t^{1-s} , we have

$$\left(u^{+}+\gamma\right)^{1-s}-\gamma^{1-s}\leq\left(u^{+}\right)^{1-s},\quad\forall u\in W_{0}^{1,p}(\Omega),$$
(3.3)

which leads to

$$I_{\gamma}(u) \ge I_{\lambda,\mu}(u), \quad \forall u \in W_0^{1,p}(\Omega).$$

Hence, if $\lambda < \lambda_0$ for $\rho, \lambda_0 > 0$, we can obtain the conclusion from Lemma 2.1. (ii) $\forall u^+ \in W_0^{1,p}(\Omega), u^+ \neq 0$ and r > 0, which yields

$$\begin{split} I_{\gamma}(ru) &= \frac{r^{p}}{p} \|u\|^{p} - r^{p^{*}(t)} \int_{\Omega} Q(x) \frac{(u^{+})^{p^{*}(t)}}{|x|^{t}} \, dx - \frac{\lambda}{1-s} \int_{\Omega} \left[\left(ru^{+} + \gamma \right)^{1-s} - \gamma^{1-s} \right] dx \\ &\leq \frac{r^{p}}{p} \|u\|^{p} - r^{p^{*}(t)} \int_{\Omega} Q(x) \frac{(u^{+})^{p^{*}(t)}}{|x|^{t}} \, dx \\ &\to -\infty \quad (r \to +\infty). \end{split}$$

Therefore, there exists u_2 such that $||u_2|| > R$ and $I_{\gamma}(u_2) < \rho$.

This completes the proof of Lemma 3.1.

Lemma 3.2 Assume that $0 < \gamma < 1$. Then I_{γ} satisfies the $(PS)_c$ condition with $c < \frac{(p-t)}{p(N-t)} \frac{S^{\frac{N-t}{p-t}}}{Q_M^{\frac{p-t}{p}}} - D\lambda^{\frac{p}{p+s-1}}$, where

$$D = \frac{p+s-1}{p} \left\{ \left(\frac{1}{1-s} + \frac{N-p}{p(N-t)} \right) C_2 \left[\frac{p}{(N-t)(1-s)} \right]^{\frac{s-1}{p}} \right\}^{\frac{p}{p+s-1}}.$$

Proof Choose $\{\tau_n\} \subset W_0^{1,p}(\Omega)$ satisfying

$$I_{\gamma}(\tau_n) \to c, \text{ and } I'_{\gamma}(\tau_n) \to 0 \quad (n \to \infty).$$
 (3.4)

We assert that $\{\tau_n\}$ is bounded in $W_0^{1,p}(\Omega)$. Otherwise, we assume that $\lim_{n\to\infty} \|\tau_n\| \to \infty$. By (3.4), we have

$$\begin{split} c &= I_{\gamma}(\tau_{n}) - \frac{1}{p^{*}(t)} \langle I_{\gamma}'(\tau_{n}), \tau_{n} \rangle + o(1) \\ &= \frac{1}{p} \|\tau_{n}\|^{p} - \frac{1}{p^{*}(t)} \int_{\Omega} Q(x) \frac{(\tau_{n}^{+})^{p^{*}(t)}}{|x|^{t}} dx - \frac{\lambda}{1-s} \int_{\Omega} \left[(\tau_{n}^{+} + \gamma)^{1-s} - \gamma^{1-s} \right] dx \\ &- \frac{1}{p^{*}(t)} \|\tau_{n}\|^{p} + \frac{1}{p^{*}(t)} \int_{\Omega} Q(x) \frac{(\tau_{n}^{+})^{p^{*}(t)-1}\tau_{n}}{|x|^{t}} dx + \frac{\lambda}{p^{*}(t)} \int_{\Omega} (\tau_{n}^{+} + \gamma)^{-s}\tau_{n} dx + o(1) \\ &= \left(\frac{1}{p} - \frac{1}{p^{*}(t)}\right) \|\tau_{n}\|^{p} - \frac{\lambda}{1-s} \int_{\Omega} \left[(\tau_{n}^{+} + \gamma)^{1-s} - \gamma^{-s} \right] dx \\ &+ \frac{\lambda}{p^{*}(t)} \int_{\Omega} (\tau_{n}^{+} + \gamma)^{-s}\tau_{n} dx + o(1) \\ &\geq \frac{p-t}{p(N-t)} \|\tau_{n}\|^{p} - \lambda \left(\frac{1}{1-s} + \frac{1}{p^{*}(t)}\right) \int_{\Omega} |\tau_{n}|^{1-s} dx + o(1) \\ &\geq \frac{p-t}{p(N-t)} \|\tau_{n}\|^{p} - \lambda \left(\frac{1}{1-s} + \frac{1}{p^{*}(t)}\right) C_{1} \|\tau_{n}\|^{1-s} + o(1). \end{split}$$

The last inequality is absurd thanks to 0 < 1 - s < 1. That is, $\{\tau_n\}$ is bounded in $W_0^{1,p}(\Omega)$. Hence, up to a sequence, there exists a subsequence, still called $\{\tau_n\}$. We assume that there exists $\{\tau_1\} \in W_0^{1,p}(\Omega)$ such that

$$\begin{cases} \tau_n \rightharpoonup \tau_1, & \text{in } W_0^{1,p}(\Omega), \\ \tau_n \longrightarrow \tau_1, & \text{in } L^p(\Omega, |x|^{-t}), \\ \tau_n(x) \longrightarrow \tau_1(x), & \text{a.e. in } \Omega, \\ |\tau_n(x)| \le h(x), & \text{a.e. in } \Omega \text{ for all } n \text{ with } h(x) \in L^1(\Omega). \end{cases}$$

Since

$$\left|(\tau_n-\tau_1)(\tau_n^++\gamma)^{-s}\right|\leq \gamma^{-s}(h+|\tau_1|),$$

it follows from the dominated convergence theorem that

$$\lim_{n\to\infty}\int_{\Omega}(\tau_n-\tau_1)\big(\tau_n^++\gamma\big)^{-s}\,dx=0.$$

Furthermore, by $|\tau_1|(\tau_n^+ + \gamma)^{-s} \le |\tau_1|\gamma^{-s}$, and applying the dominated convergence theorem again, we have

$$\lim_{n\to\infty}\int_{\Omega}(\tau_n^++\gamma)^{-s}\tau_1\,dx=\int_{\Omega}(\tau_1^++\gamma)^{-s}\tau_1\,dx.$$

Thus, we deduce that

$$\lim_{n\to\infty}\int_{\Omega} \left(\tau_n^++\gamma\right)^{-s} \tau_n \, dx = \int_{\Omega} \left(\tau_1^++\gamma\right)^{-s} \tau_1 \, dx.$$

Now we prove that $\tau_n \to \tau_1$ strongly in $W_0^{1,p}(\Omega)$. Set $\omega_n = \tau_n - \tau_1$. Since $I'_{\lambda,\mu}(\tau_n) \to 0$ in $(W_0^{1,p}(\Omega))^*$, we have

$$\|\tau_n\|^p - \int_{\Omega} Q(x) \frac{(\tau_n^+)^{p^*(t)-1}\tau_n}{|x|^t} dx - \lambda \int_{\Omega} (\tau_n^+ + \gamma)^{-s} \tau_n dx = o(1).$$

According to the Brézis–Lieb lemma, together with (3.4), we have

$$\begin{split} \|\omega_n\|^p + \|\tau_1\|^p &- \int_{\Omega} Q(x) \frac{(\omega_n^+)^{p^*(t)-1} \omega_n}{|x|^t} \, dx - \int_{\Omega} Q(x) \frac{(\tau_1^+)^{p^*(t)-1} \tau_1}{|x|^t} \, dx \\ &- \lambda \int_{\Omega} (\tau_1^+ + \gamma)^{-s} \tau_1 \, dx = o(1), \end{split}$$

and

$$\lim_{n\to\infty} \langle I'_{\gamma}(\tau_n), \tau_1 \rangle = \|\tau_1\|^p - \int_{\Omega} Q(x) \frac{(\tau_1^+)^{p^*(t)-1}\tau_1}{|x|^t} \, dx - \lambda \int_{\Omega} (\tau_1^+ + \gamma)^{-s} \tau_1 \, dx = 0.$$

Thus

$$\begin{split} \lim_{n \to \infty} \|\omega_n\|^p &= \lim_{n \to \infty} \int_{\Omega} Q(x) \frac{(\omega_n^+)^{p^*(t)-1} \omega_n}{|x|^t} \, dx = l, \\ \int_{\Omega} \frac{|\omega_n|^{p^*(t)}}{|x|^t} \, dx &\geq \int_{\Omega} \frac{Q(x)}{Q_M} \frac{|\omega_n|^{p^*(t)}}{|x|^t} \, dx \geq \int_{\Omega} \frac{Q(x)}{Q_M} \frac{(\omega_n^+)^{p^*(t)-1} \omega_n}{|x|^t} \, dx. \end{split}$$

Sobolev's inequality implies that

$$\|\omega_n\|^p \ge S\left(\int_{\Omega} \frac{|\omega_n|^{p^*(t)}}{|x|^t} dx\right)^{\frac{p}{p^*(t)}}.$$

Consequently, $l \ge S(\frac{l}{Q_M})^{\frac{p}{p^*(l)}}$. We guarantee that l = 0. Otherwise, we suppose that

$$l \ge \frac{S^{\frac{N-t}{p-t}}}{Q_M^{\frac{N-p}{p-t}}}.$$

It follows that

$$\begin{split} c &= I_{\gamma}(\tau_{n}) - \frac{1}{p^{*}(t)} \langle I_{\gamma}'(\tau_{n}), \tau_{n} \rangle + o(1) \\ &= \frac{(p-t)}{p(N-t)} \|\tau_{n}\|^{p} - \frac{\lambda}{1-s} \int_{\Omega} \left[\left(\tau_{n}^{+} + \gamma\right)^{1-s} - \gamma^{-s} \right] dx + \frac{\lambda}{p^{*}(t)} \int_{\Omega} \left(\tau_{n}^{+} + \gamma\right)^{-s} \tau_{n} dx + o(1) \\ &\geq \frac{(p-t)}{p(N-t)} \frac{S^{\frac{N-t}{p-t}}}{Q_{M}^{\frac{N-p}{p-t}}} + \frac{p-t}{p(N-t)} \|\tau_{1}\|^{p} - \lambda \left(\frac{1}{1-s} + \frac{1}{p^{*}(t)}\right) \int_{\Omega} |\tau_{n}|^{1-s} dx + o(1) \\ &\geq \frac{(p-t)}{p(N-t)} \frac{S^{\frac{N-t}{p-t}}}{Q_{M}^{\frac{N-p}{p-t}}} + \frac{p-t}{p(N-t)} \|\tau_{1}\|^{p} - \lambda \left(\frac{1}{1-s} + \frac{1}{p^{*}(t)}\right) C_{2} \|\tau_{1}\|^{1-s} + o(1) \end{split}$$

$$\geq \frac{(p-t)}{p(N-t)} \frac{S^{\frac{N-t}{p-t}}}{Q_M^{\frac{N-p}{p-t}}} - D\lambda^{\frac{p}{p+s-1}},$$

which contradicts the condition of Lemma 3.2. Hence l = 0. Therefore $\tau_n \rightarrow \tau_1$.

This proof of Lemma 3.2 is finished.

Lemma 3.3 For 0 < s < 1 and $\lambda > 0$ small enough, there exists $u_2 \in W_0^{1,p}(\Omega)$ such that

$$\sup_{t\geq 0} I_{\lambda,\mu}(tu_2) \leq \frac{(p-t)}{p(N-t)} \frac{S^{\frac{N-t}{p-t}}}{Q_M^{\frac{N-p}{p-t}}} - D\lambda^{\frac{p}{p-1+s}},$$
(3.5)

where *D* is defined in Lemma 3.2.

Proof For every $r \ge 0$, we have

$$I_{\gamma}(ru_{\epsilon}) = \frac{r^{p}}{p} \|u_{\epsilon}\|^{p} - \frac{r^{p^{*}(t)}}{p^{*}(t)} \int_{\Omega} Q(x) \frac{(u_{\epsilon}^{+})^{p^{*}(t)}}{|x|^{t}} dx - \frac{\lambda}{1-s} \int_{\Omega} \left[\left(ru_{\epsilon}^{+} + \gamma \right)^{1-s} - \gamma^{1-s} \right] dx,$$

which implies that there exists a positive constant ϵ_0 such that

$$\lim_{r\to 0} I_{\gamma}(ru_{\epsilon}) = 0, \quad \forall \epsilon \in (0, \epsilon_0),$$

and

$$\lim_{r\to+\infty} I_{\gamma}(ru_{\epsilon}) = -\infty, \quad \forall \epsilon \in (0, \epsilon_0),$$

where u_{ϵ} is defined in Sect. 1. Let

$$A_{\epsilon}(r) = \frac{r^{p}}{p} \|u_{\epsilon}\|^{p} - \frac{r^{p^{*}(t)}}{p^{*}(t)} \int_{\Omega} Q(x) \frac{(u_{\epsilon}^{+})^{p^{*}(t)}}{|x|^{t}} dx;$$
$$B_{\epsilon}(r) = -\frac{1}{1-s} \int_{\Omega} \left[\left(ru_{\epsilon}^{+} + \gamma \right)^{1-s} - \gamma^{1-s} \right] dx,$$

because of $\lim_{r\to\infty} A_{\epsilon}(r) = -\infty$, $A_{\epsilon}(0) = 0$, and $\lim_{r\to 0^+} A_{\epsilon}(r) > 0$, so $A_{\epsilon}(r)$ attains its maximum at some positive number. In fact, we let

$$A_{\epsilon}'(r) = r^{p-1} \|u_{\epsilon}\|^{p} - r^{p^{*}(t)-1} \int_{\Omega} Q(x) \frac{(u_{\epsilon}^{+})^{p^{*}(t)}}{|x|^{t}} \, dx = 0,$$

therefore

$$r = \left(\frac{\|u_{\epsilon}\|^p}{\int_{\Omega} Q(x) \frac{(u_{\epsilon}^+)^{p^*(t)}}{|x|^t} dx}\right)^{\frac{1}{p^*(t)-p}} := T_{\epsilon}.$$

Noting that $A'_{\epsilon}(r) > 0$ for every $0 < r < T_{\epsilon}$ and $A'_{\epsilon}(r) < 0$ for every $r > T_{\epsilon}$, our claim is proved. Thus, the properties of $I_{\gamma}(ru_{\epsilon})$ at r = 0 and $r = +\infty$ tell us that $\sup_{r \ge 0} I_{\gamma}(ru_{\epsilon})$ is attained for some $r_{\epsilon} > 0$. From condition (Q_1) , we have

$$\left|\int_{\Omega}Q(x)\frac{u_{\epsilon}^{p^{*}(t)}}{|x|^{t}}\,dx-\int_{\Omega}Q_{M}\frac{u_{\epsilon}^{p^{*}(t)}}{|x|^{t}}\,dx\right|\leq\int_{\Omega}\left|Q(x)-Q(0)\right|\frac{u_{\epsilon}^{p^{*}(t)}}{|x|^{t}}\,dx=O\big(\epsilon^{\beta}\big).$$

It follows that

$$\int_{\Omega} Q(x) \frac{u_{\epsilon}^{p^{*}(t)}}{|x|^{t}} \, dx = Q(0) S^{\frac{N-t}{p-t}} + O(\epsilon^{b(\mu)p^{*}(t)-N+t}) + O(\epsilon^{\beta}). \tag{3.6}$$

By (3.6), we deduce that

$$\begin{aligned} A_{\epsilon}(T_{\epsilon}) &= \frac{1}{p} \Biggl[\frac{\|u_{\epsilon}\|^{p}}{\int_{\Omega} Q(x) \frac{u_{\epsilon}^{p^{*}(t)}}{|x|^{t}} dx} \Biggr]^{\frac{p}{p^{*}(t)-p}} \|u_{\epsilon}\|^{p} \\ &- \frac{1}{p^{*}(t)} \Biggl[\frac{\|u_{\epsilon}\|^{p}}{\int_{\Omega} Q(x) \frac{u_{\epsilon}^{p^{*}(t)}}{|x|^{t}} dx} \Biggr]^{\frac{p^{*}(t)}{p^{*}(t)-p}} \int_{\Omega} Q(x) \frac{u_{\epsilon}^{p^{*}(t)}}{|x|^{t}} dx \\ &= \frac{p-t}{p(N-t)} \Biggl[\frac{\|u_{\epsilon}\|^{p}}{\int_{\Omega} Q(x) \frac{u_{\epsilon}^{p^{*}(t)}}{|x|^{t}} dx} \Biggr]^{\frac{p}{p^{*}(t)-p}} \|u_{\epsilon}\|^{p} \\ &\leq \frac{p-t}{p(N-t)} \frac{S^{\frac{N-t}{p-t}}}{(Q(0))^{\frac{N-p}{p-t}}} + O(\epsilon^{b(\mu)p+p-N}) + O(\epsilon^{\beta}). \end{aligned}$$
(3.7)

Next, we will estimate B_{ϵ} . Here, we use the following inequality from [24, 27]:

$$x^{1-s} - (x+y)^{1-s} \le -(1-s)y^{\frac{1-s}{4}}x^{\frac{3(1-s)}{4}}, \quad 0 < x < y.$$
(3.8)

Observe from (3.8) that

$$B_{\epsilon}(r_{\epsilon}) \leq \frac{1}{1-s} \int_{\{x \mid |x| \leq \epsilon} \frac{1-s}{2p} \left[\gamma^{1-s} - (r_{\epsilon}u_{\epsilon} + \gamma)^{1-s} \right] dx$$

$$\leq -C_{3} \int_{\{x \mid |x| \leq \epsilon} \frac{1-s}{2p} (r_{\epsilon}u_{\epsilon})^{\frac{1-s}{4}} dx$$

$$\leq -C_{3} \int_{\{x \mid |x| \leq \epsilon} \frac{1-s}{2p} (r_{\epsilon}u_{\epsilon})^{\frac{1-s}{4}} dx$$

$$\leq -C_{4} \int_{0}^{\epsilon} \frac{1-s-2p}{(\epsilon^{-\frac{N-p}{p}} U_{p,\mu}(y))} \left[e^{-\frac{N-p}{p}} U_{p,\mu}(y) \right]^{\frac{1-s}{4}} y^{N-1} \epsilon^{N} dy$$

$$\leq -C_{5} \epsilon^{-\frac{(N-p)(1-s)}{4p} + N} \int_{0}^{\epsilon} \frac{1-s-2p}{2p} y^{-b(\mu)p+N-1} dy$$

$$\leq -C_{5} \begin{cases} \epsilon^{-\frac{(N-p)(1-s)}{4p} + N} \int_{0}^{\epsilon^{\frac{1-s-2p}{2p}}} y^{-b(\mu)p+N-1} dy$$

$$\leq -C_{5} \begin{cases} \epsilon^{-\frac{(N-p)(1-s)}{4p} + N} |\ln \epsilon|, & b(\mu) > \frac{N}{p}, \\ \epsilon^{-\frac{(N-p)(1-s)}{4p} + N + \frac{(1-s-2p)(-b(\mu)p+N)}{2p}, & b(\mu) < \frac{N}{p}. \end{cases}$$
(3.9)

 I_{γ}

From (3.7) and (3.9), we find that there exists a positive constant λ_0 such that, for every $\lambda \in (0, \lambda_0)$, one has

$$\begin{split} (r_{\epsilon} u_{\epsilon}) &= A_{\epsilon}(r_{\epsilon}) + \lambda B_{\epsilon}(r_{\epsilon}) \\ &\leq \frac{p-t}{p(N-p)} \frac{S^{\frac{N-t}{p-t}}}{Q_{M}^{\frac{N-p}{p-t}}} + O(\epsilon^{b(\mu)p-N+p}) + O(\epsilon^{\beta}) \\ &\quad - C_{5} \begin{cases} \epsilon^{-\frac{(N-p)(1-s)}{4p}+N}, & b(\mu) > \frac{N}{p}, \\ \epsilon^{-\frac{(N-p)(1-s)}{4p}+N} |\ln \epsilon|, & b(\mu) = \frac{N}{p}, \\ \epsilon^{-\frac{(N-p)(1-s)}{4p}+N+\frac{(1-s-2p)(-b(\mu)p+N)}{2p}}, & b(\mu) < \frac{N}{p}, \end{cases} \\ &< \frac{p-t}{p(N-p)} \frac{S^{\frac{N-t}{p-t}}}{Q_{M}^{\frac{N-p}{p-t}}} - D\lambda^{\frac{p}{p+s-1}}. \end{split}$$

This completes the proof of Lemma 3.3.

Theorem 3.4 For $0 < \gamma < 1$, there is $\lambda^* > 0$ such that $\lambda \in (0, \lambda^*)$, problem (3.1) admits a positive solution $\tau_{\gamma} \in W_0^{1,p}(\Omega)$ satisfying $I_{\gamma}(\tau_{\gamma}) > \rho$, where ρ is given in Lemma 2.1.

Proof Let $\lambda^* = \min{\{\lambda_0, \widetilde{\lambda}_0\}}$, then Lemmas 3.1–3.3 hold for $0 < \lambda < \lambda^*$. Based on Lemma 3.1, we know that I_{γ} satisfies the geometry of the mountain pass lemma [1]. Therefore, there is a sequence $\{\tau_n\} \subset W_0^{1,p}(\Omega)$ such that

$$I_{\gamma}(\tau_n) \to c_{\gamma} > \rho > 0, \qquad I'_{\gamma}(\tau_n) \to 0,$$
(3.10)

where

$$c_{\gamma} = \inf_{\phi \in \Phi} \max_{r \in [0,1]} I_{\gamma}(\phi(r)),$$

$$\Phi = \left\{ \phi \in C([0,1], W_0^{1,p}(\Omega)) : \phi(0) = 0, \phi(1) = u_2 \right\}.$$

So, according to Lemmas 3.1 and 3.3, one has

$$0 < \rho < c_{\gamma} \le \max_{r \in [0,1]} I_{\gamma}(ru_{2}) \le \sup_{r \ge 0} I_{\gamma}(ru_{2})$$

$$< \frac{p-t}{p(N-p)} \frac{S^{\frac{N-t}{p-t}}}{Q_{M}^{\frac{N-p}{p-t}}} - D\lambda^{\frac{p}{p+s-1}}.$$
(3.11)

From Lemma 3.2, note that $\{\tau_n\}$ has a convergent subsequence, still denoted by $\{\tau_n\}$ ($\{\tau_n\} \subset W_0^{1,p}(\Omega)$). Assume that $\lim_{n\to\infty} \tau_n = \tau_{\gamma}$ in $W_0^{1,p}(\Omega)$. Hence, combining (3.10) and (3.11), we have

$$I_{\gamma}(\tau_{\gamma}) = \lim_{n \to \infty} I_{\gamma}(\tau_n) = c_{\gamma} > \rho > 0,$$

which implies that $\tau_{\gamma} \neq 0$. By the continuity of I'_{γ} , we know that τ_{γ} is a solution of (3.1). Furthermore, $\tau_{\gamma} \geq 0$. Hence, applying the strong maximum principle, we obtain that τ_{γ} is a positive solution of (3.1).

4 Existence of the second solution of problem (1.1)

Theorem 4.1 For $\lambda \in (0, \lambda^*)$, problem (1.1) possesses a positive solution τ_1 satisfying $I_{\lambda,\mu}(\tau_1) > 0$, where λ^* is given in Theorem 3.4.

Proof Let $\{\tau_{\gamma}\}$ be a family of positive solutions of (1.1), we will show that $\{\tau_{\gamma}\}$ has a uniform lower bound. Indeed, we denote

$$d(r) = r^{p^*(t)-1} + \frac{\lambda}{(r+p-1)^s};$$

case (i) $0 < r < 1$, $d(r) \ge \frac{\lambda}{(1+p-1)^s} = \frac{\lambda}{p^s};$
case (ii) $r \ge 1$, $d(r) \ge 1$.

Therefore, for every $\gamma \in (0, 1)$, $r \ge 0$, we get

$$r^{p^*(t)-1} + \frac{\lambda}{(r+\gamma)^s} \ge r^{p^*(t)-1} + \frac{\lambda}{(r+p-1)^s} \ge \min\left\{1, \frac{\lambda}{p^s}\right\}.$$

Recall that *e* is a weak solution of the following problem:

$$\begin{cases} -\Delta_p u - \mu \frac{|u|^{p-2}u}{|x|^p} = 1, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \end{cases}$$

so e(x) > 0 in Ω . According to the comparison principle, we have

$$\tau_{\gamma} \ge \min\{1, Q_m\} \min\left\{1, \frac{\lambda}{p^s}\right\} e > 0, \tag{4.1}$$

where $Q_m = \min_{x \in Q} Q(x) > 0$. Since $\{\tau_{\gamma}\}$ are solutions of problem (3.1), one has

$$\|\tau_{\gamma}\|^{p} - \int_{\Omega} Q(x) \frac{\tau_{\gamma}^{p^{*}(t)}}{|x|^{t}} dx - \lambda \int_{\Omega} (\tau_{\gamma} + \gamma)^{-s} \tau_{\gamma} dx = 0.$$

$$(4.2)$$

Combining with (3.3), (4.2), and Theorem 3.4, we have

$$\begin{split} \frac{p-t}{p(N-p)} & \frac{S^{\frac{N-t}{p-t}}}{Q_M^{\frac{N-p}{p-t}}} - D\lambda^{\frac{p}{p+s-1}} \\ > & I_{\gamma}(\tau_{\gamma}) - \frac{1}{p^*(t)} \langle I_{\gamma}'(\tau_{\gamma}), \tau_{\gamma} \rangle \\ &= \frac{p-t}{p(N-t)} \|\tau_{\gamma}\|^p + \frac{\lambda}{p^*(t)} \int_{\Omega} (\tau_{\gamma} + \gamma)^{-s} \tau_{\gamma} \, dx - \frac{\lambda}{1-s} \int_{\Omega} \left[(\tau_{\gamma} + \gamma)^{1-s} - \gamma^{1-s} \right] dx \\ &\geq \frac{p-t}{p(N-t)} \|\tau_{\gamma}\|^p - \frac{\lambda}{1-s} \int_{\Omega} \left[(\tau_{\gamma} + \gamma)^{1-s} - \gamma^{1-s} \right] dx \\ &= \frac{p-t}{p(N-t)} \|\tau_{\gamma}\|^p - \frac{\lambda C_6}{1-s} \|\tau_{\gamma}\|^{1-s}, \end{split}$$

since $s \in (0, 1)$, so $\{\tau_{\gamma}\}$ is bounded in $W_0^{1,p}(\Omega)$. Going if necessary to a subsequence, also called $\{\tau_{\gamma}\}$, there exists $\tau_1 \in W_0^{1,p}(\Omega)$ such that

$$\begin{cases} \tau_{\gamma} \rightharpoonup \tau_{1}, & \text{in } W_{0}^{1,p}(\Omega), \\ \tau_{\gamma} \longrightarrow \tau_{1}, & \text{in } L^{p'}(\Omega, |x|^{-t}), \quad 1 \le p' < p^{*}(t), \\ \tau_{\gamma}(x) \longrightarrow \tau_{1}(x), & \text{a.e. in } \Omega. \end{cases}$$

$$(4.3)$$

Now, we show that $\tau_{\gamma} \to \tau_1$ in $W_0^{1,p}(\Omega)$ as $\gamma \to 0$. Set $w_{\gamma} = \tau_{\gamma} - \tau_1$, then $||w_{\gamma}|| \to 0$ as $\gamma \to 0$; otherwise, there exists a subsequence (still denoted by w_{γ}) such that $\lim_{\gamma \to 0} ||w_{\gamma}|| = l > 0$. Since $0 \le \frac{\tau_{\gamma}}{(\tau_{\gamma} + \gamma)^s} \le \tau_{\gamma}^{1-s}$, applying Hölder's inequality and (4.3), we have

$$\begin{split} \int_{\Omega} \tau_{\gamma} (\tau_{\gamma} + \gamma)^{-s} \, dx &\leq \int_{\Omega} \tau_{\gamma}^{1-s} \, dx \leq \int_{\Omega} |w_{\gamma}|^{1-s} \, dx + \int_{\Omega} |\tau_{1}|^{1-s} \, dx \\ &= |w_{\gamma}|_{p}^{1-s} |\Omega|^{\frac{1+s}{p}} + \int_{\Omega} |\tau_{1}|^{1-s} \, dx \\ &\leq \int_{\Omega} |\tau_{1}|^{1-s} \, dx + o(1). \end{split}$$

Similarly,

$$\int_{\Omega} |\tau_1|^{1-s} dx \leq \int_{\Omega} \tau_{\gamma} (\tau_{\gamma} + \gamma)^{-s} dx + o(1).$$

Therefore

$$\lim_{\gamma\to 0}\int_{\Omega}\tau_{\gamma}(\tau_{\gamma}+\gamma)^{-s}\,dx=\int_{\Omega}\tau_{1}^{1-s}\,dx.$$

It follows from $\langle I'_{\gamma}(\tau_{\gamma}), \tau_{\gamma} \rangle = 0$ and the Brézis–Lieb lemma that

$$\|w_{\gamma}\|^{p} + \|\tau_{1}\|^{p} - \int_{\Omega} Q(x) \frac{w_{\gamma}^{p^{*}(t)}}{|x|^{t}} dx - \int_{\Omega} Q(x) \frac{\tau_{1}^{p^{*}(t)}}{|x|^{t}} dx - \lambda \int_{\Omega} \tau_{1}^{1-s} dx = o(1).$$
(4.4)

Note that $\tau_{\gamma} \to \tau_1$ as $\gamma \to 0^+$. Choose the test function $\varphi = \phi \in W_0^{1,p}(\Omega) \cap C_0(\Omega)$ in (3.2). Letting $\gamma \to 0^+$ and using (4.1), we deduce that $\tau_1 \ge \min\{1, Q_m\}\min\{1, \frac{\lambda}{p^5}\}e > 0$, and

$$\int_{\Omega} \left(|\nabla \tau_1|^{p-2} \nabla \tau_1 \nabla \phi - \mu \frac{|\tau_1|^{p-2} \tau_1 \phi}{|x|^p} \right) dx = \int_{\Omega} Q(x) \frac{\tau_1^{p^*(t)-1}}{|x|^t} \phi \, dx + \lambda \int_{\Omega} \tau_1^{-s} \phi \, dx.$$
(4.5)

We show that (4.5) holds for every $\phi \in W_0^{1,p}(\Omega)$. In fact, since $W_0^{1,p}(\Omega) \cap C_0(\Omega)$ is dense in $W_0^{1,p}(\Omega)$, then for every $\phi \in W_0^{1,p}(\Omega)$, there exists a sequence $\{\phi_n\} \subset W_0^{1,p}(\Omega) \cap C_0(\Omega)$ such that $\lim_{n\to\infty} \phi_n = \phi$. For $m, n \in \mathbb{N}^+$ large enough, replacing ϕ with $\phi_n - \phi_m$ in (4.5) yields

$$\int_{\Omega} \left(|\nabla \tau_1|^{p-2} \nabla \tau_1 \nabla (\phi_n - \phi_m) - \mu \frac{|\tau_1|^{p-2} \tau_1 |\phi_n - \phi_m|}{|x|^p} \right) dx$$

=
$$\int_{\Omega} Q(x) \frac{\tau_1^{p^*(t)}}{|x|^t} |\phi_n - \phi_m| \, dx + \lambda \int_{\Omega} \tau_1^{-s} |\phi_n - \phi_m| \, dx.$$
(4.6)

On the one hand, using $\phi_n \to \phi$ and (4.6), we have that $\{\frac{\phi_n}{\tau_1}\}$ is a Cauchy sequence in $L^p(\Omega)$, hence there exists $\nu \in L^p(\Omega)$ such that $\lim_{n\to\infty} \frac{\phi_n}{\tau_0^s} = \nu$, which implies that $\lim_{n\to\infty} \frac{\phi_n}{\tau_0^s} = \nu$ in measure. By Riesz's theorem, without loss of generality, choose a subsequence of $\{\frac{\phi_n}{\tau_0^s}\}$, still denoted by $\{\frac{\phi_n}{\tau_0^s}\}$, such that

$$\lim_{n \to \infty} \frac{\phi_n}{\tau_0^s} = \nu(x), \quad \text{a.e. } x \in \Omega.$$
(4.7)

On the other hand, from (4.7), we have that $v = \frac{\phi}{\tau_0^5}$, which leads to

$$\lim_{n\to\infty}\int_{\Omega}\frac{\phi_n(x)}{\tau_0^s}\,dx=\int_{\Omega}\frac{\phi(x)}{\tau_0^s}\,dx$$

Therefore, we deduce that (4.5) holds for $\phi \in W_0^{1,p}(\Omega)$. Setting $\phi = \tau_1$ in (4.5), we have

$$\|\tau_1\|^p - \int_{\Omega} Q(x) \frac{\tau_1^{p^*(t)}}{|x|^t} \, dx - \lambda \int_{\Omega} \tau_1^{1-s} \, dx = 0.$$
(4.8)

Together with (4.4), we obtain that

$$\|w_{\gamma}\|^{p} - \int_{\Omega} Q(x) \frac{w_{\gamma}^{p^{*}(t)}}{|x|^{t}} dx = o(1).$$
(4.9)

Hence

$$\lim_{\gamma \to 0^+} \|w_{\gamma}\|^p = \lim_{\gamma \to 0^+} \int_{\Omega} Q(x) \frac{w_{\gamma}^{p^*(t)}}{|x|^t} \, dx = l > 0.$$

Since

$$\int_{\Omega} \frac{|w_{\gamma}|^{p^{*}(t)}}{|x|^{t}} \, dx \geq \int_{\Omega} \frac{Q(x)}{Q_{M}} \frac{|w_{\gamma}|^{p^{*}(t)}}{|x|^{t}} \, dx \geq \int_{\Omega} \frac{Q(x)}{Q_{M}} \frac{(w_{\gamma}^{+})^{p^{*}(t)}}{|x|^{t}} \, dx.$$

Then $l \ge \frac{S^{\frac{N-p}{p-t}}}{Q^{\frac{N-p}{p-t}}_{M}}$. By (4.8), we have

$$I_{\lambda,\mu}(\tau_{1}) = \frac{1}{p} \|\tau_{1}\|^{p} - \frac{1}{p^{*}(t)} \int_{\Omega} Q(x) \frac{\tau_{1}^{p^{*}(t)}}{|x|^{t}} dx - \frac{\lambda}{1-s} \int_{\Omega} \tau_{1}^{1-s} dx$$

$$= \frac{p-t}{p(N-t)} \|\tau_{1}\|^{p} - \lambda \left(\frac{1}{1-s} - \frac{1}{p^{*}(t)}\right) \int_{\Omega} \tau_{1}^{1-s} dx$$

$$\geq \frac{p-t}{p(N-t)} \|\tau_{1}\|^{p} - \lambda \left(\frac{1}{1-s} + \frac{1}{p^{*}(t)}\right) C_{2} \|\tau_{1}\|^{1-s}$$

$$> -D\lambda^{\frac{p}{p+s-1}}.$$
 (4.10)

At the same time, it follows from (4.4) and (4.9) that

$$I_{\lambda,\mu}(\tau_1) = I_{\gamma}(\tau_{\gamma}) - \frac{p-t}{p(N-t)} \|w_{\gamma}\|^p + o(1)$$

$$< \frac{p-t}{p(N-t)} \left(\frac{S^{\frac{N-t}{p-t}}}{Q_M^{\frac{N-p}{p-t}}} - l \right) - D\lambda^{\frac{p}{p-1+s}}$$
$$\leq -D\lambda^{\frac{p}{p-1+s}},$$

which contradicts (4.10). Therefore, we deduce that

$$I_{\lambda,\mu}(\tau_1) = \lim_{\gamma \to 0} I_{\gamma}(\tau_{\gamma}) > \rho > 0.$$

Consequently, problem (1.1) has two different solutions u_1 and τ_1 . Furthermore, $\tau_1 \neq 0$, together with the maximum principle, we conclude that $\tau_1 > 0$ a.e. $x \in \Omega$. That is, τ_1 is a positive solution of problem (1.1).

The proof of Theorem **4**.1 is completed.

Remark 4.1 In order to apply the Brézis–Lieb lemma, we need to establish the convergence results for the sequences with gradient terms [5, 9]. Furthermore, the strong maximum principle for a *p*-Laplace operator is also used.

Acknowledgements

We would like to thank the referees for their valuable comments and suggestions to improve our paper.

Funding

This project is supported by the Natural Science Foundation of Shanxi Province (201601D011003), NSFC (11401583) and the Fundamental Research Funds for the Central Universities (16CX02051A).

Availability of data and materials

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, School of Science, North University of China, Taiyuan, China. ²School of Data Sciences, Zhejiang University of Finance and Economics, Hangzhou, China. ³China Academy of Financial Research, Zhejiang University of Finance and Economics, Hangzhou, China.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 25 November 2017 Accepted: 16 June 2018 Published online: 22 June 2018

References

- 1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
- Bouchekif, M., Messirdi, S.: On nonhomogeneous elliptic equations with critical Sobolev exponent and prescribed singularities. Taiwan. J. Math. 20(2), 431–447 (2016)
- Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)
- Cencelj, M., Repovs, D., Virk, Z.: Multiple perturbations of a singular eigenvalue problem. Nonlinear Anal. 119, 37–45 (2015)
- 5. Chen, G.W.: Quasilinear elliptic equations with Hardy terms and Hardy–Sobolev critical exponents: nontrivial solutions. Bound. Value Probl. **2015**, 1 (2015)
- Chen, S., Wang, Z.Q.: Existence and multiple solutions for a critical quasilinear equation with singular potentials. Nonlinear Differ. Equ. Appl. 22(4), 699–719 (2015)
- Chhetri, M., Drábek, P., Shivaji, R.: Analysis of positive solutions for classes of quasilinear singular problems on exterior domains. Adv. Nonlinear Anal. 6(4), 447–459 (2017)
- 8. D'Ambrosio, L., Mitidieri, E.: Quasilinear elliptic equations with critical potentials. Adv. Nonlinear Anal. 6(2), 147–164 (2017)

- 9. de Valeriola, S., Willem, M.: On some quasilinear critical problems. Adv. Nonlinear Stud. 9, 825–836 (2009)
- 10. Dhanya, R., Prashanth, S., Tiwari, S., Sreenadh, K.: Elliptic problems in ℝ^N with critical and singular discontinuous nonlinearities. Complex Var. Elliptic Equ. **61**, 1656–1676 (2016)
- Dupaigne, L., Ghergu, M., Radulescu, V.: Lane–Emden–Fowler equations with convection and singular potential. J. Math. Pures Appl. 87(6), 563–581 (2007)
- 12. Ferrara, M., Molica Bisci, G.: Existence results for elliptic problems with Hardy potential. Bull. Sci. Math. 138(7), 846–859 (2014)
- Filippucci, R., Pucci, P., Robert, F.: On a *p*-Laplace equation with multiple critical nonlinearities. J. Math. Pures Appl. 91(2), 156–177 (2009)
- Ghergu, M., Radulescu, V.: Sublinear singular elliptic problems with two parameters. J. Differ. Equ. 195(2), 520–536 (2003)
- Ghergu, M., Radulescu, V.: Multi-parameter bifurcation and asymptotics for the singular Lane–Emden–Fowler equation with a convection term. Proc. R. Soc. Edinb. A 135(1), 61–83 (2005)
- Ghergu, M., Radulescu, V.: Singular elliptic problems with lack of compactness. Ann. Mat. Pura Appl. 185(1), 63–79 (2006)
- 17. Ghergu, M., Radulescu, V.: Singular Elliptic Problems: Bifurcation and Asymptotic Analysis. Oxford Lecture Series in Mathematics and Its Applications, vol. 37. Clarendon, Oxford (2008)
- Giacomoni, J., Mukherjee, T., Sreenadh, K.: Positive solutions of fractional elliptic equation with critical and singular nonlinearity. Adv. Nonlinear Anal. 6, 327–354 (2017)
- 19. Han, P.G.: Quasilinear elliptic problems with critical exponents and Hardy terms. Nonlinear Anal. 61(5), 735–758 (2005)
- Hashizume, M.: Minimization problem on the Hardy–Sobolev inequality. Nonlinear Differ. Equ. Appl. 24(22), 1–12 (2017)
- Hsu, T.S.: Multiple positive solutions for a class of quasilinear elliptic equations involving concave-convex nonlinearities and Hardy terms. Bound. Value Probl. 2011(37), 1 (2011)
- Kang, D.: On the quasilinear elliptic problems with critical Sobolev–Hardy exponents and Hardy terms. Nonlinear Anal. 68(7), 1973–1985 (2008)
- Kang, D., Kang, Y.: Positive solutions to the weighted critical quasilinear problems. Appl. Math. Comput. 213, 432–439 (2009)
- Lei, C.Y., Liao, J.F., Tang, C.L.: Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents. J. Math. Anal. Appl. 421, 521–538 (2015)
- Li, J., Tong, Y.X.: Multiplicity of solutions for quasilinear elliptic systems with singularity. Acta Math. Appl. Sin. Engl. Ser. 31, 277–286 (2015)
- Li, Y.Y., Ruf, B., Guo, Q.Q.: Quasilinear elliptic problems with combined critical Sobolev–Hardy terms. Ann. Mat. Pura Appl. 192, 93–113 (2013)
- 27. Liao, J.F., Liu, J., Zhang, P., Tang, C.L.: Existence of two positive solutions for a class of semilinear elliptic equations with singularity and critical exponent. Ann. Pol. Math. **116**, 273–292 (2016)
- Mukherjee, T., Sreenadh, K.: Fractional elliptic equations with critical growth and singular nonlinearities. Electron. J. Differ. Equ. 2016(54), 1 (2016)
- Nursultanov, M., Rozenblum, G.: Eigenvalue asymptotics for the Sturm–Liouville operator with potential having a strong local negative singularity. Opusc. Math. 37(1), 109–139 (2017)
- 30. Sano, M., Takahashi, F.: Sublinear eigenvalue problems with singular weights related to the critical Hardy inequality. Electron. J. Differ. Equ. 2016(212), 1 (2016)
- Saoudi, K., Ghanmi, A.: A multiplicity results for a singular equation involving the p(x)-Laplace operator. Complex Var. Elliptic Equ. 5(62), 1–31 (2017)
- Sun, J., Wu, T.: Existence of nontrivial solutions for a biharmonic equation with *p*-Laplacian and singular sign-changing potential. Appl. Math. Lett. 66, 61–67 (2017)
- Wei, J.C., Yan, S.S.: Bubble solutions for an elliptic problem with critical growth in exterior domain. Nonlinear Anal. 119, 46–61 (2015)
- Xiang, C.L.: Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential. J. Differ. Equ. 259, 3929–3954 (2015)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com