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Abstract
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1 Introduction
Let � ⊂R

N (N ≥ 1) be a bounded domain with a smooth boundary ∂�. We are concerned
in this paper with a reaction–diffusion system of the following type:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – d1�u = ru(1 – u) – βuv
u+mv in � ×R+,

vt – d2�[(1 + d3
1+αu )v] = v(b – v

u ) in � ×R+,

∂νu = ∂νv = 0 on ∂� ×R+,

u(x, 0) > 0, v(x, 0) ≥, �≡ 0, in �̄,

(1.1)

where u and v represent the species densities of prey and predator, respectively; r > 0 is
the intrinsic growth rate of the prey; βuv/(u + mv) with β , m > 0 is called ratio-dependent
functional response. b > 0 is the intrinsic growth rate of the predator; di > 0 (i = 1, 2) are
the diffusion coefficients for u and v, respectively; d3 ≥ 0, d2d3 is called the cross-diffusion
coefficient; ν is the outward unit normal vector on the boundary ∂� and ∂ν = ∂/∂ν . The
homogeneous Neumann boundary condition means that (1.1) is self-contained, thus it has
no population flux across ∂�. The initial data u0(x) and v0(x) are smooth functions on �̄.
In this model, the predator v diffuses with flux

J = –∇
(

d2v +
d2d3v
1 + αu

)

= –
(

d2 +
d2d3

1 + αu

)

∇v +
αd2d3v

(1 + αu)2 ∇u.

We observe that, as αd2d3v(1 + αu)–2 ≥ 0, the part αd2d3v(1 + αu)–2∇u of the flux
is direct toward the increasing population density of the prey u. On the other hand,
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�(d2d3v/(1 + αu)) yields a nonlinear diffusion of fractional type. This nonlinear diffusion
describes a prey-predator relationship such that the diffusion of predator is prevented by
the density of prey, and α represents the prevention. For further details we refer the reader
to [1–4].

In this paper, we also study the positive solutions corresponding to the steady states of
(1.1), i.e., the following quasilinear elliptic system:

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u = ru(1 – u) – βuv
u+mv in �,

–d2�[(1 + d3
1+αu )v] = v(b – v

u ) in �,

∂νu = ∂νv = 0 on ∂�.

(1.2)

Among other things, we are interested in positive solutions of (1.2). We call (u, v) a positive
solution when u > 0 and v > 0 satisfies (1.2). Hence a positive solution is corresponding to
a coexistence steady state of prey and predator. It is easy to see that (1.2) has a semi-trivial
non-negative solution u0 = (1, 0) and a unique positive constant solution u∗ = (u∗, v∗),
where

u∗ = 1 –
βb

r(1 + bm)
, v∗ = bu∗. (1.3)

In the sequel, we always assume βb < r(1 + bm), which ensures the existence of u∗.
Consider the following predator–prey system with diffusion:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – d1�u = ug(u) – p(u, v) in � ×R+,

vt – d2�v = v(b – v
u ) in � ×R+,

∂νu = ∂νv = 0 on ∂� ×R+,

u(x, 0) > 0, v(x, 0) ≥, �≡ 0, in �̄,

(1.4)

where g(u) and p(u, v) are C1-functions. A typical case of g is the logistic type, namely,
g(u) = r(1 – u/k) with r, k > 0. p(u, v) is called the functional response and see [5–8] for
classifications of p(u, v). In recent years, there has been considerable interest in invest-
ing the system (1.4) with prey-dependent functional response (i.e., p(u, v) = f (u)v). In [9,
10], Du, Hsu and Wang investigated the global stability of the unique positive constant
steady state and gained some important conclusions about pattern formation for (1.4) with
Leslie–Gower functional response (i.e., p(u, v) = βuv for β > 0). In [11, 12], Peng and Wang
studied the long time behavior of time-dependent solutions and the global stability of the
positive constant steady state for (1.4) with Holling–Tanner-type functional response (i.e.,
p(u, v) = βuv/(m + u) with β , m > 0). They also established some results for the existence
and non-existence of non-constant positive steady states with respect to diffusion and
cross-diffusion rates. In [13], Ko and Ryu investigated system (1.4) with p(u, v) = f (u)v and
f satisfies a general hypothesis: f (0) = 0, and there exists a positive constant M such that
0 < f ′(u) ≤ M for all u > 0. They studied the global stability of the positive constant steady
state and derived various conditions for the existence and non-existence of non-constant
positive steady states. For the case the function p(u, v) in the system (1.4) takes the form
p(u, v) = βuv/(u + mv) with β , m > 0, called a ratio-dependent functional response, Peng
and Wang [14] studied the global stability of the unique positive constant steady state and
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gained several results for the non-existence of non-constant positive solutions. Similar
results had been obtained by Shi, Li and Lin [15] in the case p(u, v) in the system (1.4)
takes the form p(u, v) = βuv/(a + u + mv) with β , a, m > 0, called Beddington–DeAngelis
functional response.

When we take cross-diffusion into account, a general partial differential prey-predator
model takes the following form (see [2, 3]):

⎧
⎨

⎩

ut – div[K11(u, v)∇u + K12(u, v)∇v] = u[r – ku – p(u, v)] in � ×R+,

vt – div[K21(u, v)∇u + K22(u, v)∇v] = v[–b + q(u, v)] in � ×R+,
(1.5)

where r, k, b > 0, p(u, v) and q(u, v) are the functional responses, K11, K22 and K12, K21, re-
spectively, embody the self-diffusion and cross-diffusion processes. Li, Pang and Wang
[16] study the global existence of classical solution of (1.5) with homogeneous Neumann
boundary condition and smooth initial datum for the case

K11(u, v) = c1 + 2c2u, K12(u, v) = 0, K21 =
�vu�–1

(1 + u�)2 ,

K22(u, v) = c3 + 2c4 +
1

1 + u�
,

where c1, c3 > 0, c2, c4 ≥ 0 and � ≥ 1 are constants.
If we take cross-diffusion and Beddington–DeAngelis functional response into account,

Zhang and Fu [17] studied the following system:

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u = ru(1 – u) – βuv
1+nu+mv in � ×R+,

–d2�[(1 + d3u)v] = v(b – v
u ) in � ×R+,

∂νu = ∂νv = 0 on ∂� ×R+,

(1.6)

where d1, d2 > 0, d3 ≥ 0 and all the other parameters are positive constants. They study
the stability of the positive constant solution and the existence and non-existence results
about the non-constant steady states of the above system.

When we take cross-diffusion and ratio-dependent functional response into account,
Wang, Li and Shi [18] studied the following system:

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u = ru(1 – u) – βuv
u+mv in �,

–d2�[(1 + d3u)v] = v(b – v
u ) in �,

∂νu = ∂νv = 0 on ∂�,

(1.7)

where d1, d2 > 0, d3 ≥ 0 and all the other parameters are positive constants. They es-
tablished the existence and non-existence results about the non-constant positive steady
states.
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If we take nonlinear diffusion of fractional type into account. Kuto and Yamada [1] con-
sidered the following prey-predator model:

⎧
⎪⎪⎨

⎪⎪⎩

–�[(1 + c1v)u] = u(a – u – cv) in �,

–�[(1 + c2
1+βu )v] = v(b + du – v) in �,

u = v = 0 on ∂�,

(1.8)

where a, c, d are positive constants, c1, c2,β are non-negative constants and b is a real con-
stant which is allowed to be non-positive. In a case when the spatial dimension is less than
5, they found a universal bound for coexistence steady states. By using the bound and the
bifurcation theorem they obtained the bounded continuum of coexistence steady states.

Finally, we remark that in the past decades, there has been much work on the existence
and non-existence of non-constant positive steady states of ecological models with dif-
fusion or cross-diffusion under the homogeneous Neumann boundary conditions. One
can refer to [4, 11, 13, 19–33]. The role of diffusion in modeling many physical, chemical
and biological processes has been extensively studied. Starting with Turing’s seminal pa-
per [34], diffusion and cross-diffusion have been observed as causes of the spontaneous
emergence of ordered structures, called patterns in a variety of non-equilibrium situa-
tions. They include the Gierer–Meinhardt model [35–38], the Sel’kov model [26, 39], the
Lotka–Volterra competition model [40–42] and the Lotka–Volterra predator–prey model
[20, 23, 24, 43–45] and so on.

Based on above reasons, in this paper, we consider problems (1.1) and (1.2). The organi-
zation of this paper is as follows. In Sect. 2, we study the stability of constant steady state
of (1.1) with d3 = 0. In Sect. 3, we establish a priori upper and lower bounds for the posi-
tive solutions of (1.2). Section 4 deals with the non-existence of the non-constant positive
solutions of (1.2). Finally, in Sect. 5, we establish the existence of non-constant positive
solutions of (1.2) for a range of diffusion and cross-diffusion coefficients.

2 Large time behavior
In this section, we always set d3 = 0 and consider the large time behavior of solution to the
special case of (1.1), i.e., the following reaction–diffusion equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – d1�u = ru(1 – u) – βuv
u+mv := f1(u, v) in � ×R+,

vt – d2�v = v(b – v
u ) := f2(u, v) in � ×R+,

∂νu = ∂νv = 0 on ∂� ×R+,

u(x, 0) > 0, v(x, 0) ≥, �≡ 0, in �̄.

(2.1)

The main results of this section is the following four theorems.

Theorem 2.1 (Dissipation) Let (u, v) be the positive solution of (2.1), then we have

lim sup
t→∞

max
�̄

u(·, t) ≤ 1, lim sup
t→∞

max
�̄

v(·, t) ≤ b. (2.2)
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Theorem 2.2 (Persistence) Let (u, v) be the positive solution of (2.1). If β < rm, then (2.1)
has persistence property, i.e., the following inequalities hold:

lim inf
t→∞ min

�̄

u(·, t) ≥ u1, lim inf
t→∞ min

�̄

v(·, t) ≥ bu1, (2.3)

where

u1 =
r(1 – mb) +

√
r2(1 – mb)2 + 4rb(rm – β)

2r
.

Theorem 2.3 (Global stability) If β < rm, rbm2 < rm2 + β and r + m(rm – 2β)b2 ≥ 0, then
u∗ defined in (1.3) is globally asymptotically stable for (2.1). In particular, this implies that
(1.2) has no non-constant positive solution with d3 = 0.

Remark 2.4 It is easy to see that if b ≤ 1 and r > max{β/m,βm}, then u∗ is globally asymp-
totically stable.

Finally, we consider the extinction results of (2.1).

Theorem 2.5 Assume d1 = d2 = d. Let α1 > 0 such that r + 1/α1 ≤ b + βb/(α1 + m), then
there exists a positive constant α2 � α1 such that R := {(u, v) ∈R

2|u, v ≥ 0,α2v ≤ u ≤ α1v}
is an invariant region of (2.1). Furthermore, if r(α1 + m) ≤ β or α1b < 1, then for any
(u0, v0) ∈ R \ {(0, 0)} the positive solution (u, v) of (2.1) satisfies limt→∞(u, v) = (0, 0) uni-
formly on �̄.

In order to prove the above results, we first introduce the following lemma [46, 47].

Lemma 2.6 Assume f (s) ∈ C1([0, +∞)), d > 0,β ≥ 0, T ∈ [0, +∞) are constants, w ∈
C2,1(� × (T , +∞)) ∩ C1,0(�̄ × [T , +∞)) is positive. Then we have

(1) If w satisfies

⎧
⎨

⎩

∂w
∂t – d�w ≤ (≥)w1+β f (w)(α – w) in � × (T , +∞),
∂w
∂ν

= 0 on ∂� × (T , +∞),
(2.4)

where α > 0 is a constant, we have

lim sup
t→+∞

max
�̄

w(·, t) ≤ α
(

lim inf
t→+∞ min

�̄

w(·, t) ≥ α
)

.

(2) If w satisfies

⎧
⎨

⎩

∂w
∂t – d�w ≤ w1+β f (w)(α – w) in � × (T , +∞),
∂w
∂ν

= 0 on ∂� × (T , +∞),
(2.5)

where α ≤ 0 is a constant, we have

lim sup
t→+∞

max
�̄

w(·, t) ≤ 0.
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Proof of Theorems 2.1–2.3 We divide the prove into three steps.
Step 1 (Dissipation). By (2.1)1, we obtain ut – d1�u = ru(1 – u). So, by virtue of Lemma

2.6, we get

lim sup
t→∞

max
�̄

u(·, t) ≤ 1 := ū1. (2.6)

So, for any ε > 0, there exists Tε
1 � 1 such that u(x, t) ≤ ū1 + ε for any x ∈ �̄ and t ≥ Tε

1 .
By (2.1)2, we get

vt – d2�v ≤ v
(

b –
v

ū1 + ε

)

= v
b(ū1 + ε) – v

ū1 + ε
for (x, t) ∈ � × (

Tε
1 ,∞)

. (2.7)

By Lemma 2.6, we get lim sup max�̄ v(·, t) ≤ b(ū1 + ε). By the arbitrariness of ε > 0, we
obtain

lim sup max
�̄

v(·, t) ≤ bū1 := v̄1. (2.8)

We get Theorem 2.1 by (2.6) and (2.8).
Step 2 (Persistence). In this step, we assume that β < rm. Equation (2.8) implies for any

ε > 0, there exists Tε
2 � 1 such that v(x, t) ≤ v̄1 + ε for any x ∈ �̄ and t ≥ Tε

2 . By (2.1)1 and
for any (x, t) ∈ � × (Tε

2 ,∞), we obtain

ut – d1�u ≥ ru(1 – u) –
βu(v̄1 + ε)

u + m(v̄1 + ε)

= –u
ru2 + r[m(v̄1 + ε) – 1]u – (rm – β)(v̄1 + ε)

u + m(v̄1 + ε)

= u
(u – uε

2)(uε
1 – u)

u + m(v̄1 + ε)
, (2.9)

where

uε
1 =

r[1 – m(v̄1 + ε)] +
√

r2[1 – m(v̄1 + ε)]2 + 4r(rm – β)(v̄1 + ε)
2r

> 0,

uε
2 =

r[1 – m(v̄1 + ε)] –
√

r2[1 – m(v̄1 + ε)]2 + 4r(rm – β)(v̄1 + ε)
2r

< 0.

By Lemma 2.6, we obtain lim inft→∞ min�̄ u(·, t) ≥ uε
1. By the arbitrariness of ε > 0, we get

lim inf
t→∞ min

�̄

u(·, t) ≥ u0
1 := u1 > 0, (2.10)

where

u1 =
r(1 – mv̄1) +

√
r2(1 – mv̄1)2 + 4r(rm – β)v̄1

2r
< ū1.

So, for any ε ∈ (0, u1), there exists Tε
3 � 1 such that u(x, t) ≥ u1 – ε for any x ∈ �̄ and

t ≥ Tε
3 . By (2.1)2 we get

vt – d2�v ≥ v
(

b –
v

u1 – ε

)

= v
b(u1 – ε) – v

u1 – ε
for (x, t) ∈ � × (

Tε
3 ,∞)

. (2.11)
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By Lemma 2.6, we obtain lim inft→∞ min�̄ v(·, t) ≥ b(u1 – ε). By the arbitrariness of ε ∈
(0, u1), we get

lim inf
t→∞ min

�̄

v(·, t) ≥ bu1 := v1 > 0. (2.12)

We get Theorem 2.2 by (2.10) and (2.12).
Step 3 (Global stability). In this step, we assume that β < rm, rbm2 < rm2 + β and r +

m(rm – 2β)b2 ≥ 0 and we will use the monotone iterative method to prove Theorem 2.3.
Equation (2.12) implies for any ε ∈ (0, v1), there exists Tε

4 � 1 such that v(x, t) ≥ v1 – ε for
any x ∈ �̄ and t ≥ Tε

4 . So by (2.1)1 and for any (x, t) ∈ � × (Tε
4 ,∞), we have

ut – d1�u ≤ ru(1 – u) –
βu(v1 – ε)

u + m(v1 – ε)

= –u
ru2 + r[m(v1 – ε) – 1]u – (rm – β)(v1 – ε)

u + m(v1 – ε)

= u
(u – uε

4)(uε
3 – u)

u + m(v1 – ε)
, (2.13)

where

uε
3 =

r[1 – m(v1 – ε)] +
√

r2[1 – m(v1 – ε)]2 + 4r(rm – β)(v1 – ε)
2r

> 0,

uε
4 =

r[1 – m(v1 – ε)] –
√

r2[1 – m(v1 – ε)]2 + 4r(rm – β)(v1 – ε)
2r

< 0.

By Lemma 2.6, we get lim supt→∞ max�̄ u(·, t) ≤ uε
3. By the arbitrariness of ε ∈ (0, v1), we

get

lim sup
t→∞

max
�̄

u(·, t) ≤ u0
3 := ū2, (2.14)

where

ū2 =
r(1 – mv1) +

√
r2(1 – mv1)2 + 4r(rm – β)v1

2r
< ū1.

Define

⎧
⎨

⎩

ϕ(s) = bs, s ∈ (0,∞),

ψ(s) = r(1–ms)+
√

r2(1–ms)2+4r(rm–β)s
2r , s ∈ (0, rm2+β

rm2 ).
(2.15)

After some simple computations, we get

⎧
⎨

⎩

ϕ′(s) > 0, s ∈ (0,∞),

ψ ′(s) < 0, s ∈ (0, rm2+β

rm2 ).
(2.16)
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By virtue of ū1 > u1, ū2 < ū1, 0 < v̄1 ≤ b < (rm2 + β)/(rm2) and (2.16), we get

⎧
⎪⎪⎨

⎪⎪⎩

v̄1 = ϕ(ū1) > ϕ(u1) = v1, u1 = ψ(v̄1) < ψ(v1) = ū2 < ū1,

u1 ≤ lim inft→∞ min�̄ u(·, t) ≤ u(x, t) ≤ lim supt→∞ max�̄ u(·, t) ≤ ū2,

v1 ≤ lim inft→∞ min�̄ v(·, t) ≤ v(x, t) ≤ lim supt→∞ max�̄ v(·, t) ≤ v̄1.

(2.17)

By induction, we can define four sequences {ui}∞i=1, {vi}∞i=1, {ūi}∞i=1 and {v̄i}∞i=1in the following
way: v̄i = ϕ(ūi), ui = ψ(v̄i), vi = ϕ(ui) and ūi+1 = ψ(vi) such that

⎧
⎨

⎩

ui ≤ lim inft→∞ min�̄ u(·, t) ≤ u(x, t) ≤ lim supt→∞ max�̄ u(·, t) ≤ ūi,

vi ≤ lim inft→∞ min�̄ v(·, t) ≤ v(x, t) ≤ lim supt→∞ max�̄ v(·, t) ≤ v̄i.
(2.18)

Since (2.16) holds, we can get the following relationships by induction:
⎧
⎨

⎩

v1 ≤ vi < vi+1 = ϕ(ui+1) < ϕ(ūi+1) = v̄i+1 < v̄i ≤ v̄1,

u1 ≤ ui < ui+1 = ψ(v̄i+1) < ψ(vi+1) = ūi+2 < ūi+1 ≤ ū1.
(2.19)

Assume limi→∞ ui = u, limi→∞ vi = v, limi→∞ ūi = ū and limi→∞ ūi = v̄. It is obvious that
0 < u ≤ ū, 0 < v ≤ v̄ and u, v, ū, v̄ satisfy

v̄ = ϕ(ū), u = ψ(v̄), v = ϕ(u), ū = ψ(v). (2.20)

After some computations, we can see (2.20) is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

v̄ = bū, v = bu,

–r + ru + β v̄
u+mv̄ = 0,

–r + rū + βv
ū+mv = 0.

(2.21)

We claim ū = u. In the following, we will prove the claim by contradiction. If ū �= u, (2.21)2

and (2.21)3 are equivalent to
⎧
⎨

⎩

–ru – rmbū + ru2 + rmbuū + βbū = 0,

–rū – rmbu + rū2 + rmbuū + βmu = 0.
(2.22)

By (2.22)1 – (2.22)2, we get r – r(u + ū) + b(β – rm) = 0. Then by virtue of β < rm, we get

u + ū < 1. (2.23)

By (2.21)2 + (2.21)3, we get r(u + ū)) + β v̄
u+mv̄ + βv

ū+mv = 2r. By virtue of (2.23), we get β v̄
u+mv̄ +

βv
ū+mv > r, which is equivalent to

ruū + (rm – β)uv + (rm – β)ūv̄ + m(rm – 2β)vv̄ < 0. (2.24)

Since β < rm, (2.24) implies

ruū + m(rm – 2β)vv̄ < 0. (2.25)
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By virtue of (2.21)1, we get r + m(rm – 2β)b2 < 0, which contradicts r + m(rm – 2β)b2 ≥ 0.
So u = ū, and then we get v = v̄ by (2.21)1. Theorem 2.3 follows. The proof is completed. �

Proof of Theorem 2.5 Let G1(u, v) = u – α1v, G2(u, v) = α2v – u, then

R =
{

(u, v) ∈R
2|u, v ≥ 0, Gi(u, v) ≤ 0, i = 1, 2

}
.

Since r + 1/α1 ≤ b + βb/(α1 + m), we get

∇G1 · (f1, f2) = u
(

r –
bβ

α + m
– b –

1
α

)

– ru2 ≤ 0 (2.26)

on the boundary u = α1v. On the other hand, if u = α2v, we have

∇G2 · (f1, f2) = u
(

–r + ru +
β

α2 + m
+ b –

1
α2

)

→ –∞ as α2 → 0+, (2.27)

then we get ∇G2 · (f1, f2) ≤ 0 for α2 � α1. So R is an invariant region of (2.1) by [47].
In the following, we assume r(α1 + m) ≤ β or α1b < 1, and (u0, v0) ∈ R \ {(0, 0)}, then

(u(x, t), v(x, t)) ∈R. By the first equation of (2.1), we get

⎧
⎪⎪⎨

⎪⎪⎩

ut – d�u ≤ u(r – β

α1+m – ru) in � ×R+,

∂νu = 0 on ∂� ×R+,

u(x, 0) > 0, in �̄.

(2.28)

Firstly, we consider the case r(α1 +m) ≤ β . By Lemma 2.6, it is easy to see limt→∞ u(x, t) =
0 uniformly on �̄. So for any ε > 0, there exists T > 0 such that u(x, t) ≤ ε for any (x, t) ∈
�̄ × [T ,∞), and so v satisfies

⎧
⎪⎪⎨

⎪⎪⎩

vt – d�v ≤ v bε–v
ε

in � × (T ,∞),

∂νv = 0 on ∂� × (T ,∞),

v(x, T) > 0, in �̄.

(2.29)

By virtue of Lemma 2.6, we get

lim sup
t→∞

max
�̄

v(·, t) ≤ bε, (2.30)

which means limt→∞ v(x, t) = 0 uniformly on �̄.
Secondly, we consider the case r(α1 + m) > β and α1b < 1. By (2.28) and Lemma 2.6, we

obtain

lim sup
t→∞

max
�̄

u(·, t) ≤ 1 –
β

r(α1 + m)
:= σ > 0. (2.31)
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Then, for any ε > 0, there exists T0 > 0 such that, for any (x, t) ∈ �̄× [T0,∞), u(x, t) ≤ σ +ε,
so v satisfies

⎧
⎪⎪⎨

⎪⎪⎩

vt – d�v ≤ v b(σ+ε)–v
σ+ε

in � × (T0,∞),

∂νv = 0 on ∂� × (T0,∞),

v(x, T0) > 0, in �̄.

(2.32)

By virtue of Lemma 2.6, we get

lim sup
t→∞

max
�̄

v(·, t) ≤ b(σ + ε). (2.33)

So there exists T1 > T0 such that, for any (x, t) ∈ �̄ × [T1,∞), v(x, t) ≤ b(σ + ε) + ε. Since
(u(x, t), v(x, t)) ∈R, we obtain

u(x, t) ≤ α1
[
b(σ + ε) + ε

]
:= φ(ε), ∀(x, t) ∈ �̄ × [T1,∞). (2.34)

Let η = (1 + α1b)/2, then η < 1. Since φ(0) = α1bσ < ησ , there exists ε � 1 such that φ(ε) <
ησ . So, we get

u(x, t) ≤ φ(ε) < ησ , ∀(x, t) ∈ �̄ × [T1,∞). (2.35)

Then v satisfies

⎧
⎪⎪⎨

⎪⎪⎩

vt – d�v ≤ v bησ–v
ησ

in � × (T1,∞),

∂νv = 0 on ∂� × (T1,∞),

v(x, T1) > 0, in �̄,

(2.36)

and so

lim sup
t→∞

max
�̄

v(·, t) ≤ bησ . (2.37)

Then there exists T2 > T1 such that when 0 < ε ≤ (ησ /α1)(η – α1b) (notice η – α1b > 0 if
α1b < 1)

v(x, t) ≤ bησ + ε, u(x, t) ≤ α1(bησ + ε) ≤ η2σ , ∀(x, t) ∈ �̄ × [T2,∞). (2.38)

By induction, we obtain there exists an increasing sequence {Tn}∞n=0 satisfying Tn → ∞
as n → ∞ such that

u(x, t) ≤ ηnσ , ∀(x, t) ∈ �̄ × [Tn,∞). (2.39)

Since 0 < η < 1, we have limt→∞ u(x, t) = 0 uniformly on �̄, and similar to the case of r(α1 +
m) ≤ β , we can prove limt→∞ v(x, t) = 0 uniformly on �̄. The proof is completed. �
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3 A priori estimates for positive solutions of (1.2)
In this section, we shall give a priori estimates for the positive solutions of (1.2). In the fol-
lowing, we shall write � instead of the collective of constants r,α,β , b, m for convenience
and our main result is the following theorem.

Theorem 3.1 Let d be a fixed positive number such that d1, d2 ≥ d and d3 ≥ 0. Then there
exist two positive constants C1(�, d,�) and C2(�, d,�) such that the positive solution (u, v)
of (1.2) satisfies

C1 < u, v < C2. (3.1)

In order to prove the above theorem we first give two lemmas. The first one is the max-
imum principle, which was given in [42].

Lemma 3.2 (Maximum principle) Let g ∈ C(�̄×R) and bj(x) ∈ C(�̄), j = 1, 2, . . . , N . Then
we have

(i) If w ∈ C2(�) ∩ C1(�̄) satisfies

⎧
⎨

⎩

�w +
∑N

j=1 bj(x)wxj + g(x, w(x)) ≥ 0 in �,
∂w
∂ν

≤ 0 on ∂�,
(3.2)

and w(x0) = maxx∈�̄ w(x), then g(x0, w(x0)) ≥ 0.
(ii) If w ∈ C2(�) ∩ C1(�̄) satisfies

⎧
⎨

⎩

�w +
∑N

j=1 bj(x)wxj + g(x, w(x)) ≤ 0 in �,
∂w
∂ν

≥ 0 on ∂�,
(3.3)

and w(x0) = minx∈�̄ w(x), then g(x0, w(x0)) ≤ 0.

The second one is the following Harnack inequality, which was given in [48].

Lemma 3.3 (Harnack inequality) Let w ∈ C2(�) ∩ C1(�̄) be a positive solution to �w(x) +
c(x)w(x) = 0 subject to homogeneous Neumann boundary condition, where c(x) ∈ C(�̄).
Then there exists a positive constant C∗ depending only on ‖c‖∞ such that maxx∈�̄ w(x) ≤
C∗ minx∈�̄ w(x).

Proof of Theorem 3.1 In the following, we shall denote by C a generic constant indepen-
dent of d3 that may changes between lines. Also notice that C will depend on the domain
�. However, as � is fixed, we will not mention the dependence explicitly. Furthermore,
we will denote max�̄ and min�̄ by max and min, respectively. Since

–d1�u = ru(1 – u) –
βuv

u + mv
, (3.4)

we can easily get max u ≤ 1 by the maximum principle. Then we have

∥
∥
∥
∥r(1 – u) –

βv
u + mv

∥
∥
∥
∥∞

≤ 2r +
β

m
, (3.5)
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so there exists positive constant C such that min u(x) ≥ C max u(x) from Lemma 3.3. Let
x0 ∈ �̄ such that v(x0)(1 + d3/(1 + αu(x0))) = max v(x)(1 + d3/(1 + αu(x))), then we get b –
v(x0)/u(x0) ≥ 0 by Lemma 3.2, which means v(x0) ≤ bu(x0) ≤ b and

v(x)
v(x0)

=
v(x)(1 + d3/(1 + αu(x)))

v(x0)(1 + d3/(1 + αu(x0)))
× 1 + d3/(1 + αu(x0))

1 + d3/(1 + αu(x))

≤ 1 + d3/(1 + α min u(x))
1 + d3/(1 + α max u(x))

≤ d3/(1 + α min u(x))
d3/(1 + α max u(x))

≤ 1 + α max u(x)
1 + α min u(x)

≤ max u(x)
min u(x)

≤ C. (3.6)

Equation (3.6) means v(x) ≤ Cv(x0) ≤ C. So, the right-hand side of (3.1) holds.
In order to prove the left-hand side of (3.1), we must prove min v(x) ≥ C max v(x). Let

φ(x) = d2v(x)(1 + d3/(1 + αu(x))), then the second equation of (1.2) becomes

⎧
⎨

⎩

�φ + b–v/u
d2(1+d3/(1+αu(x)))φ = 0 in �,

∂νφ = 0 on ∂�.
(3.7)

Since
∥
∥
∥
∥

b – v/u
d2(1 + d3/(1 + αu(x)))

∥
∥
∥
∥∞

≤ b + max v(x)/ min u(x)
d2 min(1 + d3/(1 + αu(x)))

≤ C +
maxφ(x)

d2
2 min u(x) min(1 + d3/(1 + αu(x)))

= C +
v(x0)(1 + d3/(1 + αu(x0)))

d2 min u(x) min(1 + d3/(1 + αu(x)))

≤ C +
bu(x0)(1 + d3/(1 + αu(x0)))

d2 min u(x) min(1 + d3/(1 + αu(x)))

≤ C +
b
d

max u(x)
min u(x)

max(1 + d3/(1 + αu(x)))
min(1 + d3/(1 + αu(x)))

≤ C +
b
d

max u(x)
min u(x)

max u(x)
min u(x)

≤ C, (3.8)

we have minφ(x) ≥ C maxφ(x) from Lemma 3.3. Hence, we obtain

max v(x)
min v(x)

≤ maxφ(x)
minφ(x)

× max(1 + d3/(1 + αu(x)))
min(1 + d3/(1 + αu(x)))

≤ C
max u(x)
min u(x)

≤ C. (3.9)

By way of contradiction, we suppose that (u, v) does not have a positive lower bound,
then there is a sequence {(d1,i, d2,i, d3,i)}∞i=0, d1,i, d2,i ≥ d, d3,i ≥ 0 such that the positive so-
lution of (1.2) corresponding (d1, d2, d3) = (d1,i, d2,i, d3,i) satisfies

min ui(x) → 0 or min vi(x) → 0 as i → ∞, (3.10)



Zeng Boundary Value Problems  (2018) 2018:98 Page 13 of 21

where (ui, vi) solves the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

–d1,i�ui = rui(1 – ui) – βuivi
ui+mvi

in �,

–d2,i�[(1 + d3,i
1+αui

)vi] = vi(b – vi
ui

) in �,

∂νui = ∂νvi = 0 on ∂�.

(3.11)

Integrating over � by parts for (3.11) yields
⎧
⎨

⎩

∫

�
ui[r(1 – ui) – βvi

ui+mvi
] dx = 0,

∫

�
vi(b – vi

ui
) dx = 0.

(3.12)

If min ui(x) → 0 as i → ∞, one can obtain ui(x) → 0 uniformly from min ui(x) ≥
C max ui(x). By the second equation of (3.12), we know that there exists a xi ∈ �̄ such
that vi(xi) = bui(xi) for each i. Hence, we can conclude that vi(x) → 0 uniformly as i → ∞
from min vi(x) ≥ C max vi(x). From the first equation of (3.12) we know that there exists
x̂i ∈ �̄ for each i such that r = rui(x̂i)+βvi(x̂i)/(ui(x̂i)+mvi(x̂i)). One can deduce the conflict
as i → ∞. Hence, there exists a positive constant C such that min u(x) > C.

If min vi(x) → 0 as i → ∞, one can deduce conflict similarly. The proof is completed. �

4 Non-existence of non-constant positive solutions of problem (1.2)
In Theorem 2.3, the global stability of the positive constant solution implies the non-
existence of non-constant positive solution of (1.2) regardless of diffusions. Several non-
existence results of non-constant positive solutions to (1.2) will be presented in this sec-
tion, and in these results, the diffusion and cross-diffusion coefficients do play important
roles. Throughout this section, we let 0 = μ0 < μ1 < μ2 < · · · represent the equivalent of
the operator –� in � with homogeneous Neumann boundary condition. As in Sect. 3, we
shall write � instead of the collective of constants r,α,β , b, m for convenience. The main
results of this section are the following two theorems.

Theorem 4.1 Let d be a fixed positive number such that d1, d2 ≥ d and d3 ≥ 0. Then,
for ε > 0 small enough, there exists a positive constant C̃(�, d, ε,�) such that (1.2) has no
non-constant positive solutions provided that

d1 > C̃
(
1 + d2

2d2
3
)
. (4.1)

Theorem 4.2 Let d be a fixed positive number such that d1, d2 ≥ d and d3 ≥ 0. Then, for
any ε > 0, there exists a positive constant C(�, d, ε,�) such that (1.2) has no non-constant
positive solutions provided that

d2 >
2(b + ε)

μ1
, d1 > C

(
1 + d2d2

3
)
. (4.2)

Remark 4.3 From the above theorems, it is easy to see that if d3 = 0 and d1, d2 are large
enough, then (1.2) does not have non-constant positive solutions.

Proof of Theorems 4.1 and 4.2 Let (u, v) be a positive solution of (1.2) and denote ū =
|�|–1 ∫

�
u(x) dx and v̄ = |�|–1 ∫

�
v(x) dx. From Theorem 3.1, we obtain C1 < u, v < C2 for

some positive constants C1, C2 depending only on �, d and �.
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Let us first prove Theorem 4.1. Multiplying (u – ū)/u and (v – v̄)/v to the first and second
equations in (1.2), respectively, and then integrating by parts over �, one can obtain

∫

�

{
d1ū
u2 |∇u|2 +

d2v̄
v2

(

1 +
d3

1 + αu

)

|∇v|2 –
αd2d3v̄

(1 + αu)2v
∇u · ∇v

}

dx

=
∫

�

{[

r(1 – u) –
βv

u + mv

]

(u – ū) +
(

b –
v
u

)

(v – v̄)
}

dx

=
∫

�

{[

–r +
β v̄

(u + mv)(ū + mv̄)

]

(u – ū)2

+
[

–
βū

(u + mv)(ū + mv̄)
+

v̄
uū

]

(u – ū)(v – v̄) –
1
u

(v – barv)2
}

dx. (4.3)

By Young’s inequality and Poincaré’s inequality, we obtain

∫

�

(
d1C1

C2
2

|∇u|2 +
d2C1

C2
2

|∇v|2
)

dx

≤
∫

�

[

C̃1(ε)(u – ū)2 +
(

ε –
1

C2

)

(v – v̄)2 +
α2d2

2d2
3C2

2
4εC2

1
|∇u|2 + ε|∇v|2

]

dx

≤
∫

�

{[
C̃1(ε)
μ1

+
α2d2

2d2
3C2

2
4εC2

1

]

|∇u|2 +
[

ε

μ1
–

1
C2μ1

+ ε

]

|∇v|2
}

dx, (4.4)

where C̃1(ε) is a positive constant depends on �,�, ε. Taking ε small enough such that
ε/μ1 – 1/(C2μ1) + ε ≤ 0 and denoting

C̃(ε) =
C2

2
C1

max

{
C̃1(ε)
μ1

,
α2C2

2
4εC2

1

}

,

we obtain

∫

�

(
d1|∇u|2 + d2|∇v|2)dx ≤ C̃(ε)

(
1 + d2

2d2
3
)
∫

�

|∇u|2 dx. (4.5)

Combining (4.1) and (4.5), we can get Theorem 4.1.
Next, we prove Theorem 4.2. Multiplying (u – ū) and (v – v̄) to the first and second

equations in (1.2), respectively, and then integrating by parts over �, one can obtain

∫

�

[

d1|∇u|2 + d2

(

1 +
d3

1 + αu

)

|∇v|2 –
αd2d3v

(1 + αu)2 ∇u · ∇v
]

dx

=
∫

�

[

r – r(u + ū) –
βmvv̄

(u + mv)(ū + mv̄)

]

(u – ū)2 dx

+
∫

�

[
v̄2

uū
–

βuū
(u + mv)(ū + mv̄)

]

(u – ū)(v – v̄) dx +
∫

�

(

b –
v + v̄

u

)

(v – v̄)2 dx

≤
∫

�

{

r(u – ū)2 +
[

v̄2

uū
–

βuū
(u + mv)(ū + mv̄)

]

(u – ū)(v – v̄) + b(v – v̄)2
}

dx. (4.6)
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By Young’s inequality and Poincaré’s inequality, we obtain

∫

�

(
d1|∇u|2 + d2|∇v|2)dx

≤
[

C1(ε)(u – ū)2 + (b + ε)(v – v̄)2 +
αd2d2

3C2
2

2
|∇u|2 +

d2

2
|∇v|2

]

≤
∫

�

{[
C1(ε)
μ1

+
αd2d2

3C2
2

2

]

|∇u|2 +
[

b + ε

μ1
+

d2

2

]

|∇v|2
}

dx, (4.7)

where C̃1(ε) is a positive constant depends on �,�, ε. Denoting

C̃(ε) = max

{
C1(ε)
μ1

,
αC2

2
2

}

,

we obtain

∫

�

[

d1|∇u|2 +
(

d2

2
–

b + ε

μ1

)

|∇v|2
]

dx ≤ C̃(ε)
(
1 + d2d2

3
)
∫

�

|∇u|2 dx. (4.8)

Combining (4.2) and (4.8), we can get Theorem 4.2. The proof is completed. �

5 Existence of non-constant positive solutions of problem (1.2)
This section is devoted to the existence of non-constant positive solutions of (1.2) for
certain values of diffusion coefficients d2 and d3, respectively, while the other parameters
are fixed. Our results show that, if the parameters are properly chosen, both the general
stationary pattern and a more interesting Turing pattern can arise as a result of diffusion.
Throughout this section, we denote

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(u, v) = ru(1 – u) – βuv
u+mv ,

f2(u, v) = v(b – v
u ),

g1(u, v) = d1u,

g2(u, v) = d2v(1 + d3
1+αu ),

(5.1)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A11 = ∂f1
∂u |(u,v)=(u∗ ,v∗) = r – 2ru∗ – βmv∗2

(u∗+mv∗)2 ,

A12 = ∂f1
∂v |(u,v)=(u∗ ,v∗) = – βu∗2

(u∗+mv∗)2 ,

δ2 = A11
d1

+ αd3v∗A12
d1(1+αu∗+d3)(1+αu∗) ,

δ3 = A11
d1

+ αv∗A12
d1(1+αu∗) ,

(5.2)

where (u∗, v∗) is defined in (1.3).
The main result of this section is the following theorem.

Theorem 5.1 Let d be a fixed positive number such that d1, d2 ≥ d and d3 ≥ 0, then we
have:
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1. Suppose that d1, d3 are given such that δ2 ∈ (μi,μi+1) for some positive odd integer i.
Then there exists a positive constant d∗

2 such that (1.2) has at least one non-constant
positive solution if d2 ≥ d∗

2 .
2. Suppose that d1 is given such that δ3 ∈ (μi,μi+1) for some positive odd integer i.

Then, for any d2 ≥ d, there exists a positive constant d∗
3 such that (1.2) has at least

one non-constant positive solution if d3 ≥ d∗
3 .

In order to prove Theorem 5.1, we start with some preliminary results. Let {(μi,ϕi)}∞i=0
be a complete set of eigenpairs for the operator –� in � with homogeneous Neumann
boundary condition, ordered such that 0 = μ0 < μ1 < μ2 < · · · , and let m(μi) be the multi-
plicity of μi. Denote

X =
{

(u, v) = C2(�̄) × C2(�̄)|∂νu = ∂νv = 0 on ∂�
}

. (5.3)

We decompose X as

X =
∞⊕

i=0

Xi, where Xi =
{

cϕi(x)|c ∈ R
2}. (5.4)

In the following, we shall write D = (d1, d2, d3), � = (r,α,β , b, m). From Theorem 3.1, we
known that there exists a positive constant C depending on �, d,� such that any positive
solution (u, v) of (1.2) satisfies (u, v) ∈ B(C), where

B(C) =
{

(u, v) ∈ X
∣
∣
∣

1
C

< u, v < C
}

. (5.5)

Let u = (u, v), �(u) = (g1, g2)T and G(u) = (f1, f2)T , we can write (1.2) as
⎧
⎨

⎩

–��(u) = G(u) in �,

∂νu = 0 on ∂�.
(5.6)

Then u is a positive solution of (5.6) if and only if u ∈ B(C) and

F(D; u) := u – (I – �)–1{�–1
u (u)

[
G(u) + ∇u�uu(u)∇u

]
+ u

}
= 0 in X, (5.7)

where (I – �)–1 is the inverse of I – � in X. It is easy to see that det�u > 0 for all u ∈ B(C),
then �–1

u exists. As F(D; ·) is a compact perturbation of an identity operator and u ∈ B(C),
the Leray–Schauder degree deg(F(D; ·), 0, B(C)) is well defined.

We also note that

DuF
(
D; u∗) = I – (I – �)–1[�–1

u
(
u∗)Gu

(
u∗) + I

]
, (5.8)

and recall that if DuF(D; u∗) is invertible, the index of F at u∗ is defined as index(F(D; ·),
u∗) = (–1)γ , where γ is the multiplicity of negative eigenvalues of DuF(D; u∗) (see [49],
Theorem 2.8.1). It is easy to prove Xi is invariant under DuF(D; u∗) for each integer i ≥ 0
and λ is an eigenvalue of DuF(D; u∗) in Xi if and only if λ is an eigenvalue of the matrix

I –
1

1 + μi

[
�–1

u
(
u∗)Gu

(
u∗) + I

]
=

1
1 + μi

[
μiI – �–1

u
(
u∗)Gu

(
u∗)]. (5.9)
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So, for convenience, we denote

H
(
D, u∗;μ

)
= det

[
μiI – �–1

u
(
u∗)Gu

(
u∗)]. (5.10)

By an argument similar those in [23], it can be shown that the following lemma holds.

Lemma 5.2 Suppose that, for all i ≥ 0, H(D, u∗;μi) �= 0. Then

index
(
F(D; ·), u∗) = (–1)γ , where γ =

∑

i≥0,H(D,u∗ ;μi)<0

m(μi). (5.11)

Using (1.3), a direct computation yields

�u
(
u∗) =

(
∂g1
∂u

∂g1
∂v

∂g2
∂u

∂g2
∂v

)

(u,v)=(u∗ ,v∗)

=

(
d1 0

– αd2d3v∗
(1+αu∗)2

d2(1+αu∗+d3)
1+αu∗

)

,

Gu
(
u∗) =

(
∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

)

(u,v)=(u∗ ,v∗)

=

(
A11 A12

b2 –b

)
(
see (5.2) for A11, A12

)
,

H
(
D, u∗;μ

)
= μ2 +

[
b(1 + αu∗)

d2(1 + αu∗ + d3)
–

αd3v∗A12

d1(1 + αu∗ + d3)(1 + αu∗)
–

A11

d1

]

μ

–
b(1 + αu∗)A11

d1d2(1 + αu∗ + d3)
–

b2(1 + αu∗)A12

d1d2(1 + αu∗ + d3)
.

Since (1.3) and βb < r(1 + bm), we obtain

det
(
Gu

(
u∗)) = –br + 2bru∗ +

βbmv∗2

(u∗ + mv∗)2 +
βb2mu∗2

(u∗ + mv∗)2

= br –
2βb2

1 + bm
+

βb3m
(1 + bm)2 +

βb2

(1 + bm)2

=
b[r(1 + bm)2 – 2βb(1 + bm) + βb2m + βb]

(1 + bm)2

=
b(1 + bm)[r(1 + bm) – βb]

(1 + bm)2 > 0.

Then we get

–
b(1 + αu∗)A11

d1d2(1 + αu∗ + d3)
–

b2(1 + αu∗)A12

d1d2(1 + αu∗ + d3)

=
1 + αu∗

d1d2(1 + αu∗ + d3)
det

(
Gu

(
u∗)) > 0. (5.12)

Furthermore, we have

lim
dj→∞

H
(
D, u∗;μ

)
= μ2 – δjμ, ∀j = 2, 3

(
see (5.2) for δj

)
. (5.13)

In order to prove Theorem 5.1, we shall use the following lemma.
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Lemma 5.3 If d3 = 0 and d1 = d2 = d∗ ≥ d, then there exists a positive constant d∗ such
that index(F(D∗; ·), u∗) = 1 if d∗ ≥ d∗, where D∗ = (d∗, d∗, 0).

Proof Since

H
(
D∗, u∗;μ

)
= μ2 +

(
b
d∗

–
A11

d∗

)

μ –
bA11

d2∗
–

b2A12

d2∗
,

the root of equation H(D∗, u∗;μ) = 0 are

μ+ =
A11 – b +

√�
2d∗

, μ– =
A11 – b –

√�
2d∗

, (5.14)

where

� = (A11 – b)2 + 4
(
bA11 + b2A12

)
.

It is obvious that Reμ+ → 0 as d∗ → ∞. So there exists a positive constant d∗ such
that Reμ+ < μ1 when d∗ ≥ d∗. For each i ≥ 1, we have H(D∗, u∗;μi) > 0. Furthermore,
H(D∗, u∗;μ0) > 0 by (5.12). So, index(F(D∗; ·), u∗) = (–1)0 = 1 by (5.11). The proof is com-
pleted. �

Proof of Theorem 5.1 From Remark 4.3 and Lemma 5.3, we know that there exists a
positive constant d∗ such that (1.2) does not have non-constant positive solution and
index(F(D∗; ·), u∗) = 1 when d1 = d2 = d∗ and d3 = 0, where D∗ = (d∗, d∗, 0). This means
deg(F(D∗; ·), 0, B(C)) = 1. For d1, d2 ≥ d and d3 ≥ 0, we define a homotopy as

⎧
⎪⎪⎨

⎪⎪⎩

–�{[td1 + (1 – t)d∗]u} = ru(1 – u) – βuv
u+mv in �,

–�{[td2 + td2d3
1+αu + (1 – t)d∗]v} = v(b – v

u ) in �,

∂νu = ∂νv = 0 on ∂�,

(5.15)

where t ∈ [0, 1]. u is a non-constant positive solution of (5.15) if and only if u ∈ B(C) and

F(t, u) := u – (I – �)–1{�–1
u (u, t)

[
G(u) + ∇u�uu(u, t)∇u

]
+ u

}
= 0 in X, (5.16)

where

�(u, t) =
(

[
td1 + (1 – t)d∗]u,

[

td2 +
td2d3

1 + αu
+ (1 – t)d∗

]

v
)T

.

Furthermore,

F(D; u) = F(1, u) and F
(
D∗, u

)
= F(0; u). (5.17)

By the homotopy invariance of the Leray–Schauder degree, one can obtain

deg
(
F(D; ·), 0, B(C)

)
= deg

(
F
(
D∗; ·), 0, B(C)

)
= 1. (5.18)
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Denote by μ+ and μ–, with Reμ– ≤Reμ+, the two roots to H(D, u∗;μ) = 0. From (5.13), we
see that

lim
d2→∞

μ– = 0, lim
d2→∞

μ+ = δ2, lim
d3→∞

μ– = 0, lim
d3→∞

μ+ = δ3. (5.19)

If δ2 ∈ (μi,μi+1) for some positive odd integer i, then, for d2 large enough, one has

0 = μ0 < μ– < μ1, μ+ ∈ (μi,μi+1). (5.20)

Hence H(D, u∗;μj) < 0 is equivalent to j ∈ {1, 2, . . . , i}. Since i is odd, by Lemma 5.2, we
have

index
(
F(D; ·), u∗) = (–1)i = –1. (5.21)

So F(D; u) = 0 has at least another positive solution that is different from u∗. Otherwise
the degree of F = 0 in B(C) should be –1, which contradicts (5.18). Hence the first asser-
tion of the theorem is proved. The second assertion can be proved similarly. The proof is
completed. �

6 Conclusion
In this paper, we deal with a strong coupled predator–prey model with modified Holling–
Tanner functional response under homogeneous Neumann boundary conditions. First we
study the stability of constant steady state for such model. Then we establish a priori up-
per and lower bounds for the positive solutions, deal with the non-existence of the non-
constant positive solutions, and establish the existence of non-constant positive solutions
for a range of diffusion and cross-diffusion coefficients.

Acknowledgements
The authors would like to thank the referees for the careful reading of this paper and for the valuable suggestions to
improve the paper.

Funding
This work is supported in part by NSFC of China (Grant No. 11301423).

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Competing interests
The author declares to have no competing interests.

Authors’ contributions
The author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 March 2018 Accepted: 9 June 2018

References
1. Kuto, K., Yamada, Y.: Coexistence problem for a prey–predator model with density-dependent diffusion. Nonlinear

Anal. 71(12), e2223–e2232 (2009)
2. Ni, W.M.: Diffusion: self-diffusion, cross-diffusion and their spike-layer steady states. Not. Am. Math. Soc. 45, 9–18

(1998)
3. Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Springer, Berlin (1980)



Zeng Boundary Value Problems  (2018) 2018:98 Page 20 of 21

4. Pang, P.Y.H., Wang, M.X.: Strategy and stationary pattern in a three-species predator–prey model. J. Differ. Equ. 200(2),
245–273 (2004)

5. Du, Y.H., Shi, J.P.: Some recent results on diffusive predator–prey models in spatially heterogeneous environment. In:
Nonlinear Dynamics and Evolution Equations Fields Institute Communications, vol. 48, pp. 95–135. Am. Math. Soc.,
Providence (2006)

6. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation.
Mem. Entomol. Soc. Can. 46, 1–60 (1965)

7. Hsu, S.B., Hwang, T.W.: Global stability for a class of predator–prey systems. SIAM J. Appl. Math. 55(3), 763–783 (1995)
8. Ivlev, V.S.: Experimental Ecology of the Feeding of Fish. Springer, New York (1983)
9. Du, Y.H., Hsu, S.B.: A diffusive predator–prey model in heterogeneous environment. J. Differ. Equ. 203(2), 331–364

(2004)
10. Du, Y.H., Wang, M.X.: Asymptotic behavior of positive steady states to a predator–prey model. Proc. R. Soc. Edinb. A

136(4), 759–778 (2007)
11. Peng, R., Wang, M.X.: Positive steady states of the Holling–Tanner prey–predator model with diffusion. Proc. R. Soc.

Edinb. A 135(1), 149–164 (2005)
12. Peng, R., Wang, M.X.: Global stability of the equilibrium of a diffusive Holling–Tanner prey–predator model. Appl.

Math. Lett. 20(6), 664–670 (2007)
13. Ko, W., Ryu, K.: Non-constant positive steady states of a diffusive predator–prey system in homogeneous enviorment.

J. Math. Anal. Appl. 327(1), 539–549 (2007)
14. Peng, R., Wang, M.X.: Qualitative analysis on a diffusive prey–predator model with ratio-dependent functional

response. Sci. China Ser. A 51(11), 2043–2058 (2008)
15. Shi, H.B., Li, W.T., Lin, G.: Positive steady states of a diffusive predator–prey system with modified Holling–Tanner

functional response. Nonlinear Anal., Real World Appl. 11(5), 3711–3721 (2010)
16. Li, H.L., Pang, P.Y.H., Wang, M.X.: Global solutions of a general strongly coupled prey–predator model. Appl. Math. Lett.

22(10), 1508–1512 (2009)
17. Zhang, L.N., Fu, S.M.: Non-constant positive steady-states for a predator–prey cross-diffuson model with

Beddington–DeAngelis functional response. Bound. Value Probl. 2011, Article ID 404696 (2011)
18. Wang, Y.X., Li, W.T., Shi, H.B.: Stationary patterns of a ratio-dependent predator–prey system with cross-diffusion.

Math. Model. Anal. 16(3), 461–474 (2011)
19. Chen, W.Y., Wang, M.X.: Qualitative analysis of predator–prey models with Beddington–DeAngelis functional

response and diffusion. Math. Comput. Model. 42(1), 31–44 (2005)
20. Chen, X.F., Qi, Y.W., Wang, M.X.: A strongly coupled predator–prey system with non-monotonic functional response.

Nonlinear Anal. 69(6), 1966–1979 (2007)
21. Ko, W., Ryu, K.: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a

prey refuge. J. Differ. Equ. 231(2), 534–550 (2006)
22. Li, J.J., Gao, W.J.: A strongly coupled predator–prey system with modified Holling Tanner functional response.

Comput. Math. Appl. 60(7), 1908–1916 (2010)
23. Pang, P.Y.H., Wang, M.X.: Qualitative analysis of a ratio-dependent predator–prey system with diffusion. Proc. R. Soc.

Edinb. A 133(4), 919–942 (2003)
24. Pang, P.Y.H., Wang, M.X.: Non-constant positive steady states of a predatorprey system with non-monotonic

functional response with diffusion. Proc. Lond. Math. Soc. 88(1), 135–157 (2004)
25. Peng, R., Wang, M.X., Yang, G.Y.: Stationary patterns of the Holling–Tanner prey–predator model with diffusion and

cross-diffusion. Appl. Math. Comput. 196(2), 570–577 (2008)
26. Wang, M.X.: Non-constant positive steady states of the Sel’kov model. J. Differ. Equ. 190(2), 600–620 (2003)
27. Wang, M.X.: Stationary patterns of strongly coupled prey–predator models. J. Math. Anal. Appl. 292(2), 484–505

(2004)
28. Zhou, J., Mu, C.L.: Pattern formation of a coupled two-cell Brusselator model. J. Math. Anal. Appl. 366(2), 679–693

(2010)
29. Zhou, J., Mu, C.L.: Coexistence states of a Holling type-II predator–prey system. J. Math. Anal. Appl. 369(2), 555–563

(2010)
30. Zhou, J., Mu, C.L.: Positive solutions for a three-trophic food chain model with diffusion and Beddington–DeAngelis

functional response. Nonlinear Anal., Real World Appl. 12(2), 902–917 (2011)
31. Zhou, J., Mu, C.L.: Coexistence of a three species predator–prey model with diffusion and density dependent

mortality. Rend. Circ. Mat. Palermo 60, 215–227 (2011)
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