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Abstract
In this paper, we study the global structure of positive solutions of periodic boundary
value problems

{
–u′′(t) + q(t)u(t) = λh(t)f (u(t)), t ∈ (0, 2π ),

u(0) = u(2π ), u′(0) = u′(2π ),

where q ∈ C([0, 2π ], [0, +∞)) with q �≡ 0, f ∈ C(R,R), the weight h ∈ C[0, 2π ] is a
sign-changing function, λ is a parameter. We prove the existence of three positive
solutions when h(t) has n positive humps separated by n + 1 negative ones. The proof
is based on the bifurcation method.
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1 Introduction
In this paper, we study the global structure of positive solutions of periodic boundary value
problems (PBVPs)

⎧⎨
⎩–u′′(t) + q(t)u(t) = λh(t)f (u(t)), t ∈ (0, 2π ),

u(0) = u(2π ), u′(0) = u′(2π ),
(1.1)

where q ∈ C([0, 2π ], [0,∞)) with q �≡ 0, f ∈ C(R,R), λ is a parameter, and h ∈ C[0, 2π ]
satisfies the following condition:

(F1) There exist x1, x2, . . . , x2n ∈ [0, 2π ] with x1 < x2 < · · · < x2n such that h(t) > 0 on
(x2i–1, x2i), and h(t) < 0 on [0, 2π ]\[x2i–1, x2i], i = 1, . . . , n.

In the recent years, PBVPs have been studied by many authors; see [1–13] and the ref-
erences therein. In particular, we refer to the papers of J. R. Graef et al. [1] and Hao et al.
[2]. In these works, the authors established some results of existence and multiplicity of
positive solutions for problem (1.1) with sign-definite weight, and, in general, the main
tool in the proofs is the fixed point index theory in cones. Clearly, this theory is no longer
available if the weight function changes its sign. However, to our knowledge, problem (1.1)
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with sign-changing weight, in spite of its simple looking structure, is considered as a hard
problem in the literature due to the lack of any a priori estimate over the set of possible pe-
riodic solutions. In order to overcome this difficulty, Ma et al. [3] used a different method,
so-called bifurcation; their results extend and improve the corresponding results of [1, 2].

Recently, there has been a lot of works concerning superlinear/sublinear problems with
sign-changing weight, we refer the reader to [4, 5] and the references therein. In [5], by
using Leray–Schauder degree theory, Hakl and Zamora established efficient conditions to
guarantee the existence of a T-periodic solution to the second order differential equation

u′′(t) = h(t)g
(
u(t)

)
, (1.2)

where h ∈ L(R/TZ) and h(·) changes its sign, and h̄ :=
∫ T

0 h(s) ds < 0, g ∈ C1(R+;R+) is a
nonincreasing function with a strong singularity at zero, i.e.,

lim
x→0+

∫ 1

x
g(s) ds = +∞.

It is worth noting that they cannot obtain three positive solutions, and even cannot guar-
antee the positivity of all solutions.

Compared with the above works dealing with the study of semilinear problems, Dai et
al. [6] studied a unilateral global bifurcation result for a class of quasilinear PBVPs

⎧⎨
⎩–(ϕp(u′))′ + q(t)ϕp(u) = λm(t)f (u), t ∈ (0, T),

u(0) = u(T), u′(0) = u′(T),
(1.3)

where 1 < p < ∞, ϕp(s) = |s|p–2s, q ∈ C([0, T], [0,∞)) with q �≡ 0, f ∈ C(R,R), λ is a pa-
rameter. By virtue of bifurcation techniques, they established some results of existence of
one-sign solutions for problem (1.3) according to the asymptotic behavior of f at 0 and ∞.
However, the sublinear and superlinear conditions imposed on the nonlinearities only de-
duce a relatively simple “shape of the component”, and they provided no information on
at least two direction turns of the connected component. Recently, there has been a result
about one-dimensional p-Laplacian problem by Sim and Tanaka [14]:

⎧⎨
⎩–(|u′|p–2u′)′ = λh(t)f (u), t ∈ (0, 1),

u(0) = u(1) = 0,
(1.4)

where p > 1, λ > 0 is a parameter and the weight function h satisfies:
(A1) There exist x1, x2 ∈ [0, 1] such that x1 < x2, h(t) > 0 on (x1, x2) and h(t) ≤ 0 on

[0, 1]\[x1, x2].
Based upon bifurcation method, they showed that (1.4) has three positive solutions sug-
gesting suitable conditions on the weight function and nonlinearity.

Motivated by these studies, we are interested in investigating the shape of unbounded
continua of solutions. Moreover, we show the existence and multiplicity of positive so-
lutions with respect to parameter λ by figuring the shape of continua of solutions, and
especially, we obtain the existence of three positive solutions for λ being in a certain in-
terval.
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Throughout the paper, we always suppose that f satisfies the following signum condi-
tion:

(H0) f ∈ C2(R,R) with f (s)s > 0 for s �= 0.
Clearly, (H0) implies f (0) = 0, hence, u = 0 is always the solution of problem (1.1). In or-
der to study the global bifurcation phenomena of problem (1.1), we must consider the
following eigenvalue problem:

⎧⎨
⎩–u′′(t) + q(t)u(t) = λh(t)u(t), t ∈ (0, 2π ),

u(0) = u(2π ), u′(0) = u′(2π ).
(1.5)

In 1997, Constantin [7] proved that problem (1.5) possesses two infinite sequences of
eigenvalues

· · · < λ–
2 ≤ λ–

1 < λ–
0 < 0 < λ+

0 < λ+
1 ≤ λ+

2 · · ·

such that λ+
0 and λ–

0 are simple eigenvalues with positive eigenfunctions.

Remark 1.1 The eigenvalues λ+
0 , λ–

0 are the minimum and maximum of the “Rayleigh quo-
tient” respectively, that is,

λ+
0 = inf

{∫ 2π

0

((
v′)2 + qv2)dt

∣∣∣ v(0) = v(2π ), v′(0) = v′(2π ),
∫ 2π

0
hv2 dt = 1

}

and

λ–
0 = sup

{
–

∫ 2π

0

((
v′)2 + qv2)dt

∣∣∣ v(0) = v(2π ), v′(0) = v′(2π ),
∫ 2π

0
–hv2 dt = 1

}
.

(H1) There exist constants f0, δ, δ̂ ∈ (0,∞) such that

f (s) = f0s – g(s), s ∈ [0, δ).

g(s) > 0 for all s > 0, lim
s→0+

g(s)
s

= 0,

lim
c→0+

∫ 2π

0
h(t)φ(t)

g(cφ(t))
c ln(1 + c)

dt = δ̂ > 0,

where φ is the positive eigenfunction corresponding to λ+
0 ;

(H2) f∞ := lims→∞ f (s)
s = 0;

(H3) There exists s0 > 0 such that

min
s∈[s0,2s0]

f (s)
s

≥ f0

λ+
0 h0

[(
2π

l

)2

+ q̂
]

,

where l = min1≤i≤n{x2i – x2i–1}, q̂ = maxs∈[0,2π ] q(s),
h0 = min1≤i≤n{h(t) | t ∈ [ t0+x2i–1

2 , t0+x2i
2 ]} for some t0 ∈ (x2i–1, x2i);
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(H4) There exists β > 0 such that

βh+(t) inf

{
f (s)

s
: s ∈ (0, 2s0]

}
≥ q(t), t ∈

n⋃
i=1

(x2i–1, x2i),

where h+(t) := max{h(t), 0};
(H5) q ∈ C[0, 2π ] with q ≥ 0 and q(t) �≡ 0 in [0, 2π ] satisfies

8π2s0‖q‖∞ + 2πβ
∥∥h–∥∥

L1(0,2π ) max
{

f (s) : s ∈ [0, 2s0]
} ≤ s0,

where h–(t) := max{–h(t), 0}.

It is easy to find that if (H1) holds, then

lim
s→0+

f (s)
s

= f0. (1.6)

Moreover, if (1.6) and (H2) hold, then there exists N > 0 such that

f (s) ≤ Ns, s ≥ 0. (1.7)

Theorem 1.1 Assume that (F1), (H0)–(H3) hold. Then there exist λ∗ ∈ (0, λ+
0

f0
) and λ∗ > λ+

0
f0

such that
(i) (1.1) has at least one positive solution if λ = λ∗;

(ii) (1.1) has at least two positive solutions if λ∗ < λ ≤ λ+
0

f0
;

(iii) (1.1) has at least three positive solutions if λ+
0

f0
< λ < λ∗;

(iv) (1.1) has at least two positive solutions if λ = λ∗;
(v) (1.1) has at least one positive solution if λ > λ∗;

(vi) (1.1) has at least one positive solution if λ < λ–
0

f0
.

Remark 1.2 Condition (F1) implies that the weight function h has n positive humps sep-
arated by n + 1 negative ones. Clearly, when n = 1, our condition (F1) will reduce to (A1).
Moreover, we do not require that the mean value of h is definite.

An outline of the work is as follows. In Sect. 2, we show global bifurcation phenomena
from the trivial branch with the rightward direction near the initial point. Section 3 is
devoted to showing the change of direction of bifurcation and to completing the proof of
Theorem 1.1.

2 Preliminaries and rightward bifurcation
In this section, we state some preliminary results and show global bifurcation phenomena
from the trivial branch with the rightward direction.

Let G(t, s) be the Green’s function of the homogeneous PBVPs

⎧⎨
⎩–u′′(t) + q(t)u(t) = 0, t ∈ (0, 2π ),

u(0) = u(2π ), u′(0) = u′(2π ).
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From Theorem 2.5 of [10], we know that G(t, s) > 0, ∀t, s ∈ [0, 2π ].
Let Y = C[0, 2π ] with the norm

‖u‖∞ = max
t∈[0,2π ]

∣∣u(t)
∣∣,

E = {u ∈ C1[0, 2π ] : u(0) = u(2π ), u′(0) = u′(2π )} with the norm

‖u‖ = max
t∈[0,2π ]

∣∣u(t)
∣∣ + max

t∈[0,2π ]

∣∣u′(t)
∣∣,

and P = {u ∈ E : u(t) ≥ 0} be the positive cone in E.
Define L : D(L) → Y by setting

Lu := –u′′ + q(t)u, u ∈ D(L),

where

D(L) =
{

u ∈ C2[0, 2π ] : u(0) = u(2π ), u′(0) = u′(2π )
}

.

Then L–1 : Y → E is compact.
Let ξ , ζ ∈ C(R,R) be such that f (u) = f0u + ξ (u), f (u) = f∞u + ζ (u). Clearly,

lim
u→0

ξ (u)
u

= 0, lim
u→∞

ζ (u)
u

= 0. (2.1)

Let ζ̃ (u) = max0≤s≤u |ζ (s)|, then ζ̃ is nondecreasing and

lim
u→∞

ζ̃ (u)
u

= 0. (2.2)

Let us consider

Lu – λh(t)f0u = λh(t)ξ (u) (2.3)

as a bifurcation problem from the trivial solution u ≡ 0.
Equation (2.3) can be converted to the equivalent equation

u(t) =
∫ 2π

0
G(t, s)

[
λh(s)f0u(s) + λh(s)ξ

(
u(s)

)]
ds

:= λL–1[h(·)f0u(·)](t) + λL–1[h(·)ξ(
u(·))](t).

Further we note that ‖L–1[h(·)ξ (u(·))]‖ = o(‖u‖) for u near 0 in E, since

∥∥L–1[h(·)ξ(
u(·))]∥∥ = max

t∈[0,2π ]

∣∣∣∣
∫ 2π

0
G(t, s)h(s)ξ

(
u(s)

)
ds

∣∣∣∣
+ max

t∈[0,2π ]

∣∣∣∣
∫ 2π

0
Gt(t, s)h(s)ξ

(
u(s)

)
ds

∣∣∣∣
≤ C · max

t∈[0,2π ]

∣∣h(s)
∣∣ · ∥∥ξ

(
u(·))∥∥∞.
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By an argument similar to proving [6, Theorem 4.3] with obvious changes, we may obtain
the following result.

Lemma 2.1 Assume that (H0), (H1), and (F1) hold. The pair ( λv
0

f0
, 0) is a bifurcation point

of problem (1.1). Moreover, there is an unbounded component Cv of the set of solutions of
problem (1.1) and

Cv ⊂
(

int P ∪
{(

λv
0

f0
, 0

)})
,

where v ∈ {+, –}.

Lemma 2.2 Assume that (F1) and (H1) hold. Let {(λn, un)} be a sequence of positive so-
lutions to (1.1) which satisfies λn → λ+

0
f0

and ‖un‖ → 0. Let φ be a positive eigenfunction
corresponding to λ+

0 , which satisfies ‖φ‖ = 1. Then there exists a subsequence of {un}, again
denoted by {un}, such that un

‖un‖ converges uniformly to φ on [0, 2π ].

Proof Set vn := un
‖un‖ , since vn is bounded in C2[0, 2π ], after taking a subsequence if nec-

essary, we have that {vn} uniformly converges to a limit v ∈ E with ‖v‖ = 1, and we again
denote by {vn} the subsequence.

For every (λn, un), we have

un(t) = λn

∫ 2π

0
G(t, s)h(s)

[
f0un(s) + ξ

(
un(s)

)]
ds. (2.4)

Dividing both sides of (2.4) by ‖un‖, we get

vn(t) = λn

∫ 2π

0
G(t, s)h(s)

[
f0vn(s) +

ξ (un(s))
‖un‖

]
ds. (2.5)

Since un(s) → 0 for all s ∈ [0, 2π ], we conclude that ξ (un(s))
‖un‖ → 0 for each fixed s ∈ [0, 2π ].

Lebesgue’s dominated convergence theorem shows that

v(t) = λ+
0

∫ 2π

0
G(t, s)h(s)v(s) ds

for each fixed t ∈ [0, 2π ], which means that v is a nontrivial solution of (1.5) with λ = λ+
0 ,

and hence v ≡ φ. �

Next, we give an important lemma which will be used later.

Lemma 2.3 Assume that (F1) holds. Let α ≥ 0, and let φ be a positive eigenfunction corre-
sponding to λ+

0 . Then

∫ 2π

0
h(t)

[
φ(t)

]2+α dt > 0.
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Proof Multiplying the equation of (1.5) by φα+1 and integrating it over [0, 2π ], we obtain

λ+
0

∫ 2π

0
h(t)

[
φ(t)

]α+2 dt = –
∫ 2π

0
φ′′(t)

[
φ(t)

]α+1 dt +
∫ 2π

0
q(t)

[
φ(t)

]α+2 dt

= (α + 1)
∫ 2π

0

[
φ′(t)

]2[
φ(t)

]α dt +
∫ 2π

0
q(t)

[
φ(t)

]α+2 dt > 0. �

Lemma 2.4 Assume that (F1), (H1), and (H2) hold. Let C+ be as in Lemma 2.1. Then
(λ, u) ∈ C+ and |λ – λ+

0
f0

| + ‖u‖ ≤ δ
2 imply λ > λ+

0
f0

.

Proof We divide the proof into two steps.
Step 1: We show that for (λ, u) ∈ C+ satisfying |λ – λ+

0
f0

| + ‖u‖ ≤ δ
2 , we get λ ≥ λ+

0
f0

.

Assume to the contrary that there exists a sequence {(λn, un)} ⊂ C+ such that λn → λ+
0

f0
,

‖un‖ → 0, and λn < λ+
0

f0
. By Lemma 2.2, there exists a subsequence of {un}, again denoted

by {un}, such that un
‖un‖ converges uniformly to φ on [0, 2π ], where φ is the positive eigen-

function corresponding to λ+
0 , which satisfies ‖φ‖ = 1. Multiplying equation (1.1) with

(λ, u) = (λn, un) by un and integrating it over [0, 2π ], we obtain

λn

∫ 2π

0
h(s)f

(
un(s)

)
un(s) ds =

∫ 2π

0

[
–u′′

n(s) + q(s)un(s)
]
un(s) ds. (2.6)

By simple computation and using the definition of λ+
0 in Remark 1.1, we get

λn

∫ 2π

0
h(s)f

(
un(s)

)
un(s) ds =

∫ 2π

0

[
u′

n(s)
]2 ds +

∫ 2π

0
q(s)u2

n(s) ds

≥ λ+
0

∫ 2π

0
h(s)u2

n(s) ds, (2.7)

that is,

∫ 2π

0
h(s)

f (un(s)) – f0un(s)
un(s)

[un(s)]2

‖un‖2 ds ≥ λ+
0 – f0λn

λn

∫ 2π

0
h(s)

[un(s)]2

‖un‖2 ds. (2.8)

Lebesgue’s dominated convergence theorem, condition (H1), and Lemma 2.3 imply that

∫ 2π

0
h(s)

f (un(s)) – f0un(s)
un(s)

[un(s)]2

‖un‖2 ds → 0 ·
∫ 2π

0
h(s)φ2(s) ds = 0,

and

∫ 2π

0
h(s)

[un(s)]2

‖un‖2 ds →
∫ 2π

0
h(s)φ2(s) ds > 0.

This contradicts λn < λ+
0

f0
.

Step 2: We show that for all (λ, u) ∈ C+ and |λ – λ+
0

f0
| + ‖u‖ ≤ δ

2 , we have λ > λ+
0

f0
.

Let X = {u ∈ C2[0, 2π ] : u(0) = u(2π ), u′(0) = u′(2π )}, Y = C[0, 2π ].
Define F : R× X → Y by

F(λ, u) := –u′′ + q(t)u – λh(t)f (u).
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Obviously,

F(λ, 0) = 0, λ ∈R,

and Fu, Fλ, Fλu are continuous,

Fu(λ, 0)w = –w′′ + q(t)w – λf0h(t)w,

and

N
(

Fu

(
λ+

0
f0

, 0
))

= span{φ}, R
(

Fu

(
λ+

0
f0

, 0
))

=
{

v ∈ Y :
∫ 2π

0
vφ dx = 0

}
.

Here, λ+
0 is the first eigenvalue of problem (1.5), φ is the positive eigenfunction corre-

sponding to λ+
0 . Thus

dim N
(

Fu

(
λ+

0
f0

, 0
))

= codim R
(

Fu

(
λ+

0
f0

, 0
))

= 1.

Since Fλu( λ+
0

f0
, 0)φ = –f0h(t)φ, we have from Lemma 2.3 that

f0

∫ 2π

0
h(t)φ2 dt > 0,

and accordingly Fλu( λ+
0

f0
, 0)φ /∈ R(Fu( λ+

0
f0

, 0)).
Now, we are in a position to use the well-known Crandall–Rabinowitz bifurcation the-

orem (see [15, Theorem 1.7]). Thus, there exists a nontrivial continuously differentiable
curve passing through ( λ+

0
f0

, 0) with the form

{(
λ+

0
f0

(s), u(s)
) ∣∣∣ s ∈ (–a, a)

}
,

such that(
λ+

0
f0

(s), u(s)
)

=
(

λ+
0

f0
+ μ(s), s

(
φ + γ (s)

))
,

where μ : (–a, a) →R, γ : (–a, a) → Z are continuous functions satisfying μ(0) = 0, γ (0) =
0, γ ′(0) = 0. Here, Z is any complement of N(F , (0, 0)) in X.

Assume to the contrary that there exists a sequence {(λn, un)} ⊂ C+ such that λn =
λ+

0
f0

, un(t) = cn(φ(t) + γ (cn)), t ∈ [0, 2π ] with ‖un‖ → 0, where cn > 0, limn→∞ cn = 0,
limn→∞ γ (cn)

cn
= 0. Multiplying equation (1.1) with (λ, u) = (λn, un) by φ(t) and integrating it

over [0, 2π ], we obtain

∫ 2π

0

(
φ′′(t) – q(t)φ(t) + λ+

0 h(t)φ(t)
)
un(t) dt = λn

∫ 2π

0
h(t)g

(
cn

(
φ(t) + γ (cn)

))
φ(t) dt.

By this fact together with (1.5), we have

∫ 2π

0

(
φ′′(t) – q(t)φ(t) + λ+

0 h(t)φ(t)
)
un(t) dt = 0,
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and accordingly,

∫ 2π

0
h(t)g

(
cn

(
φ(t) + γ (cn)

))
φ(t) dt = 0. (2.9)

Define

In =
∫ 2π

0
h(t)φ(t)g

(
cnφ(t)

)
dt,

Jn =
∫ 2π

0
h(t)φ(t)g

(
cn

(
φ(t) + γ (cn)

))
dt.

We may assume that

|cn| ≤ 1,
∣∣γ (cn)

∣∣ ≤ M0.

Let I0 := [0,‖φ‖∞ + M0]. We only need to work for the function g|I0 .
By simple computation, we get

∣∣∣∣ Jn – In

cn

∣∣∣∣ ≤ 1
cn ln(1 + cn)

∫ 2π

0

∣∣h(t)φ(t)
(
g
(
cn

(
φ(t) + γ (cn)

))
– g

(
cnφ(t)

))∣∣dt

≤ |γ (cn)|
ln(1 + cn)

2π‖h‖∞‖φ‖∞
∥∥g ′∥∥

L∞(I0).

Here, g ′(s) to the derivative of g(s). Moreover, γ (·) is a continuous function with γ (0) = 0,
γ ′(0) = 0, these together with cn > 0 and limn→∞ cn = 0 imply

lim
n→∞

|γ (cn)|
ln(1 + cn)

= 0,

since

lim
s→0+

|γ (s)|/s
(ln(1 + s))/s

= 0.

Thus

|γ (cn)|
ln(1 + cn)

2π‖h‖∞‖φ‖∞
∥∥g ′∥∥

L∞(I0) ≤ δ̂

4
, n ≥ N1,

that is,

∣∣∣∣ Jn – In

cn ln(1 + cn)

∣∣∣∣ ≤ δ̂

4
, n ≥ N1,

i.e.,

In

cn ln(1 + cn)
–

δ̂

4
≤ Jn

cn ln(1 + cn)
≤ In

cn ln(1 + cn)
+

δ̂

4
, n ≥ N1.
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From (H1), we have that there exists N∗ > 0, ∀n ≥ N∗,

In

cn ln(1 + cn)
≥ δ̂

2
,

and subsequently,

Jn

cn ln(1 + cn)
≥ In

cn ln(1 + cn)
–

δ̂

4
=

δ̂

4
> 0.

Thus, for n ≥ max{N1, N∗}, we have

∫ 2π

0
h(t)g

(
cnφ(t) + γ (cn)

)
φ(t) dt > 0.

However, this contradicts (2.9). �

3 Second turn of component and proof of Theorem 1.1
In this section, we show that there is a direction turn of the bifurcation under condition
(H3), and accordingly we finish the proof of Theorem 1.1.

Lemma 3.1 Let (H1) and (H2) hold. Assume that {(λk , uk)} is a sequence of positive solu-
tions of (1.1). Assume that |λk| < C0 for some constant C0 > 0, and

lim
k→∞

‖uk‖ → ∞,

then

lim
k→∞

‖uk‖∞ → ∞.

Proof By Rolle’s theorem, there exists η ∈ (0, 2π ) such that u′(η) = 0. Integrating the equa-
tion of (1.1) over [η, x], we have

u′
k(x) =

∫ x

η

u′′
k (s) =

∫ x

η

q(s)uk(s) ds – λk

∫ x

η

h(s)f
(
uk(s)

)
ds, s ∈ [0, 2π ].

Recalling (1.7) for some N > 0, we get

u′
k(x) =

∫ x

η

u′′
k (s) ≤

∫ x

η

q(s)uk(s) ds + λk

∫ x

η

∣∣h(s)
∣∣f (uk(s)

)
ds

≤
(∫ 2π

0
q(s) ds + C0N

∫ 2π

0

∣∣h(s)
∣∣ds

)
‖uk‖∞. (3.1)

(3.1) implies that {‖u′
k‖∞} is bounded whenever {‖uk‖∞} is bounded. �

Lemma 3.2 If u ∈ D(L), then

∥∥u′∥∥∞ ≤ ∥∥(
u′′)±∥∥

L1(0,2π ).



He et al. Boundary Value Problems  (2018) 2018:93 Page 11 of 17

Proof By Rolle’s theorem, there exists η ∈ (0, 2π ) such that u′(η) = 0. For every t ∈ [0, 2π ],
we have

u′(t) =
∫ t

η

u′′(s) ds ≤
∫ t

η

(
u′′(s)

)+ ds ≤
∫ 2π

0

(
u′′(s)

)+ ds =
∥∥(

u′′)+∥∥
L1(0,2π ),

that is,

∥∥u′∥∥∞ ≤ ∥∥(
u′′)+∥∥

L1(0,2π ).

On the other hand,

–u′(t) =
∫ t

η

–u′′(s) ds ≤
∫ t

η

(
–u′′(s)

)+ ds =
∫ t

η

(
u′′(s)

)– ds ≤
∫ 2π

0

(
u′′(s)

)– ds

=
∥∥(

u′′)–∥∥
L1(0,2π ),

i.e.,

∥∥u′∥∥∞ ≤ ∥∥(
u′′)–∥∥

L1(0,2π ).

Thus,

∥∥u′∥∥∞ ≤ ∥∥(
u′′)±∥∥

L1(0,2π ). �

Lemma 3.3 Let J ⊆ (0,β] be a compact interval. Assume that (F1) and (H5) hold. Let (λ, u)
be a positive solution of (1.1) with λ ∈ J , u > 0. Then

1
2
‖u‖∞ ≤ u(t) ≤ ‖u‖∞, t ∈ [0, 2π ].

Proof We claim that if (λ, u) is a positive solution of (1.1) with ‖u‖∞ = 2s0, then

min
t∈[0,2π ]

u(t) ≥ s0.

Assume to the contrary that there exists (μn, un), a solution of problem (1.1), such that
‖un‖∞ = 2s0, mint∈[0,2π ] un(t) → 0+ (n → ∞).

Since un is bounded in C2[0, 2π ], after taking a subsequence if necessary, we have {un}
uniformly converges to a limit û with ‖û‖∞ = 2s0 and û(t∗) = 0, û′(t∗) = 0 for some t∗ ∈
[0, 2π ]. From Lemma 4.7 of [6], we know that u(t) ≡ 0, t ∈ [0, 2π ]. This is a contradiction.

Let ω(u) be the amplitude of the solution u. Combining this with Lemma 3.2, we have

ω(u) =
∫ t0

t1

u′(s) ds ≤ 2π
∥∥u′∥∥∞ ≤ 2π

∥∥(
u′′)+∥∥

L1(0,2π ) = 2π

∫ 2π

0

(
u′′)+ ds

= 2π

∫ 2π

0

(
–u′′)– ds. (3.2)

Here, u(t0) = ‖u‖∞, u(t1) = mint∈[0,2π ] u(t).
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By simple computation, we get

ω(u) ≤ 2π

∫ 2π

0

(
–u′′)– ds

= 2π
∥∥(

λh(t)f (u) – q(t)u
)–∥∥

L1(0,2π )

≤ 2π
∥∥λh–(t)f (u)

∥∥
L1(0,2π ) + 2π

∥∥q(t)u
∥∥

L1(0,2π ).

Since for any function a(x), b(x), we have

[
a(x) + b(x)

]– ≤ a–(x) + b–(x).

Combining this with (H5), we have

ω(u) ≤ s0.

Thus

min
t∈[0,2π ]

u(t) ≥ s0 =
1
2
‖u‖∞.

Therefore, the claim is proved. �

Lemma 3.4 Assume that (F1) and (H4) hold. Let u be a positive solution of (1.1) with
‖u‖∞ = u(t0), then for every λ > β , we have

1
2
‖u‖∞ ≤ u(t) ≤ ‖u‖∞, t ∈

[
t0 + x2i0–1

2
,

t0 + x2i0
2

]
,

and t0 ∈ (x2i0–1, x2i0 ) for some i0 ∈ {1, 2, . . . , n}.

Proof Since –u′′(t) = (λh(t) f (u)
u – q(t))u, condition (H4) implies that

–u′′(t) ≥ βh+(t) inf

{
f (u)

u
: u ∈ (0, 2s0]

}
u(t) – q(t)u(t) ≥ 0, t ∈

n⋃
i=1

(x2i–1, x2i).

Note that condition (F1) implies that u′(t) is decreasing on
⋃n

i=1(x2i–1, x2i). Moreover, if
t ∈ [0, 2π ]\⋃n

i=1[x2i–1, x2i], (F1) implies that u′(t) is increasing on [0, 2π ]\⋃n
i=1[x2i–1, x2i].

Thus u is convex on [0, 2π ]\⋃n
i=1[x2i–1, x2i] and concave on

⋃n
i=1(x2i–1, x2i). Therefore, t0

must be in (x2i0–1, x2i0 ) for some i0 ∈ {1, 2, . . . , n}.
In fact, assume on the contrary that t0 ∈ [0, 2π ]\⋃n

i=1[x2i–1, x2i], then it follows from

–u′′(t0) + q(t0)u(t0) = λh(t0)f
(
u(t0)

)
.

Since f (u(t0)) > 0, h(t0) < 0, and λ > 0, we have that the right-hand side is negative. How-
ever, q(t0)u(t0) ≥ 0 and u′′(t0) ≤ 0 imply that the left-hand side is nonnegative. This is a
contradiction. Therefore,

t0 ∈ (x2i0–1, x2i0 ).
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By simple computation, we get

u(t) ≥ ‖u‖∞
t0 – x2i0–1

(t – x2i0–1), t ∈ [x2i0–1, t0].

Note that t–x2i0–1
t0–x2i0–1

≥ 1
2 is equivalent to t ≥ t0+x2i0–1

2 . Similarly,

u(t) ≥ ‖u‖∞
x2i0 – t0

(x2i0 – t), t ∈ [t0, x2i0 ],

and x2i0 –t
x2i0 –t0

≥ 1
2 is equivalent to t ≤ t0+x2i0

2 . Therefore, we have

1
2
‖u‖∞ ≤ u(t) ≤ ‖u‖∞, t ∈

[
t0 + x2i0–1

2
,

t0 + x2i0
2

]
. �

Lemma 3.5 Assume that (F1) and (H4) hold. Let u be a positive solution of (1.1) with
‖u‖∞ = 2s0. Then λ < λ+

0
f0

.

Proof Let u be a positive solution of (1.1) with ‖u‖∞ = 2s0. By Lemmas 3.3, 3.4,

s0 ≤ u(t) ≤ 2s0, t ∈ I,

where

I =
[

t0 + x2i0–1

2
,

t0 + x2i0
2

]
.

Now we assume λ ≥ λ+
0

f0
. Then, for t ∈ I , by (H3), we get

λh(t)
f (u(t))

u(t)
– q(t) ≥ λ+

0
f0

h0
f0

λ+
0 h0

[(
2π

l

)2

+ q̂
]

– q̂ =
(

2π

l

)2

≥
(

2π

x2i0 – x2i0–1

)2

.

Set

v(t) := sin

(
2π

x2i0 – x2i0–1

(
t –

t0 + x2i0–1

2

))
,

it is known that v( t0+x2i0–1
2 ) = v( t0+x2i0

2 ) = 0.
Then v is a solution of

⎧⎨
⎩v′′(t) + ( 2π

x2i0 –x2i0–1
)2v(t) = 0, t ∈ I,

v( t0+x2i0–1
2 ) = v( t0+x2i0

2 ) = 0.

Obviously v(t) > 0 on ( t0+x2i0–1
2 , t0+x2i0

2 ).
We note that u is a solution of

u′′(t) +
(

λh(t)
f (u(t))

u(t)
– q(t)

)
u(t) = 0
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on I . The Sturm comparison theorem [16] implies that u has at least one zero on I . This
contradicts the fact that u(t) > 0 on I . �

Using an argument similar to proving [6, Theorem 5.2] with obvious changes, we have
the following lemma.

Lemma 3.6 If f0 ∈ (0, +∞) and f∞ = 0, then C+ joins ( λ+
0

f0
, 0) to (+∞, +∞), C– joins ( λ–

0
f0

, 0)
to (–∞, +∞).

Proof of Theorem 1.1 From Lemma 2.1, there exists an unbounded connected component
Cv in the positive solutions set of (1.1). Moreover, Cv ⊂ ((R+ × int P) ∪ { λv

0
f0

, 0}), where v ∈
{+, –}.

By Lemma 3.1, it follows that there exists (λ0, u0) ∈ C+ such that ‖u0‖∞ = 2s0 and
Lemma 3.5 implies that λ0 < λ+

0
f0

. By Lemmas 2.4, 3.5, C+ passes through some points ( λ+
0

f0
, v1)

and ( λ+
0

f0
, v2) with ‖v1‖∞ < 2s0 < ‖v2‖∞, and there exist λ and λ which satisfy 0 < λ < λ+

0
f0

< λ

and both (i) and (ii):
(i) If λ ∈ ( λ+

0
f0

,λ], then there exist u and v such that (λ, u), (λ, v) ∈ C+ and
‖u‖∞ < ‖v‖∞ < 2s0;

(ii) If λ ∈ (λ, λ+
0

f0
], then there exist u and v such that (λ, u), (λ, v) ∈ C+ and

‖u‖∞ < 2s0 < ‖v‖∞.
Define λ∗ = sup{λ : λ satisfies (i)} and λ∗ = inf{λ : λ satisfies (ii)}. Then (1.1) has a positive

solution uλ∗ at λ = λ∗ and uλ∗ at λ = λ∗, respectively.
Clearly, C+ turns to the left at (λ∗,‖uλ∗‖∞) and to the right at (λ∗,‖uλ∗‖∞), finally to

the right near λ = +∞. Furthermore, by Lemma 3.6, it follows that, for each λ ∈ (–∞, λ–
0

f0
),

problem (1.1) has a positive solution. This completes the proof of Theorem 1.1. �

Now we strengthen the assumptions on f and h as follows:
(H6) f ∈ C2([0,∞), [0,∞)) with f (0) = 0 and f (s) > 0 for s > 0;
(H7) f ′′(s) < 0 for s ∈ [0, s1);
(H8) h ∈ C([0, 2π ], [0, +∞)) and h �≡ 0.
By Theorem 1.1, we can easily show the following corollary.

Corollary 3.1 Assume that (H2), (H3), (H6)–(H8) hold. Then there exist λ∗ ∈ (0, λ+
0

f0
) and

λ∗ > λ+
0

f0
such that

(i) (1.1) has at least one positive solution if λ = λ∗;
(ii) (1.1) has at least two positive solutions if λ∗ < λ ≤ λ+

0
f0

;

(iii) (1.1) has at least three positive solutions if λ+
0

f0
< λ < λ∗;

(iv) (1.1) has at least two positive solutions if λ = λ∗;
(v) (1.1) has at least one positive solution if λ > λ∗;

(vi) (1.1) has at least one positive solution if λ < λ–
0

f0
.

Remark 3.1 Let us consider the nonlinear problem

⎧⎨
⎩–u′′(t) + qσ (t)u(t) = λhσ (t)f (u(t)), t ∈ (0, 1),

u(0) = u(1), u′(0) = u′(1),
(3.3)
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where σ ∈ (0, 1
2 ) is a parameter,

hσ (t) = 1 – t – σ , t ∈ [0, 1],

qσ (t) =
1

10

⎧⎨
⎩1 – t – σ , t ∈ [0, 1 – σ ],

t – 1 + σ , t ∈ (1 – σ , 1],

f (s) =

⎧⎪⎪⎨
⎪⎪⎩

s – s ln(1 + s), s ∈ [0, 1),

κs – κ + 1 – ln 2, s ∈ [1, 4),
√

s + 3κ – 1 – ln 2, s ∈ [4,∞).

Here κ = 80π2

(1–σ )2 + 2.

Let λ+
0 (σ ) be the first positive eigenvalue corresponding to the linear problem⎧⎨

⎩–u′′(t) + qσ u(t) = λhσ (t)u(t), t ∈ (0, 1),

u(0) = u(1), u′(0) = u′(1).
(3.4)

Let φ be the positive eigenfunction corresponding to λ+
0 (σ ). Next, we will estimate the

range of the value of λ+
0 (σ ). Recalling

λ+
0 (σ ) = inf

{∫ 1
0 ((u′)2 + qσ u2) dt∫ 1

0 hσ u2 dt

∣∣∣ u(0) = u(1), u′(0) = u′(1)
}

.

Since∫ 1
0 ((u′)2 + qσ u2) dt∫ 1

0 hσ u2 dt
≥

∫ 1
0 qσ u2 dt∫ 1
0 hσ u2 dt

≥
∫ 1–σ

0 qσ u2 dt∫ 1–σ

0 hσ u2 dt
=

1
10

,

that is,

λ+
0 (σ ) ≥ 1

10
.

We will check that all of the conditions in Theorem 1.1 are fulfilled.
In fact,

f0 = 1; g(s) = s ln(1 + s) for s ∈ [0, 1],

and

lim
c→0+

∫ 1

0
hσ (s)

g(cφ(s))
c ln(1 + c)

φ(s) ds =
∫ 1

0
h(s)φ3(s) ds = � > 0

(see Lemma 2.3).
Let ‖u‖∞ = 4, then the function f satisfies (H3) with s0 = 2, l = 1 – σ , q̂σ = 1

10 (1 – σ ),
hσ0 = 1–σ

2 , such that

min
s∈[2,4]

f (s)
s

≥ 80π2

(1 – σ )2 + 2.

Furthermore, the function f satisfies (H1) and (H2).
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Moreover,

inf

{
f (s)

s
: s ∈ (0, 4]

}
= 1 – ln 2, max

{
f (s) : s ∈ [0, 4]

}
= 3κ + 1 – ln 2,

h+
σ (t) =

⎧⎨
⎩1 – t – σ , t ∈ [0, 1 – σ ],

0, t ∈ (1 – σ , 1],

h–
σ (t) =

⎧⎨
⎩0, t ∈ [0, 1 – σ ],

t – 1 + σ , t ∈ (1 – σ , 1].

Note that ‖h–
σ ‖L1(0,1) = 1

2σ 2, ‖qσ ‖∞ = 1–σ
10 . Obviously, there exists β = 4 such that (H4) and

(H5) are satisfied with σ ≤ σ0. Here, σ0 is the unique positive solution of the equation

2σ 2(3κ + 1 – ln 2) +
2(1 – σ )

5
= 2.

Since, χ (σ ) := 2σ 2(3κ + 1 – ln 2) + 2(1–σ )
5 – 2 is strictly increasing for σ ∈ [0, 1) with χ (0) =

– 8
5 .
By using maple 17, we may get

σ0 ≈ 0.018.

Therefore, the conclusions of Theorem 1.1 are valid if σ ≤ σ0.

Remark 3.2 It is worth remarking that g(s) = s ln(1 + s) for s ∈ [0, 1] has a big difference
with the function g(s) ≈ f1s1+α for some α > 1 (see [14, (F1)]) since

lim
s→0+

s ln(1 + s)
s1+α

= ∞.
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