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Abstract
The aim of this paper is to investigate the existence of weak solutions for a
two-dimensional Schrödinger equation with a singular potential in C+. Under
appropriate assumptions on the nonlinearity, we introduce a new type of quantum
calculus via the Morse theory and variational methods. By applying Schrödinger type
inequalities and the well-known Banach fixed point theorem in conjunction with the
technique of measures of weak noncompactness, the new and more accurate
estimations for boundary behaviors of them are also deduced.
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1 Introduction
In this paper, we study the following two-dimensional Schrödinger equation (see [1]):

Lu = ∂2
t u – x∂2

x u + C1∂xu – C2
(
t2 – 4x

)–1u = 0,

ut(0, x) = u1(x),

u(0, x) = u0(x),

(1)

in the upper half plane C+ = {z = t + ix : x > 0}, where the variables t and x are complex
numbers in C+ and C1 and C2 are real numbers. Our first aim is to construct the solution
in terms of hypergeometric functions.

Let a be a real number, p > 1 and C2 = ap. Then Eq. (1) arises naturally by linearizing the
Klein–Gordon equation variable boundary (see [2]):

∂2
t u – x∂2

x u + C1∂xu = aup,

in C+, which shows that

u =
(
t2 – 4x

) 1
1–p .

In general, the study of the solutions of the two-dimensional Schrödinger and their re-
lated properties are very complicated; especially if the roots of the characteristic poly-
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nomial are double and not analytic at the origin. The explicit difficulties in dealing with
quadratic-type non-linearities in two dimensions are our inability to use the Strichartz
inequalities.

However, many authors have showed that the solution of the two-dimensional Schrö-
dinger equations can be expressed by using a variational inequality. In recent years, various
extensions and generalizations of the classical variational inequality models and comple-
mentarity problems have emerged in quantum and fluid mechanics, nonlinear program-
ming, physics, optimization and control, economics, transportation, finance, structural,
elasticity and applied sciences (see [3–7] and the references therein for details).

The classical Schrödinger solution spaces Hp(C+) (see [8]), are defined to consist of so-
lutions of (1), holomorphic in C+ with the property that Mp(u, x) is uniformly bounded
for x > 0, where

Mp(u, x) =
(∫ +∞

–∞

∣∣u(t + ix)
∣∣p dt

) 1
p

.

Since |u|p is the weak solution of (1) for u ∈ Hp(C+) (see [9]), the solution Mp(u, x)
decreases in (0,∞),

‖u‖Hp(C+) = sup
{
Mp(u, y) : 0 < x < ∞}

= lim
x→0

Mp(u, x).

Define

‖u‖p =
(∫ +∞

–∞

∣
∣u(t)

∣
∣p dt

) 1
p

= ‖u‖Hp(C+).

We remark that φ(k)(t) ∈ Lp and φ(t) ∈ C∞ if and only if φ(t) belongs to the space DLp

(see [6]). LetF denote the space, which consists of infinitely differentiable weak solution of
(1) in C+. Let F ′

Lp denote the dual of the space FLq , that is, F ′
Lp = (FLq )′. We also denote

q = p
p–1 and by D′ the dual of the space D. So we can get D ⊆FLp and F ′

Lp ⊆ D′.

Definition 1.1 (see [10]) If u ∈F ′, then it has the following representation:

lim
x→0+

∫ +∞

–∞

[
g(t + ix) – g(t – ix)

]
φ(t) dt =

〈
u(t),φ(t)

〉

for any test function φ ∈ F and any function g(z) in C+, where g(z) is analytic on the
complement of the support of u.

Definition 1.2 (see [9]) Let Du be the Stokes operator defined by

〈Du,φ〉 = 〈u, –Dφ〉

on F ′
Lp for all φ ∈FLq .

It is obvious that

Du ∈F ′
Lp ,

where u ∈F ′
Lp .
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Since u ∈ F ′
Lp , Dϕ ∈ DLp′ , Du defined as above is a functional on DLp′ . Linearity of Du

is nontrivial. If {ϕv} → ϕ in DLp′ , then it is easy to see that

〈Du,ϕv〉 = 〈u, –Dϕv〉 → 〈u, –Dϕ〉 = 〈Du,ϕ〉.

2 Construction of the solutions
By virtue of the weak maximum principle of superposition, it is necessary to consider the
following Riemann problems:

Rϑ = 0,

ϑ(0, x) = xl,

ϑt(0, x) = 0,

(2)

and

Rς = 0,

ς (0, x) = 0,

ςt(0, x) = xl.

(3)

First we solve (2). Put x = τ1 and 4x – t2 = τ2 in Eqs. (2) and (3). Let

ϑ(t, x) = ϑl(t, x) = τ l
1ϑ(z),

where

4τ1z = 4τ1 – τ2.

Substituting τ l
1ϑ(z) with ϑ , it follows that Rϑ = 0, from which one concludes that

Rϑ =
1
2
τ l–1

1 ϑ ′ + zτ l–1
1 ϑ ′′ – z2τ l–1

1 ϑ ′′ – 2zτ l–1
1 ϑ ′ + lzτ l–1

1 ϑ ′

+ zlτ l–1
1 ϑ ′ – l(l – 1)τ l–1

1 V + C
(
lτ l–1

1 V – zτ l–1
1 ϑ ′) +

B
τ2

τ l
1V = 0.

By a simple calculation, we know that

x(1 – x)ϑ ′′ +
(

1
2

–
(
C + 2(1 – l)

)
z
)

ϑ ′

+
(

l(C – l + 1) –
1
4

B
(

1
x – 1

))
v = 0. (4)

By replacing τ1
τ2

by 1
4(1–x) , it is obvious that

x(1 – x)�′′ +
(

1
2

–
(
C + 2(1 – l + σ )

)
z
)

�′ + σ� = 0, (5)
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which is equivalent to a hyperbolic–parabolic differential equation with

(
σ – l, C + σ – l + 1,

1
2

)
,

iff

σ

(
2l – σ – C –

1
2

)
=

1
4

B. (6)

It follows from the hypergeometric equation theory that the first and the second solu-
tions for the hyperbolic–parabolic equation are

�1(z) = g(a, b; c; z) = F
(

σ – l, C + σ – l + 1;
1
2

; z
)

and

�2(z) = z1/2F
(

σ – l +
1
2

, C + σ – l +
3
2

,
3
2

; z
)

,

respectively.
Let z = t2

4x , where |z| < 1. It is easy to see that a complete solution of the hyperbolic–
parabolic equation is

� = F
(

σ – l, C + σ – l + 1,
1
2

; z
)

+ Ez1/2F
(

σ – l +
1
2

, C + σ – l +
3
2

,
3
2

; z
)

. (7)

So ϑ = xl(1 – x)σ x is a solution of Rϑ = 0. Notice that

ϑ(0, z) = zl and ϑt(0, z) = 0,

which immediately shows that

ϑ = ϑlσ = zl
(

1 –
t2

4z

)σ

F
(

σ – l, C + σ – l + 1,
1
2

;
t2

4z

)
. (8)

Similarly, we can solve the problem (2) by letting

ς (t, x) = txl(4x – 4xt2)σ ′
y,

which shows that

ς (t, x) = ςl,σ ′ (t, x)

= t(4)–σ ′
xl–σ ′(

4x – t2)σ ′
F
(

σ ′ – l, C + σ ′ – l + 1,
3
2

;
t2

4x

)
. (9)
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3 Boundary behaviors
Theorem 3.1 If u ∈F ′

Lp , then

2π ig(z) =
〈
u(t), (t – z)–1〉

is one of the representations of the solution u such that

sup
t∈R,t≥δ>0

∥∥g(t + ix)
∥∥ = Aδ < ∞

and

sup
t∈R

∥∥g(t + ix)
∥∥ = O

(
t– 1

p
)
,

where x → ∞ and there exists a function Gk(z) ∈Hp(C+) such that

g(z) =
r∑

l=1

∂ l–1Gk(z)
∂zl–1 (10)

and

G(j)(z) =
r∑

l=1

∂ j+l–1Gk(z)
∂zj+l–1 .

Theorem 3.2 If g is defined in (10) and Gk ∈ Hp(C+), then there exists a Schrödinger dis-
tributional solution u(t) ∈F ′

Lp such that g(z) is one of the analytic representations of u.

Corollary 1 If u(t) ∈F ′
Lp , then

2π ig(z) =
〈
u(t), (t – z)–1〉

satisfies

sup
t∈R,t≥δ>0

∥
∥g(t + ix)

∥
∥ = Cδ < ∞

and

sup
t∈R

∥∥g(t + ix)
∥∥ = O

(
t– 1

p
)
,

as x → ∞ and there exists a function Gk in Hp(C+) such that

g =
r∑

l=1

∂ j+l–1Gk

∂zj+l–1 .
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4 Lemmas
The following lemmas are required in this section.

Lemma 4.1 (see [11, p. 69]) If u ∈Lp(R) and G is defined by

2π iG(u)(t) =
∫ ∞

–∞
u(t)(t – z)–1 dt,

then

G(u) ∈H
p(C+).

Lemma 4.2 (see [11, p. 77]) Let g(z) be any weak solution of Eq. (1) such that the following
properties hold.

(I) g(t + ix) ∈Lp for any fixed x > 0;
(II)

lim
x→0+

g(t + ix) = g+(t)

in F ′
Lp (weakly),

sup
t∈R

∥
∥g(t + ix)

∥
∥ → O,

as x → ∞ and

sup
t∈R,t≥δ>0

∥∥g(t + ix)
∥∥ = Cδ < ∞.

Then

2π ig(z) =
〈
g+(t), (t – z)–1〉,

where Im z > 0.

5 Proofs of main results
5.1 Proof of Theorem 3.1
By virtue of the fixed point theorem with respect to the stationary Schrödinger operator
in [8], we have

2π ig(z) =
〈
u+(t), (t – z)–1〉

for any u ∈F ′
Lp , which shows that

2π ig(z) =
r∑

l=1

∫

R

ul(t)
(

–
∂

∂t

)(l–1)

(t – z)–1 dt

=
r∑

l=1

∫

R

ul(t)(–1)l–1(l – 1)!(t – z)–l dt,

where r is a nonnegative integer and ul ∈ Lp.
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So

2π
∣
∣g(t + ix)

∣
∣ ≤

r∑

l=1

∫

R

∣
∣ul(t)

∣
∣(l – 1)!(t – z)–l dt,

which shows that

∣∣g(t + ix)
∣∣ ≤ 1

2π

r∑

l=1

(l – 1)!
(∫

R

∣∣ul(t)
∣∣p dt

) 1
p
(∫

R
(t – z)–lq dt

) 1
q

from the Hölder inequality.
Put

I =
∫

R

(t – z)–lq dt.

So

I =
∫

R

1

[(t – x)2 + t2])
lq
2

dt

=
∫

R

1

tlq[( t
y )2 + 1]

lq
2

dt

=
1

tlq–1

∫

R

1

(1 + t2)
lq
y

dt,

which yields

I ≤ C
δlq–1 < ∞,

where C is a positive constant.
Since ul ∈Lp, then

sup
t∈R,t≥δ>0

∥
∥g(t + ix)

∥
∥ = Cδ < ∞,

where M is a positive constant,

2πAδ =
r∑

l=1

(l – 1)!
MC

1
q

k′–1
δq

,

∣∣t
1
p g(t + ix)

∣∣ ≤
r∑

l=1

(l – 1)!‖ul‖p
L

1

tlq–1– 1
p

∫

R

1

(1 + t2)
lq
x

dt

and

lq – 1 –
1
p

= p2(1 – l) – 1 < 0.
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So

lim
x→∞ sup

t∈R

∣∣g(t + ix)
∣∣ = O

(
t– 1

p
)
.

By virtue of the structure formula, we have

2π ig(z) =
r∑

l=1

∫

R

ul(t)
(

–
∂

∂t

)(l–1)

(t – z)–1 dt

=
r∑

l=1

∫

R

ul(t)
(

∂

∂z

)(l–1)

(t – z)–1 dt

=
r∑

l=1

(
∂

∂z

)(l–1) ∫

R

(t – z)–1ul(t) dt

=
r∑

l=1

(
∂

∂z

)(l–1)

Gk(z),

where

2π iGk(z) =
∫

R

ul(t)(t – z)–1 dt.

So we obtain Gk(z) ∈Hp(C+) from Lemma 4.1, which shows that

G(j) =
r∑

l=1

(
∂

∂z

)(k+j–1)

Gk .

5.2 Proof of Theorem 3.2
Since Gk(z) ∈Hp(C+), where Gk(t + ix) ∈Lp for fixed x, there exists the solution ul(t) ∈Lp,
where ul is the nontangential limit of g(z).

Since DLq ∈Lq, we see that ul(t) ∈ D′
Lp and

∣
∣Gk(t + ix)

∣
∣p ≤ 1

π t2

∫

D(t+ix,x)

∣
∣Gk(τ + iη)

∣
∣p dλ

≤ 1
π t2

∫ t+x

t–x

∫ 2x

0

∣∣Gk(τ + iη)
∣∣p dη dζ

≤ 2
πx

‖Gk‖p
Hp .

So

∣
∣Gk(t + ix)

∣
∣ ≤

(
1
x
‖Gk‖p

Hp

) 1
p

= t
1
p
(‖Gk‖p

Hp
) 1

p ,

which shows that

Gk(t + ix) = O
(
t– 1

p
)
,
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where x > 0 and

sup
t∈R,t≥δ>0

∥∥g(t + ix)
∥∥ ≤ 1

δ
‖Gk‖p

Hp = Cδ < ∞.

We know that Gk(z) can be represented as follows:

2π iGk(t) =
〈
ul(t), (t – z)–1〉,

from Lemma 4.2, which yields

2π ig(z) =
r∑

l=1

(
∂

∂z

)l–1

Gk(z)

=
r∑

l=1

(
∂

∂z

)l–1〈
ul(t), (t – z)–1〉

=
r∑

l=1

〈
ul(t),

(
∂

∂z

)l–1

(t – z)–1
〉

=
r∑

l=1

〈
D(l–1)ul(t), (t – z)–1〉

=

〈 r∑

l=1

D(l–1)ul(t), (t – z)–1

〉

.

Put

u =
r∑

l=1

D(l–1)ul,

where u ∈ D′
Lp , which shows that g(z) is one of the analytic representations of u.

5.3 Proof of Corollary 1
By virtue of the fixed point theorem with respect to the stationary Schrödinger operator
in [8], we know that

2π ig(z) =
〈
u(t), (t – z)–j〉

=
r∑

l=1

∫

R

ul(t)
(

–
∂

∂t

)(l–1)

(t – z)–j dt

=
r∑

l=1

∫

R

ul(t)
(l + j – 2)!

(j – 1)!(t – z)l+j–1 dt.

The rest of the proof of the corollary is similar to the proof of Theorem 3.1. So we omit
the details here for the sake of brevity.

The proof of Corollary 1 is complete.
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6 Conclusions
In this paper, we investigated the existence of weak solutions for a two-dimensional
Schrödinger equations with a singular potential in C+. Under appropriate assumptions
on the nonlinearity, we introduced a new type of quantum calculus via the Morse theory
and variational methods. By applying the well-known Banach fixed point theorem in con-
junction with the technique of measures of weak noncompactness, new and more accurate
estimations for boundary behaviors of them were also deduced. We significantly extended
and complemented some results from the current literature.
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