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Abstract
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1 Introduction
We study an inverse spectral problem for the integro-differential operator corresponding
to the boundary value problem A = A(n, M, g, v) of the form

Ay := iny(n) +
∫ x

0
M(x – t)y(n–1)(t) dt + g(x)

∫ π

0
y(t)v(t) dt = λy, 0 < x < π , (1)

y(0) = y′(0) = · · · = y(n–1)(0) = 0, (2)

where n ≥ 1 is fixed and (π – x)M(x), g(x), v(x) ∈ L2(0,π ) are complex-valued functions.
Moreover, the functions g(x) and v(x) are supposed to satisfy the following condition:

∫ a+ε

a

∣∣g(x)
∣∣dx > 0,

∫ b

b–ε

∣∣v(x)
∣∣dx > 0 (3)

for each positive ε and with certain fixed a and b obeying the inequality 0 ≤ a < b ≤ π .
Otherwise, the integro-differential operator A is of the Volterra type and, hence, problem
(1), (2) becomes an initial value problem with the empty spectrum.

Inverse problems of spectral analysis consist in recovering operators from their spectral
characteristics. Such problems often appear in mathematics, mechanics, physics, elec-
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tronics, geophysics, meteorology, and other branches of natural sciences and engineer-
ing. The greatest success in the inverse problem theory has been achieved for the Sturm–
Liouville operator (see [1–4] and the references therein) and afterwards for higher-order
differential operators [5–7]. For integro-differential and other classes of non-local opera-
tors, the classical methods of inverse spectral theory either do not work or require essen-
tial modifications. Inverse problems for some integro-differential operators were studied
in [8–31] and other papers.

Various aspects of recovering the functions g(x) and v(x) from spectral data of the eigen-
value problem A in the cases n = 1 and n = 2, provided that the function M(x) is known a
priori and a = 0, were studied in [9, 17, 20, 22, 24]. Moreover, in [19] this inverse problem
was studied in the self-adjoint case when n = 2, M(x) = 0, g(x) = ±v(x) and instead of (2)
the Dirichlet boundary conditions y(0) = y(π ) = 0 were imposed.

In the present paper we study the following conversed inverse problem.

Inverse problem 1 Given the spectrum {λk}k≥1 of the problem A, find the function M(x),
provided that the functions g(x) and v(x) are known a priori.

A nonlinear inclusion of the function M(x) into the representation of the character-
istic function for the boundary value problem A (see (6) below) makes recovering the
function M(x) more difficult than recovering g(x) and v(x). In [13] inverse problem 1 was
studied in the case when the functions g(x), v(x) belong to W 1

2 [0,π ] and satisfy the condi-
tion g(0)v(π ) �= 0. The inverse problem was reduced to a nonlinear integral equation with
singularity, whose solvability has been proven in the appropriate class of functions. This
allowed to prove the uniqueness theorem and to obtain a constructive procedure for solv-
ing the inverse problem along with necessary and sufficient conditions of its solvability.
However, in the case g(x), v(x) ∈ L2(0,π ), it is not possible to derive such an equation. In
the present paper, using another approach, we prove the following uniqueness theorem.

Theorem 1 Assume that the functions g(x) and v(x) are given.
(i) Let n = 1 or n = 2. Then the specification of the spectrum {λk}k≥1 uniquely

determines the function M(x) a.e. on (0, b – a).
(ii) Let n > 2. Then the specification of the spectrum {λk}k≥1 along with the number γ in

representation (16) (see below) uniquely determines the function M(x) a.e. on
(0, b – a).

(iii) If g(x) = 0 a.e. on (0, a) and v(x) = 0 a.e. on (b,π ), then for any n ≥ 1 the spectrum
{λk}k≥1 does not depend on behavior of the function M(x) on the interval (b – a,π ).

Part (iii) of the theorem infers the minimality of the requirements put on g(x) and v(x). In
part (i) the number γ mentioned in (ii) is determined by the specification of the spectrum.
It is valid also for n > 2 under some additional conditions on g(x) and v(x). For example, in
[13] this was established in the case g(x), v(x) ∈ W 1

2 [0,π ] when g(0)v(π ) �= 0. The following
uniqueness theorem uses the generalization of this condition.

Theorem 2 Let n > 2. If g(x) = 0 a.e. on (0, a) and v(x) = 0 a.e. on (b,π ), and additionally
the following conditions are satisfied:

lim
x→a+0

g(x) = da, lim
x→b–0

v(x) = db, (4)
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where dadb �= 0, then the specification of the spectrum {λk}k≥1 uniquely determines the func-
tion M(x) a.e. on (0, b – a), provided that the functions g(x) and v(x) are known a priori.

We also note that in the case of n = 1, 2, g(x) ≡ 0 and appropriate boundary conditions,
various aspects of recovering the function M(x) from the spectrum were studied in [8, 9,
11, 12, 14, 16, 18, 21, 22, 24–29] and other works. In [30] and [31] the case of fractional
order n /∈N was studied (see also [32, 33] for fractional integro-differential operators and
singular integral operators).

The paper is organized as follows. In the next section we introduce and investigate the
characteristic function �(λ) of the boundary value problem A. In Sect. 3 we study some
aspects of recovering �(λ) from its zeros. Theorems 1 and 2 are proven in Sect. 4.

2 Preliminary information
Let y = gn(x,λ), x ∈ [0,π ], be a solution of the Cauchy problem

�ny := iny(n) +
∫ x

0
M(x – t)y(n–1)(t) dt + g(x) = λy, y(j)(0) = 0, j = 0, n – 1. (5)

Consider the function

�(λ) = 1 –
∫ π

0
v(x)gn(x,λ) dt, (6)

which is called the characteristic function of the boundary value problem A.

Lemma 1 Eigenvalues of the problem A coincide with zeros of its characteristic function.

Proof Let �(λ0) = 0. Then the function gn(x,λ0) is, obviously, a solution of the boundary
value problem A. Since g(x) �≡ 0, we have gn(x,λ) �≡ 0 for each λ and, hence, gn(x,λ0) is an
eigenfunction, while λ0 is the corresponding eigenvalue.

Conversely, if λ0 is an eigenvalue of A and y0(x) is a related eigenfunction, then

∫ π

0
y0(x)v(x) dx �= 0. (7)

Indeed, otherwise y0(x) would be identically zero as a solution of the homogenous Cauchy
problem. Thus, without loss of generality, we can assume that the integral in (7) equals 1.
Then we have y0(x) = gn(x,λ0) and, hence, �(λ0) = 0. �

Lemma 2 The solution y = gn(x,λ) of the Cauchy problem (5) has the form

gn(x,λ) = –
∫ x

0
Sn(x – t,λ)g(t) dt 0 < x < π , (8)

where the function y = Sn(x,λ) is a solution of the following Cauchy problem:

iny(n) +
∫ x

0
M(x – t)y(n–1)(t) dt = λy, 0 < x < π ,

y(j)(0) = δj,n–1(–i)n, j = 0, n – 1.
(9)

Here, δj,n–1 is the Kronecker delta.
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Proof Consider the Volterra integro-differential operator Lλ of the form

Lλy := iny(n) +
∫ x

0
M(x – t)y(n–1)(t) dt – λy, 0 < x < π , y(j)(0) = 0, j = 0, n – 1.

By substitution it is easy to check that the inverse operator Mλ := L–1
λ has the form

Mλf (x) =
∫ x

0
Sn(x – t,λ)f (t) dt, 0 < x < π ,

where Sn(x,λ) is the solution of (9). Since gn(x,λ) = –Mλg , we arrive at (8). �

Put

Sn,0(x,λ) =
1

inρn–1

n∑
j=1

ωj exp(–iωjρx),

ρn = λ, ωj = exp

(
2π i(j – 1)

n

)
, j = 1, n,

(10)

i.e., ωj are all nth roots of unity. By virtue of Theorem 2.2 in [34], for any function M(x),
(π – x)M(x) ∈ L2(0,π ), the integral equation

M(x) = nin–1M1(x) +
n∑

j=2

(
n
j

)
in–j

∫ x

0

(x – t)j–2

(j – 2)!
M∗j

1 (t) dt, 0 < x < π , (11)

has a unique solution M1(x), (π – x)M1(x) ∈ L2(0,π ), where

(
n
j

)
=

n!
j!(n – j)!

, M∗1
1 (x) = M1(x), M∗(j+1)

1 (x) =
∫ x

0
M1(x – t)M∗j

1 (t) dt, j ≥ 1.

The following lemma is a generalization of Lemma 2.1 in [14].

Lemma 3 The solution Sn(x,λ) of the Cauchy problem (9) admits the following represen-
tation:

Sn(x,λ) = Sn,0(x,λ) +
∫ x

0
P(x, t)Sn,0(x – t,λ) dt, (12)

where

P(x, t) =
∞∑
ν=1

iν
(x – t)ν

ν!
M∗ν

1 (t). (13)

Proof We note that in [14] representation (12) was established for n = 1, 2. Let us gener-
alize its proof for an arbitrary n. Consider the integro-differential operators

Jny := iny(n) +
∫ x

0
M(x – t)y(n–1)(t) dt, J1y := iy′ +

∫ x

0
M1(x – t)y(t) dt,



Buterin and Vasiliev Boundary Value Problems  (2018) 2018:55 Page 5 of 12

where M1(x) is the solution of nonlinear integral equation (11). It is easy to show by in-
duction that Jny = Jn

1 y, where J1
1 y = J1y, Jk+1

1 y = J1(Jk
1 y), k ≥ 1, for any sufficiently smooth

function y(x) obeying the conditions y(k)(0) = 0, k = 0, n – 2. Consider the right-hand side
of (12):

y(x) := Sn,0(x,λ) +
∫ x

0
P(x, t)Sn,0(x – t,λ) dt.

Since S(k)
n,0(0,λ) = δk,n–1(–i)n, k = 0, n – 1, we get

y(k)(x) = S(k)
n,0(x,λ) +

k∑
j=0

(
k
j

)∫ x

0

∂k

∂xk P(x, t)S(k–j)
n,0 (x – t,λ) dt, k = 0, n – 1,

and, hence, y(k)(0) = δk,n–1(–i)n, k = 0, n – 1. Thus, the right-hand side of (12) satisfies the
equation Jny = Jn

1 y. Since representation (12) is valid for n = 1, we have

y(x) =
1

nρn–1

n∑
j=1

ωjS1(x,ωjρ).

Consequently, we have

Jny = Jn
1 y =

1
nρn–1

n∑
j=1

ωjJn
1 S1(x,ωjρ) =

ρ

n

n∑
j=1

ωn+1
j S1(x,ωjρ) = ρny = λy.

Thus, the right-hand side of (12) satisfies the same Cauchy problem (9) as the function
Sn(x,λ) does and, hence, representation (12) holds. �

The following lemma gives another representation for the characteristic function.

Lemma 4 The following representation holds:

�(λ) = 1 +
∫ π

0
μ(x)Sn,0(x,λ) dx, (14)

where

μ(x) = μ0(x) +
∫ π

x
P(t, t – x)μ0(t) dt, μ0(x) =

∫ π

x
v(t)g(t – x) dt. (15)

Proof Substituting (8) into (6) and changing the order of integration, we obtain

�(λ) = 1 +
∫ π

0
μ0(x)Sn(x,λ) dx.

Further, substituting (12) into this formula and changing the order of integration, we arrive
at (14) and (15). �
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3 On determination of �(λ) by the spectrum
In what follows, along withAwe consider the boundary value problem Ã = A(n, M̃, v, g) of
the same order n and with the same functions g(x) and v(x). We agree that if a certain sym-
bol α denotes an object related to A, then this object with tilde α̃ denotes the analogous
object corresponding to Ã, and α̂ = α – α̃.

Since the characteristic function is an entire function of order 1/n, according to the
Hadamard factorization theorem, it has the following representation:

�(λ) = γ exp(δ1,nβλ)λs
∏
λk �=0

(
1 –

λ

λk

)
exp

(
δ1,n

λ

λk

)
, (16)

where s is the algebraic multiplicity of the eigenvalue λ = 0, while γ �= 0 and β are some
constants.

Lemma 5 Let n ∈ {1, 2}. If {λk}k≥1 = {λ̃k}k≥1, then �(λ) ≡ �̃(λ). In other words, the speci-
fication of the spectrum uniquely determines the characteristic function.

Proof Taking (16) into account, it remains to prove that the specification of the spectrum
uniquely determines γ and β . By virtue of (10) and (14), we have �(λ) → 1 as λ → +∞.
Hence, the coincidence of the spectra {λk}k≥1 and {λ̃k}k≥1 implies

γ

γ̃
exp

(
δ1,n(β – β̃)λ

)
=

�(λ)
�̃(λ)

→ 1, λ → +∞,

which is possible only if γ = γ̃ and β = β̃ . �

Lemma 6 Let n > 2. If the functions g(x) and v(x) satisfy the hypothesis of Theorem 2, then
the specification of the spectrum uniquely determines γ in representation (16).

Proof Using (13) and (15), it is easy to check that μ(x) = 0 on [b – a,π ]. Moreover, from
(4) it follows that

η(x) := μ(b – a – x) = dadbx
(
1 + o(1)

)
, x → +0. (17)

Denote

δ1(ρ) :=
1

inρn–1

∫ b–a

0
μ(x) exp(–iρx) dx, δ2(ρ) := �

(
ρn) – δ1(ρ). (18)

From (17) it follows that

δ1(it) ∼ dadb

inntn+1 exp
(
(b – a)t

)
, t → +∞. (19)

Indeed, we have

∫ b–a

0
μ(x) exp(–iρx) dx = exp

(
–iρ(b – a)

)∫ b–a

0
η(x) exp(iρx) dx. (20)
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Substituting ρ = it into the last integral and using (17), we get

∫ b–a

0
η(x) exp(–tx) dx

=
∫ ε

0
η(x) exp(–tx) dx +

∫ b–a

ε

η(x) exp(–tx) dx

= dadb

∫ ε

0
x exp(–tx) dx(1 + hε) + O

(
exp(–εt)

)
, ε ∈ (0, b – a), t → +∞,

where hε = o(1) as ε → 0. Integrating by parts, we calculate

∫ ε

0
x exp(–tx) dx =

1
t2 –

1
t2 exp(–εt) –

ε

t
exp(–εt).

Hence,

∫ b–a

0
η(x) exp(–tx) dx ∼ dadb

t2 , t → +∞,

which along with (18) and (20) gives (19).
Further, by virtue of (10), (14), and (18) and our assumptions on g(x) and v(x), we get

∣∣δ2(it)
∣∣ < 1 +

1
tn–1

∫ b–a

0

∣∣μ(x)
∣∣ exp

(
tx Re(ω2)

)
dx

= O
(

exp

(
(b – a)t cos

2π

n

))
, t → +∞,

which along with (18) and (19) gives

�
(
(it)n) ∼ dadb

inntn+1 exp
(
(b – a)t

)
, t → +∞.

Thus, if {λk}k≥1 = {λ̃k}k≥1, then (16) implies

γ

γ̃
=

�(it)
�̃(it)

→ 1, t → +∞,

and, hence, γ = γ̃ . �

Remark 1 Lemma 6 implies that, under the hypothesis of Theorem 2, the specification of
the spectrum uniquely determines the characteristic function also in the case n > 2.

4 Proof of Theorem 1 and Theorem 2
Along with the problem A = A(1, M, g, v), we consider the problem A∗ = A(1, M, u, w),
where w(x) = g(π – x) and u(x) = v(π – x). Let y = u1(x,λ) be the solution of the Cauchy
problem

�∗
1y := iy′ +

∫ x

0
M(x – t)y(t) dt + u(x) = λy, 0 < x < π , y(0) = 0. (21)
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According to Lemma 2, the following representation holds:

u1(x,λ) = –
∫ x

0
S1(x – t,λ)u(t) dt. (22)

Lemma 7 Let n = 1. Then the following relation holds:

�̂(λ) = –
∫ π

0
N(x)M(x,λ) dx, (23)

where

N(x) =
∫ π

x
M̂(π – t) dt

∫ t–x

0
u(τ )g(t – x – τ ) dτ ,

M(x,λ) =
∫ x

0
S1(x – t,λ)S̃1(t,λ) dt.

(24)

Proof According to (5) and (21), we have

0 = u1(π – x,λ)�̃1g̃1(x,λ) – g̃1(x,λ)�∗
1u1(π – x,λ)

= i
(
u1(π – x,λ)g̃1(x,λ)

)′

+ u1(π – x,λ)
(∫ x

0
M̃(x – t)g̃1(t,λ) dt + g(x)

)

– g̃1(x,λ)
(∫ π–x

0
M̃(π – x – t)u1(t,λ) dt + v(x)

)
.

Integrating this from 0 to π and changing the order of integration, we arrive at

�∗(λ) – �̃(λ) = –
∫ π

0
M̂(π – x) dx

∫ x

0
u1(t,λ)g̃1(x – t,λ) dt, (25)

where

�∗(λ) = 1 –
∫ π

0
w(x)u1(x,λ) dx.

Formula (25), in particular, gives �∗(λ) = �(λ) and, hence,

�̂(λ) = –
∫ π

0
M̂(π – x) dx

∫ x

0
u1(t,λ)g̃1(x – t,λ) dt. (26)

Substituting (8) for n = 1 and (22) into (26) and changing the order of integration, we arrive
at (23) and (24). �

Lemma 8 The following representation holds:

M(x,λ) = –
(

x exp(–iλx) +
∫ x

0
K(x, t) exp(–iλt) dt

)
, 0 ≤ x ≤ π , (27)

where |K(x, t)| ≤ f (x – t) with some f (x) ∈ L2(0,π ).
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Proof Substituting (12) for n = 1 into the second formula in (24), we get

M1(x,λ) = –

(
x exp(–iλx) +

3∑
j=1

Mj(x,λ)

)
,

where, putting Q(x, t) = P(x, x – t), we have

M1(x,λ) =
∫ x

0
exp(–iλt) dt

∫ x–t

0
Q(x – t, τ ) exp(–iλτ ) dτ ,

M2(x,λ) =
∫ x

0
exp(–iλt) dt

∫ x–t

0
Q̃(x – t, τ ) exp(–iλτ ) dτ ,

M3(x,λ) =
∫ x

0
dt

∫ t

0
Q(t, τ ) exp(–iλτ ) dτ

∫ x–t

0
Q̃(x – t, ξ ) exp(–iλξ ) dξ .

Combining the exponentials and changing the order of integration in the last three for-
mulae, we arrive at (27) with

K(x, t) =
∫ t

0
Q(x – τ , t – τ ) dτ +

∫ t

0
Q̃(x – τ , t – τ ) dτ

+
∫ t

0
dτ

∫ x+τ–t

τ

Q(ξ , τ )Q̃(x – ξ , t – τ ) dξ ,

which along with (13) finishes the proof. �

Now we are in a position to give the proof of Theorem 1. First, let n = 1. Changing the
order of integration in (24), we get

N(x) =
∫ π

x
v(t) dt

∫ t–x

0
M̂(t – x – τ )g(τ ) dτ . (28)

Without loss of generality, we assume that g(x) = 0 a.e. on (0, a) and v(x) = 0 a.e. on (b,π ).
Otherwise, the points a > 0 and b < π could be shifted closer to the points 0 and π , re-
spectively, which would make Theorem 1 even stronger. Denote

g1(x) := g(x + a), x ∈ (0,π – a), v1(x) := v(b – x), x ∈ (0, b).

Then, by virtue of (3), we get

∫ ε

0

∣∣g1(x)
∣∣dx > 0,

∫ ε

0

∣∣v1(x)
∣∣dx > 0, ε > 0. (29)

According to (28), we have N(x) = 0 on (b,π ) and

N(b – x) =
∫ x

0
v1(t) dt

∫ x–t

0
M̂(x – t – τ )g(τ ) dτ

=
∫ x

0
g(t) dt

∫ x–t

0
M̂(x – t – τ )v1(τ ) dτ
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for x ∈ (0, b). Hence, N(b – x) = 0 for x ∈ (0, a), i.e., N(x) = 0 on (b – a,π ), and

N(b – a – x) =
∫ x

0
g1(t)F(x – t) dt,

F(x) =
∫ x

0
M̂(x – t)v1(t) dt, x ∈ (0, b – a).

(30)

Further, substituting (27) into (23) and changing the order of integration, we obtain

�̂(λ) =
∫ π

0

(
xN(x) +

∫ π

x
K(t, x)N(t) dt

)
exp(–iλx) dx.

According to Lemma 5, the coincidence of the spectra gives

xN(x) +
∫ π

x
K(t, x)N(t) dt = 0 a.e. on (0,π ),

which implies that N(x) = 0 a.e. on (0,π ). By virtue of the first inequality in (29) and (30)
along with the Titchmarsh theorem (see [35]), we obtain F(x) = 0 a.e. on (0, b–a). Applying
the Titchmarsh theorem to the second equality in (30) and taking into account the second
inequality in (29), we arrive at M̂(x) = 0 a.e. on (0, b – a). Thus, part (i) of Theorem 1 is
proven for n = 1.

Let n > 1. Along with A we consider the problem A1 = A(1, M1, g, v), where the function
M1(x) is connected with M(x) by relation (11). According to Lemma 4, the characteristic
function �1(λ) of A1 has the form

�1(λ) = 1 – i
∫ π

0
μ(x) exp(–iλx) dx, (31)

with the same function μ(x) that appears in representation (14) for the characteristic func-
tion �(λ) of A.

Further, if γ = γ̃ and {λk}k≥1 = {λ̃k}k≥1, then formula (16) implies �(λ) ≡ �̃(λ). By virtue
of (14), this infers μ(x) = μ̃(x) and, hence, (31) gives �1(λ) ≡ �̃1(λ). According to part
(i) of Theorem 1 for n = 1, we get M1(x) = M̃1(x) a.e. on (0, b – a) and, by virtue of (11),
M(x) = M̃(x) a.e. on (0, b – a). Thus, part (i) for n = 2 and part (ii) of Theorem 1 are proven.

We actually have established that �(λ) ≡ �̃(λ) if and only if M̂(x) = 0 a.e. on (0, b – a),
which proves part (iii) of Theorem 1.

For the proof of Theorem 2, it remains to note that under its hypothesis, according to
Lemma 6, the specification of the spectrum uniquely determines γ .

5 Conclusions
We have obtained uniqueness results for the inverse problem of recovering the nth order
convolution integro-differential operator from the spectrum of its one-dimensional per-
turbation, when the functions g(x) and v(x), involved into the perturbation term, belong to
L2(0,π ). The most minimal requirements for the functions g(x) and v(x) were established
guaranteeing the uniqueness in the case n = 1, 2. The case n > 2 is more complicated and
for the uniqueness theorem to hold it requires some additional assumption about g(x) and
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v(x). As such an assumption we have used condition (4). However, there exist other pos-
sible assumptions that would guarantee the uniqueness. For example, one could use the
following generalization of (4):

g(x) ∼ daxα , x → a + 0, v(x) ∼ dbxβ , x → b – 0,

for some fixed α,β > –1/2 and dadb �= 0. We note that earlier this inverse problem was
studied only in the case g(x), v(x) ∈ W 1

2 [0,π ], g(0)v(π ) �= 0.
Studying inverse problems for one-dimensional perturbations of integro-differential and

integral operators is a prospective direction in the inverse spectral theory because many
important operators can be represented in this form. For example, in [36] it was shown
how the uniqueness theorem for the classical inverse Sturm–Liouville problem follows
from a uniqueness theorem for the one-dimensional perturbation of a Volterra integral
operator.
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