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Abstract
In this paper, we study a nonlocal Robin boundary value problem for fractional Hahn
integrodifference equation. Our problem contains three fractional Hahn difference
operators and a fractional Hahn integral with different numbers of q,ω and order. The
existence and uniqueness result is proved by using the Banach fixed point theorem.
In addition, the existence of at least one solution is obtained by using Schauder’s
fixed point theorem.
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1 Introduction
Recently, many researchers have extensively studied calculus without limit that deals with
a set of non-differentiable functions, the so-called quantum calculus. Many types of quan-
tum difference operators are employed in several applications of mathematical areas such
as the calculus of variations, particle physics, quantum mechanics, and theory of relativ-
ity (see [1–12] and the references therein for some applications and new results of the
quantum calculus).

In this paper, we study the Hahn quantum calculus that is one type of quantum calculus.
Hahn [13] introduced the Hahn difference operator Dq,ω in 1949 as follows:

Dq,ωf (t) =
f (qt + ω) – f (t)

t(q – 1) + ω
, t �= ω0 :=

ω

1 – q
.

The Hahn difference operator is a combination of two well-known difference operators:
the forward difference operator and the Jackson q-difference operator. Notice that

Dq,ωf (t) = �ωf (t) whenever q = 1, Dq,ωf (t) = Dqf (t) whenever ω = 0 and

Dq,ωf (t) = f ′(t) whenever q = 1,ω → 0.
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The Hahn difference operator has been employed to construct families of orthogonal poly-
nomials and investigate some approximation problems (see [14–16] and the references
therein).

In 2009, Aldwoah [17, 18] defined the right inverse of Dq,ω in terms of both the Jackson
q-integral containing the right inverse of Dq [19] and the Nörlund sum containing the right
inverse of �ω [19].

In 2010, Malinowska and Torres [20, 21] introduced the Hahn quantum variational cal-
culus. In 2013, Malinowska and Martins [22] studied the generalized transversality con-
ditions for the Hahn quantum variational calculus. Later, Hamza and Ahmed [23, 24]
studied the theory of linear Hahn difference equations, and investigated the existence and
uniqueness results for the initial value problems for Hahn difference equations by using the
method of successive approximations. Moreover, they proved Gronwall’s and Bernoulli’s
inequalities with respect to the Hahn difference operator and established the mean value
theorems for this calculus. In 2016, Hamza and Makharesh [25] investigated the Leib-
nitz’s rule and Fubini’s theorem associated with Hahn difference operator. In the same
year, Sitthiwirattham [26] considered a nonlinear Hahn difference equation with nonlocal
boundary value conditions of the form

D2
q,ωx(t) + f

(
t, x(t), Dp,θ x(pt + θ )

)
= 0, t ∈ [ω0, T]q,ω,

x(ω0) = ϕ(x), (1.1)

x(T) = λx(η), η ∈ (ω0, T)q,ω,

where 0 < q < 1, 0 < ω < T , ω0 := ω
1–q , 1 ≤ λ < T–ω0

η–ω0
, p = qm, m ∈ N, θ = ω( 1–p

1–q ), f :
[ω0, T]q,ω × R × R → R is a given function, and ϕ : C([ω0, T]q,ω,R) → R is a given func-
tional.

In 2017, Sriphanomwan et al. [27] considered a nonlocal boundary value problem for
second-order nonlinear Hahn integrodifference equation with integral boundary condi-
tion of the form

D2
q,ωx(t) = f

(
t, x(t), Dp,θ x(pt + θ ),Ψp,θ x(pt + θ )

)
, t ∈ [ω0, T]q,ω,

x(ω0) = x(T), x(η) = μ

∫ T

ω0

g(s)x(s) dq,ωs, η ∈ (ω0, T)q,ω,
(1.2)

where 0 < q < 1, 0 < ω < T , ω0 := ω
1–q , μ

∫ T
ω0

g(r) dq,ωr �= 1, μ ∈ R, p = qm, m ∈ N, θ = ω( 1–p
1–q ),

f ∈ C([ω0, T]q,ω × R × R × R,R), and g ∈ C([ω0, T]q,ω,R+) are given functions, and for
ϕ ∈ C([ω0, T]q,ω × [ω0, T]q,ω, [0,∞)),

Ψp,θ x(t) :=
∫ t

ω0

ϕ(t, ps + θ )x(ps + θ ) dp,θ s.

In 2010, Čermák and Nechvátal [28] proposed the fractional (q, h)-difference operator
and the fractional (q, h)-integral for q > 1. In 2011, Čermák et al. [29] studied discrete
Mittag–Leffler functions in linear fractional difference equations for q > 1, and Rahmat
[30, 31] studied the (q, h)-Laplace transform and some (q, h)-analogues of integral inequal-
ities on discrete time scales for q > 1. In 2016, Du et al. [32] presented the monotonicity
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and convexity for nabla fractional (q, h)-difference for q > 0, q �= 1. However, we realize
that Hahn difference operator requires the condition 0 < q < 1. Therefore, to fill the gap,
Brikshavana and Sitthiwirattham [33] have introduced the fractional Hahn difference op-
erators for 0 < q < 1.

In 2017, Patanarapeelert and Sitthiwirattham [34] considered a Riemann–Liouville frac-
tional Hahn difference boundary value problem for a fractional Hahn integrodifference
equation of the form

Dα
q,ωu(t) = F

(
t, u(t),
γ

r,φu(t)
)
, t ∈ [ω0, T]q,ω,

u(ω0) = u(T), (1.3)

Dβ

p,θ u(ω0) = Dβ

p,θ u(pT + θ ),

and a fractional Hahn integral boundary value problem for a Caputo fractional Hahn dif-
ference equation of the form

CDα
q,ωu(t) = G

(
t, u(t), CDγ

r,φu(rt + φ)
)
, t ∈ [ω0, T]q,ω,

u(ω0) = A(u), (1.4)

Iβ

p,θ u(T) =
1

�p(β)

∫ T

ω0

(
T – σp,ω(s)

)β–1
p,θ u(s) dp,θ s = B(u),

where [ω0, T]q,ω := {qkT + ω[k]q : k ∈ N0} ∪ {ω0}; α ∈ (1, 2],β ,γ ∈ (0, 1], ω > 0, p, q, r ∈
(0, 1), p = qm, r = qn, m, n ∈ N, θ = ω( 1–p

1–q ),φ = ω( 1–r
1–q ); F , G ∈ C([ω0, T]q,ω × R × R,R)

is a given function; A,B : C([ω0, T]q,ω,R) → R are given functionals; and for ϕ ∈
C([ω0, T]q,ω × [ω0, T]q,ω, [0,∞)), define



γ

r,φu(t) :=
(
Iγ

r,φϕu
)
(t) =

1
�r(γ )

∫ t

ω0

(
t – σr,φ(s)

)γ –1
r,φ ϕ(t, s)u(s) dr,φs.

Presently, Patanarapeelert et al. [35] studied the boundary value problem for fractional
Hahn difference equation containing a sequential Caputo fractional Hahn integrodiffer-
ence equation with nonlocal Dirichlet boundary conditions

CDα
q,ω

CDβ
q,ω

[ Eσq,ω

ρq,ω(t)
+ qDq,ω

]
u(t) = F

(
t, u(t),
γ

q,ωu(t)
)
, t ∈ [ω0, T]q,ω,

u(ω0) = φ(u), (1.5)

ρq,ω(T)u(T) = ρq,ω(η)u(η) = ψ(u), η ∈ (ω0, T)q,ω,

where [ω0, T]q,ω = IT
q,ω := {qkT + ω[k]q : k ∈ N0} ∪ {ω0}; ω > 0, q ∈ (0, 1); α,β ,γ ∈ (0, 1];

the shift operator Eσq,ω u(t) := u(σq,ω(t)); F ∈ C(IT
q,ω × R × R,R) is a given function; φ,ψ :

C(IT
q,ω,R) →R are given functionals; and for ϕ ∈ C(IT

q,ω × IT
q,ω, [0,∞)), we define


γ
q,ωu(t) :=

(
Iγ

q,ωϕu
)
(t) =

1
�q,ω(γ )

∫ t

ω0

(
t – σq,ω(s)

)γ –1
q,ω ϕ(t, s)u(s) dq,ωs. (1.6)

In quantum calculus, there are apparently few research works related to boundary value
problems of fractional Hahn difference equations (see [34, 35]). Therefore, in this paper,
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we devote ourselves to studying a boundary value problem for fractional Hahn difference
equation. Our problem is a nonlocal Robin boundary value problem for a fractional Hahn
integrodifference equation of the form

Dα
q,ωu(t) = F

(
t, u(t),
γ

r,φu(t), Dν
m,χ u(t)

)
, t ∈ IT

q,ω,

λ1u(η) + λ2Dβ

p,θ u(η) = φ1(u), η ∈ IT
q,ω – {ω0, T}, (1.7)

μ1u(T) + μ2Dβ

p,θ u(T) = φ2(u),

where IT
q,ω := {qkT +ω[k]q : k ∈N0}∪{ω0}; α ∈ (1, 2],β ,γ ,ν ∈ (0, 1], ω > 0, p, q, r ∈ (0, 1), p =

qa, r = qb, m = qc, a, b, c ∈ N, θ = ω( 1–p
1–q ),φ = ω( 1–r

1–q ),χ = ω( 1–m
1–q ); λ1,λ2,μ1,μ2 ∈ R

+; F ∈
C(IT

q,ω × R × R × R,R) is a given function; φ1,φ2 : C(IT
q,ω,R) → R are given functionals,

and 

γ

r,φu(t) is defined as (1.6).
In the next section, we briefly recall some definitions and lemmas used in this research

work. In Sect. 3, we prove the existence and uniqueness of a solution to problem (1.7) by
using the Banach fixed point theorem. In Sect. 4, we show the existence of at least one
solution to problem (1.7) by using Schauder’s fixed point theorem. Finally, an example is
provided to illustrate our results in the last section.

2 Preliminaries
In this section, we present the notations, definitions, and lemmas used in the main results.
Let q ∈ (0, 1), ω > 0 and define

[n]q :=
1 – qn

1 – q
= qn–1 + · · · + q + 1 and [n]q! :=

n∏

k=1

1 – qk

1 – q
, n ∈R.

The q-analogue of the power function (a – b)n
q with n ∈N0 := [0, 1, 2, . . .] is

(a – b)0
q := 1, (a – b)n

q :=
n–1∏

k=0

(
a – bqk), a, b ∈R.

The q,ω-analogue of the power function (a – b)n
q,ω with n ∈N0 := [0, 1, 2, . . .] is

(a – b)0
q,ω := 1, (a – b)n

q,ω :=
n–1∏

k=0

[
a –

(
bqk + ω[k]q

)]
, a, b ∈R.

More generally, if α ∈R, we have

(a – b)αq = aα

∞∏

n=0

1 – ( b
a )qn

1 – ( b
a )qα+n

, a �= 0,

(a – b)αq,ω = (a – ω0)α
∞∏

n=0

1 – ( b–ω0
a–ω0

)qn

1 – ( b–ω0
a–ω0

)qα+n
=

(
(a – ω0) – (b – ω0)

)α

q , a �= ω0.
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Note that aα
q = aα and (a – ω0)αq,ω = (a – ω0)α . We also use the notation (0)αq = (ω0)αq,ω = 0

for α > 0. The q-gamma and q-beta functions are defined by

�q(x) :=
(1 – q)x–1

q

(1 – q)x–1 , x ∈R \ {0, –1, –2, . . .},

Bq(x, s) :=
∫ 1

0
tx–1(1 – qt)s–1

q dqt =
�q(x)�q(s)
�q(x + s)

.

Definition 2.1 For q ∈ (0, 1), ω > 0 and f defined on an interval I ⊆ R which contains
ω0 := ω

1–q , the Hahn difference of f is defined by

Dq,ωf (t) =
f (qt + ω) – f (t)

t(q – 1) + ω
for t �= ω0,

and Dq,ωf (ω0) = f ′(ω0). Provided that f is differentiable at ω0, we call Dq,ωf the q,ω-
derivative of f , and say that f is q,ω-differentiable on I .

Remarks
(1) Dq,ω[f (t) + g(t)] = Dq,ωf (t) + Dq,ωg(t).
(2) Dq,ω[αf (t)] = αDq,ωf (t).
(3) Dq,ω[f (t)g(t)] = f (t)Dq,ωg(t) + g(qt + ω)Dq,ωf (t).

(4) Dq,ω[
f (t)
g(t)

] =
g(t)Dq,ωf (t) – f (t)Dq,ωg(t)

g(t)g(qt + ω)
.

Letting a, b ∈ I ⊆ R with a < ω0 < b and [k]q = 1–qk

1–q , k ∈ N0 := N ∪ {0}, we define the
q,ω-interval by

[a, b]q,ω :=
{

qka + ω[k]q : k ∈N0
} ∪ {

qkb + ω[k]q : k ∈N0
} ∪ {ω0}

= [a,ω0]q,ω ∪ [ω0, b]q,ω

= (a, b)q,ω ∪ {a, b} = [a, b)q,ω ∪ {b} = (a, b]q,ω ∪ {a}.

We observe that for each s ∈ [a, b]q,ω , the sequence {σ k
q,ω(s)}∞k=0 = {qks + ω[k]q}∞k=0 is uni-

formly convergent to ω0.
In addition, we define the forward jump operator σ k

q,ω(t) := qkt +ω[k]q and the backward
jump operator ρk

q,ω(t) := t–ω[k]q
qk for k ∈N.

Definition 2.2 Let I be any closed interval ofR that contains a, b, and ω0. Letting f : I →R

be a given function, we define q,ω-integral of f from a to b by

∫ b

a
f (t) dq,ωt :=

∫ b

ω0

f (t) dq,ωt –
∫ a

ω0

f (t) dq,ωt,

where

∫ x

ω0

f (t) dq,ωt :=
[
x(1 – q) – ω

] ∞∑

k=0

qkf
(
xqk + ω[k]q

)
, x ∈ I,
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and the series converges at x = a and x = b. We call f q,ω-integrable on [a, b], and the sum
to the right-hand side of the above equation is called the Jackson–Nörlund sum.

Note that the actual domain of function f is defined on [a, b]q,ω ⊂ I .
We next introduce the fundamental theorem of Hahn calculus.

Lemma 2.1 ([17]) Let f : I →R be continuous at ω0 and define

F(x) :=
∫ x

ω0

f (t) dq,ωt, x ∈ I.

Then F is continuous at ω0. Furthermore, Dq,ω0 F(x) exists for every x ∈ I and

Dq,ωF(x) = f (x).

Conversely,

∫ b

a
Dq,ωF(t) dq,ωt = F(b) – F(a) for all a, b ∈ I.

Lemma 2.2 ([26]) Let q ∈ (0, 1), ω > 0 and f : I →R be continuous at ω0. Then

∫ t

ω0

∫ r

ω0

x(s) dq,ωsdq,ωr =
∫ t

ω0

∫ t

qs+ω

x(s) dq,ωrdq,ωs.

Lemma 2.3 ([26]) Let q ∈ (0, 1) and ω > 0. Then

∫ t

ω0

dq,ωs = t – ω0 and
∫ t

ω0

[
t – σq,ω(s)

]
dq,ωs =

(t – ω0)2

1 + q
.

Particulary, we introduce fractional Hahn integral and fractional Hahn difference of
Riemann–Liouville type as follows.

Definition 2.3 For α,ω > 0, q ∈ (0, 1) and f defined on [ω0, T]q,ω , the fractional Hahn in-
tegral is defined by

Iα
q,ωf (t) :=

1
�q(α)

∫ t

ω0

(
t – σq,ω(s)

)α–1
q,ω f (s) dq,ωs

=
[t(1 – q) – ω]

�q(α)

∞∑

n=0

qn(t – σ n+1
q,ω (t)

)α–1
q,ω f

(
σ n

q,ω(t)
)
,

and (I0
q,ωf )(t) = f (t).

Definition 2.4 For α,ω > 0, q ∈ (0, 1), and f defined on [ω0, T]q,ω , the fractional Hahn
difference of the Riemann–Liouville type of order α is defined by

Dα
q,ωf (t) :=

(
DN

q,ωIN–α
q,ω f

)
(t)

=
1

�q(–α)

∫ t

ω0

(
t – σq,ω(s)

)–α–1
q,ω f (s) dq,ωs,



Patanarapeelert and Sitthiwirattham Boundary Value Problems  (2018) 2018:46 Page 7 of 16

and D0
q,ωf (t) = f (t), where N is the smallest integer that is greater than or equal to α.

Lemma 2.4 ([33]) Letting α > 0, q ∈ (0, 1),ω > 0, and f : IT
q,ω →R, we get

Iα
q,ωDα

q,ωf (t) = f (t) + C1(t – ω0)α–1 + · · · + CN (t – ω0)α–N

for some Ci ∈R, i = N1,N and N – 1 < α ≤ N , N ∈N.

Next, we give some auxiliary lemmas used for simplifying calculations.

Lemma 2.5 ([33]) Letting α,β > 0, p, q ∈ (0, 1), and ω > 0, we have

∫ t

ω0

(
t – σq,ω(s)

)α–1
q,ω (s – ω0)

β

q,ω dq,ωs = (t – ω0)α+βBq(β + 1,α),

∫ t

ω0

∫ x

ω0

(
t – σp,ω(x)

)α–1
p,ω

(
x – σq,ω(s)

)β–1
q,ω dq,ωs dp,ωx =

(t – ω0)α+β

[β]q
Bp(β + 1,α).

The following lemma deals with the linear variant of problem (1.7) and gives a repre-
sentation of the solution.

Lemma 2.6 Let α ∈ (1, 2],β ∈ (0, 1], ω > 0, p, q ∈ (0, 1), p = qm, m ∈ N, θ = ω( 1–p
1–q );

λ1,λ2,μ1,μ2 ∈R
+; h ∈ C(IT

q,ω,R) is a given function; φ1,φ2 : C(IT
q,ω,R) →R are given func-

tionals. Then the problem

Dα
q,ωu(t) = h(t), t ∈ IT

q,ω,

λ1u(η) + λ2Dβ

p,θ u(η) = φ1(u), η ∈ IT
q,ω – {ω0, T}, (2.1)

μ1u(T) + μ2Dβ

p,θ u(T) = φ2(u)

has the unique solution

u(t) =
1

�q(α)

∫ t

ω0

(
t – σq,ω(s)

)α–1
q,ω h(s) dq,ωs

–
(t – ω0)α–1

�

{
BT�η[φ1, h] – Bη�T [φ2, h]

}

+
(t – ω0)α–2

�

{
AT�η[φ1, h] – Aη�T [φ2, h]

}
, (2.2)

where the functionals �η[φ1, h],�T [φ2, h] are defined by

�η[φ1, h] := φ1(u) –
λ1

�q(α)

∫ η

ω0

(
η – σq,ω(s)

)α–1
q,ω h(s) dq,ωs –

λ2

�q(α)�p(–β)

×
∫ η

ω0

∫ x

ω0

(
η – σp,θ (s)

)–β–1
p,θ

(
x – σq,ω(s)

)α–1
q,ω h(s) dq,ωs dp,θ x, (2.3)

�T [φ2, h] := φ2(u) –
μ1

�q(α)

∫ T

ω0

(
T – σq,ω(s)

)α–1
q,ω h(s) dq,ωs –

μ2

�q(α)�p(–β)

×
∫ T

ω0

∫ x

ω0

(
T – σp,θ (s)

)–β–1
p,θ

(
x – σq,ω(s)

)α–1
q,ω h(s) dq,ωs dp,θ x, (2.4)
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and the constants Aη, AT , Bη, BT , and � are defined by

Aη := λ1(η – ω0)α–1 +
λ2

�p(–β)

∫ η

ω0

(
η – σp,θ (s)

)–β–1
p,θ (s – ω0)α–1 dp,θ s

= (η – ω0)α–1
(

λ1 +
λ2(η – ω0)–β�p(α)

�p(α – β)

)
, (2.5)

AT := μ1(T – ω0)α–1 +
μ2

�p(–β)

∫ T

ω0

(
T – σp,θ (s)

)–β–1
p,θ (s – ω0)α–1 dp,θ s

= (T – ω0)α–1
(

μ1 +
μ2(T – ω0)–β�p(α)

�p(α – β)

)
, (2.6)

Bη := λ1(η – ω0)α–2 +
λ2

�p(–β)

∫ η

ω0

(
η – σp,θ (s)

)–β–1
p,θ (s – ω0)α–2 dp,θ s

= (η – ω0)α–2
(

λ1 +
λ2(η – ω0)–β�p(α – 1)

�p(α – β – 1)

)
, (2.7)

BT := μ1(T – ω0)α–2 +
μ2

�p(–β)

∫ T

ω0

(
T – σp,θ (s)

)–β–1
p,θ (s – ω0)α–2 dp,θ s

= (T – ω0)α–2
(

μ1 +
μ2(T – ω0)–β�p(α – 1)

�p(α – β – 1)

)
, (2.8)

� := AT Bη – AηBT . (2.9)

Proof Taking fractional Hahn q,ω-integral of order α for (2.1), we obtain

u(t) = C1(t – ω0)α–1 + C2(t – ω0)α–2 + Iα
q,ωh(t)

= C1(t – ω0)α–1 + C2(t – ω0)α–2 +
1

�q(α)

∫ t

ω0

(
t – σq,ω(s)

)α–1
q,ω h(x) dq,ωs. (2.10)

Then we take fractional Hahn p, θ -difference of order β for (2.10) to get

Dβ

p,θ u(t)

=
1

�q(α)

∫ t

ω0

(
t – σq,ω(s)

)α–1
q,ω

[
C1(s – ω0)α–1 + C2(s – ω0)α–2]dq,ωs

+
1

�q(α)�p(–β)

∫ t

ω0

∫ x

ω0

(
t – σq,ω(x)

)–β–1
p,θ

(
x – σq,ω(s)

)α–1
q,ω h(s) dq,ωs dp,θ x. (2.11)

Substituting t = η into (2.10) and (2.11) and employing the first condition of (2.1), we
have

AηC1 + BηC2 = �η[φ1, h]. (2.12)

Taking t = T into (2.10) and (2.11) and employing the second condition of (2.1), we have

AT C1 + BT C2 = �T [φ2, h]. (2.13)
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The constants C1 and C2 are revealed from solving the system of equations (2.12)–(2.13)
as

C1 =
Bη�T – BT�η

�
and C2 =

AT�η – Aη�T

�
.

Substituting the constants C1, C2 into (2.10), we obtain (2.2).
On the other hand, it is easy to show that (2.2) is the solution of problem (2.1). By taking

fractional Hahn q,ω-difference of order α for (2.2), we obtain (2.1). This completes the
proof. �

We next introduce Schauder’s fixed point theorem used to prove the existence of a so-
lution of problem (1.7).

Lemma 2.7 ([36] Arzelá–Ascoli theorem) A set of functions in C[a, b] with the sup norm
is relatively compact if and only if it is uniformly bounded and equicontinuous on [a, b].

Lemma 2.8 ([36]) If a set is closed and relatively compact, then it is compact.

Lemma 2.9 ([37] Schauder’s fixed point theorem) Let (D, d) be a complete metric space,
U be a closed convex subset of D, and T : D → D be the map such that the set Tu : u ∈ U is
relatively compact in D. Then the operator T has at least one fixed point u∗ ∈ U : Tu∗ = u∗.

3 Existence and uniqueness result
In this section, we consider the existence and uniqueness result for problem (1.7). Let
C = C(IT

q,ω,R) be a Banach space of all function u with the norm defined by

‖u‖C = max
t∈IT

q,ω

{∣∣u(t)
∣∣,

∣∣Dm,χ u(t)
∣∣},

where α ∈ (1, 2],β ,γ ∈ (0, 1], ω > 0, p, q, r ∈ (0, 1), p = qa, r = qb, m = qc, a, b, c ∈ N, θ =
ω( 1–p

1–q ),φ = ω( 1–r
1–q ),χ = ω( 1–m

1–q ); λ1,λ2,μ1,μ2 ∈R
+. Define an operator F : C → C by

(Fu)(t) :=
1

�q(α)

∫ t

ω0

(
t – σq,ω(s)

)α–1
q,ω F

(
s, u(s),
γ

r,φu(s), Dν
m,χ u(s)

)
dq,ωs

–
(t – ω0)α–1

�

{
BT�∗

η[φ1, Fu] – Bη�
∗
T [φ2, Fu]

}

+
(t – ω0)α–2

�

{
AT�∗

η[φ1, Fu] – Aη�
∗
T [φ2, Fu]

}
, (3.1)

where the functionals �∗
η[φ1, Fu],�∗

T [φ2, Fu] are defined by

�∗
η[φ1, Fu] := φ1(u) –

λ1

�q(α)

∫ η

ω0

(
η – σq,ω(s)

)α–1
q,ω F

(
s, u(s),
γ

r,φu(s), Dν
m,χ u(s)

)
dq,ωs

–
λ2

�q(α)�p(–β)

∫ η

ω0

∫ x

ω0

(
η – σp,θ (s)

)–β–1
p,θ

(
x – σq,ω(s)

)α–1
q,ω

× F
(
s, u(s),
γ

r,φu(s), Dν
m,χ u(s)

)
dq,ωs dp,θ x, (3.2)
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�∗
T [φ2, Fu] := φ2(u) –

μ1

�q(α)

∫ T

ω0

(
T – σq,ω(s)

)α–1
q,ω F

(
s, u(s),
γ

r,φu(s), Dν
m,χ u(s)

)
dq,ωs

–
μ2

�q(α)�p(–β)

∫ T

ω0

∫ x

ω0

(
T – σp,θ (s)

)–β–1
p,θ

(
x – σq,ω(s)

)α–1
q,ω

× F
(
s, u(s),
γ

r,φu(s), Dν
m,χ u(s)

)
dq,ωs dp,θ x, (3.3)

and the constants Aη, AT , Bη, BT ,� are defined by (2.5)–(2.9), respectively.
We find that problem (1.7) has a solution if and only if the operator F has a fixed point.

Theorem 3.1 Assume that F : IT
q,ω ×R×R×R →R is continuous, ϕ : IT

q,ω × IT
q,ω → [0,∞)

is continuous with ϕ0 = max{ϕ(t, s) : (t, s) ∈ IT
q,ω × IT

q,ω}. In addition, suppose that the follow-
ing conditions hold:

(H1) There exist constants �1,�2,�3 > 0 such that, for each t ∈ IT
q,ω and u, v ∈R,

∣
∣F

(
t, u,
γ

r,φu, Dν
m,χ u

)
– F

(
t, v,
γ

r,φv, Dν
m,χ v

)∣∣

≤ �1|u – v| + �2
∣
∣
γ

r,φu – 

γ

r,φ
∣
∣ + �3

∣
∣Dν

m,χ u – Dν
m,χ v

∣
∣.

(H2) There exist constants ϑ1,ϑ2 > 0 such that, for each u, v ∈ C ,

∣∣φ1(u) – φ1(v)
∣∣ ≤ ϑ1‖u – v‖C and

∣∣φ2(u) – φ2(v)
∣∣ ≤ ϑ2‖u – v‖C .

(H3) O < 1,
where

L := �1 + �2ϕ0
(T – ω0)γ

�r(γ + 1)
, (3.4)

�1 :=
{

λ1(η – ω0)α

�q(α + 1)
+

λ2(η – ω0)α–β�q(–β)
�q(α – β + 1)�p(–β)

}
, (3.5)

�2 :=
{

μ1(T – ω0)α

�q(α + 1)
+

μ2(T – ω0)α–β�q(–β)
�q(α – β + 1)�p(–β)

}
, (3.6)

O :=
(L + �3)(T – ω0)α

�q(α + 1)
+

[ϑ1 + (L + �3)�1]
|�|

{|BT |(T – ω0)α–1 + |AT |(T – ω0)α–2}

+
[ϑ2 + (L + �3)�2]

|�|
{|Bη|(T – ω0)α–1 + |Aη|(T – ω0)α–2}. (3.7)

Then problem (1.7) has a unique solution in IT
q,ω .

Proof To show that F is a contraction, we denote that

H|u – v|(t) :=
∣
∣F

(
t, u(t),
γ

r,φu(t), Dν
m,χ u(t)

)
– F

(
t, v(t),
γ

r,φv(t), Dν
m,χ v(t)

)∣∣

for each t ∈ IT
q,ω and u, v ∈ C . We find that

∣
∣�∗

η[φ1, Fu] – �∗
η[φ1, Fv]

∣
∣

≤ ∣
∣φ1(u) – φ1(v)

∣
∣ +

λ1

�q(α)

∫ η

ω0

(
η – σq,ω(s)

)α–1
q,ω H|u – v|(s) dq,ωs
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+
λ2

�q(α)�p(–β)

∫ η

ω0

∫ x

ω0

(
η – σp,θ (s)

)–β–1
p,θ

(
x – σq,ω(s)

)α–1
q,ω H|u – v|(s) dq,ωs dp,θ x

≤ ϑ1‖u – v‖C +
(
�1|u – v| + �2

∣
∣
γ

r,φu – 

γ

r,φ
∣
∣ + �3

∣
∣Dν

m,χ u – Dν
m,χ v

∣
∣)

×
∣∣
∣∣
λ1(η – ω0)α

�q(α + 1)
+

λ2(η – ω0)α–β�q(–β)
�q(α – β + 1)�p(–β)

∣∣
∣∣

≤ ϑ1‖u – v‖C +
([

�1 + �2ϕ0
(T – ω0)γ

�r(γ + 1)

]
|u – v| + �3

∣∣Dν
m,χ u – Dν

m,χ v
∣∣
)

�1

≤ [
ϑ1 + (L + �3)�1

]‖u – v‖C .

Similarly,

∣∣�∗
T [φ2, Fu] – �∗

T [φ2, Fv]
∣∣ ≤ [

ϑ2 + (L + �3)�2
]‖u – v‖C .

Next, we have

∣
∣(Fu)(t) – (Fv)(t)

∣
∣

≤ 1
�q(α)

∫ T

ω0

(
T – σq,ω(s)

)α–1
q,ω H|u – v|(s) dq,ωs

+
(T – ω0)α–1

|�|
{|BT |∣∣�∗

η[φ1, Fu] – �∗
η[φ1, Fv]

∣
∣ + |Bη|

∣
∣�∗

T [φ2, Fu] – �∗
T [φ2, Fv]

∣
∣}

+
(T – ω0)α–2

|�|
{|AT |∣∣�∗

η[φ1, Fu] – �∗
η[φ1, Fv]

∣∣ + |Aη|
∣∣�∗

T [φ2, Fu] – �∗
T [φ2, Fv]

∣∣}

≤
[

(L + �3)(T – ω0)α

�q(α + 1)
+

[ϑ1 + (L + �3)�1]
�

{|BT |(T – ω0)α–1 + |AT |(T – ω0)α–2}

+
[ϑ2 + (L + �3)�2]

|�|
{|Bη|(T – ω0)α–1 + |Aη|(T – ω0)α–2}

]
‖u – v‖C

= O‖u – v‖C . (3.8)

We take fractional Hahn m,χ -difference of order γ for (3.1) to obtain

(
Dγ

m,χFu
)
(t)

=
1

�m(–γ )�q(α)

∫ t

ω0

∫ x

ω0

(
t – σm,χ (x)

)–γ –1
m,χ

(
x – σq,ω(s)

)α–1
q,ω

× F
(
s, u(s),
γ

r,φu(s), Dν
m,χ u(s)

)
dq,ωs dm,χ x

–
1

��m(–γ )
{

BT�∗
η[φ1, F] – Bη�

∗
T [φ2, F]

}∫ t

ω0

(
t – σm,χ (s)

)–γ –1
m,χ (s – ω0)α–1 dm,χ s

+
1

��m(–γ )
{

AT�∗
η[φ1, F] – Aη�

∗
T [φ2, F]

}

×
∫ t

ω0

(
t – σm,χ (s)

)–γ –1
m,χ (s – ω0)α–2 dm,χ s. (3.9)
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Using the same argument as above, we have

∣
∣(Dγ

m,χFu
)
(t) –

(
Dγ

m,χFv
)
(t)

∣
∣ < O‖u – v‖C . (3.10)

(3.8) and (3.10) imply that

‖Fu – Fv‖C ≤O‖u – v‖C .

By (H3) we can conclude that F is a contraction. Therefore, by using the Banach fixed
point theorem, F has a fixed point which is a unique solution of problem (1.7) on IT

q,ω . �

4 Existence of at least one solution
In this section, we present the existence of a solution to (1.7) by using Schauder’s fixed
point theorem.

Theorem 4.1 Suppose that (H1) and (H3) hold. Then problem (1.7) has at least one solu-
tion on IT

q,ω .

Proof We divide the proof into three steps as follows.
Step I. Verify that F maps bounded sets into bounded sets in BR = {u ∈ C : ‖u‖C ≤ R}.

We consider BR = {u ∈ C(IT
q,ω) : ‖u‖C ≤ R}. Set maxt∈IT

q,ω
|F(t, 0, 0, 0)| = K , supu∈C |φ1(u)| =

M1, supu∈C |φ2(u)| = M2 and choose a constant

R ≥ M1 + M2 + K
|�| [(T – ω0)α–1(|BT |�1 + |Bη|�2) + (T – ω0)α–2(|AT |�1 + |Aη|�2)]

1 – O . (4.1)

Denote that

∣
∣S(t, u, 0)

∣
∣ =

∣
∣F

(
t, u(t),
γ

r,φu(t), Dγ
m,χ u(t)

)
– F(t, 0, 0, 0)

∣
∣ +

∣
∣F(t, 0, 0, 0)

∣
∣.

For each t ∈ IT
q,ω and u ∈ BR, we obtain

∣∣�∗
η[φ1, Fu]

∣∣

≤ M1 +
λ1

�q(α)

∫ η

ω0

(
η – σq,ω(s)

)α–1
q,ω

∣∣S(s, u, 0)
∣∣dq,ωs

+
λ2

�q(α)�p(–β)

∫ η

ω0

∫ x

ω0

(
η – σp,θ (s)

)–β–1
p,θ

(
x – σq,ω(s)

)α–1
q,ω

∣∣S(s, u, 0)
∣∣dq,ωs dp,θ x

≤ M1 +
([

�1 + �2ϕ0
(T – ω0)γ

�r(γ + 1)

]
|u| + �3

∣∣Dν
m,χ u

∣∣ + K
)

�1

≤ ϑ1 + K�1 + (L + �3)�1‖u‖C
≤ ϑ1 + K�1 + (L + �3)�1R. (4.2)

Similarly,

∣
∣�∗

T [φ2, Fu]
∣
∣ ≤ M2 + K�2 + (L + �3)�2R. (4.3)
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From (4.2)–(4.3), we find that

∣∣(Fu)(t)
∣∣ ≤ R + M1 + M2 +

K
|�|

× [
(T – ω0)α–1(|BT |�1 + |Bη|�2

)
+ (T – ω0)α–2(|AT |�1 + |Aη|�2

)]

≤ R. (4.4)

In addition, we obtain

∣∣(Dγ
m,χFu

)
(t)

∣∣ < R. (4.5)

Therefore, ‖Fu‖C ≤ R, which implies that F is uniformly bounded.
Step II. We can conclude that the operator F is continuous on BR by the continuity of F .
Step III. In this step, we examine that F is equicontinuous on BR. For any t1, t2 ∈ IT

q,ω

with t1 < t2, we have

∣∣(Fu)(t2) – (Fu)(t1)
∣∣

≤ ‖F‖
�q(α + 1)

∣∣(t2 – ω0)α – (t1 – ω0)α
∣∣

+
|(t2 – ω0)α–1 – (t1 – ω0)α–1|

|�|
{|BT |�∗

η[φ1, F] + |Bη|�∗
T [φ2, F]

}

+
|(t2 – ω0)α–2 – (t1 – ω0)α–2|

|�|
{|AT |�∗

η[φ1, F] + |Aη|�∗
T [φ2, F]

}
(4.6)

and

∣∣(Dγ
m,χFu

)
(t1) –

(
Dγ

m,χFu
)
(t2)

∣∣

≤ ‖F‖�q(–γ )
�m(–γ )�q(α – γ + 1)

∣∣(t2 – ω0)α–γ – (t1 – ω0)α–γ
∣∣

+
�q(α)�q(–γ )

|�|�m(–γ )�q(α – γ )
{|BT |�∗

η[φ1, F] + |Bη|�∗
T [φ2, F]

}

× ∣∣(t2 – ω0)α–γ –1 – (t1 – ω0)α–γ –1∣∣

+
�q(α – 1)�q(–γ )

|�|�m(–γ )�q(α – γ – 1)
{|AT |�∗

η[φ1, F] + |Aη|�∗
T [φ2, F]

}

× ∣
∣(t2 – ω0)α–γ –2 – (t1 – ω0)α–γ –2∣∣. (4.7)

We observe that the right-hand side of (4.7) tends to be zero when |t2 – t1| → 0. So F is
relatively compact on BR.

This implies that the set F (BR) is an equicontinuous set. As a consequence of Steps I to
III together with the Arzelá–Ascoli theorem, we get that F : C → C is completely contin-
uous. By Schauder’s fixed point theorem, we can conclude that problem (1.7) has at least
one solution. �
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5 Example
Consider the following boundary value problem for fractional Hahn difference equation:

D
4
3
1
2 , 2

3
u(t) =

1
(1000e3 + t2)(1 + |u(t)|)

[
e–3t(u2 + 2|u|) + e–(π+sin2 π t)∣∣


1
2
1
8 , 7

6
u(t)

∣∣

+ e–(1+cos2 π t)∣∣D
2
5
1
2 , 2

3
u(t)

∣∣], t ∈
[

4
3

, 10
]

1
2 , 2

3

, (5.1)

1
10e

u
(

15
8

)
+ 100eD

3
4
1
4 ,1

u
(

15
8

)
=

∞∑

i=0

Ci|u(ti)|
1 + |u(ti)| , ti ∈ 10

(
1
2

)i

+
2
3

[i] 1
2

,

200πu(10) +
1

10π
D

3
4
1
4 ,1

u(10) =
∞∑

i=0

Di|u(ti)|
1 + |u(ti)| , ti ∈ 10

(
1
2

)i

+
2
3

[i] 1
2

,

where ϕ(t, s) = e–2|s–t|
(t+10)3 and Ci, Di are given constants with 1

500t3 ≤ ∑∞
i=0 Ci ≤ π

500t3 and
1

1000t2 ≤ ∑∞
i=0 Di ≤ π

1000t2 .
We provide α = 4

3 ,β = 3
4 ,γ = 1

2 ,ν = 2
5 ,q = 1

2 , p = 1
4 , r = 1

8 , m = 1
2 , ω = 2

3 , θ = 1,φ = 7
6 ,χ =

2
3 ,ω0 = ω

1–q = 4
3 , T = 10,η = 10( 1

2 )4 + 2
3 [4] 1

2
= 15

8 , λ1 = 1
10e ,λ2 = 100e,μ1 = 200π ,μ2 = 1

10π
,

φ1(u) =
∑∞

i=0
Ci|u(ti)|
1+|u(ti)| ,φ2 =

∑∞
i=0

Di|u(ti)|
1+|u(ti)| , and F(t, u(t),
γ

r,φu(t), Dν
m,χ u(t)) = 1

(1000e3+t2)(1+|u(t)|) ×
[e–3t(u2 + 2|u|) + e–(π+sin2 π t)|
 1

2
1
8 , 7

6
u(t)| + e–(1+cos2 π t)|D

2
5
1
2 , 2

3
u(t)|].

We can find that

|Aη| = 173.1815, |AT | = 1290.6198, |Bη| = 1312.8836,

|BT | = 148.9158 and |�| = 1.7202 × 106.

For all t ∈ [ 4
3 , 10] 1

2 , 2
3

and u, v ∈R, we have

∣∣F
(
t, u,
γ

r,φu, Dν
m,χ u

)
– F

(
t, v,
γ

r,φv, Dν
m,χ v

)∣∣

≤ 1
e4(1000e3 + 16

9 )
|u – v| +

1
eπ (1000e3 + 16

9 )
∣∣
γ

r,φu – 

γ

r,φv
∣∣

+
1

e(1000e3 + 16
9 )

∣
∣Dν

m,χ u – Dν
m,χ v

∣
∣.

Thus, (H1) holds with �1 = 9.118 × 10–7,�2 = 2.1513 × 10–6, and �3 = 0.0000183.
For all u, v ∈ C ,

∣
∣φ1(u) – φ1(v)

∣
∣ =

π

500t3 ‖u – v‖C ,

∣
∣φ2(u) – φ2(v)

∣
∣ =

e
1000t2 ‖u – v‖C .

So, (H2) holds with ϑ1 = 0.00265 and ϑ2 = 0.00153.
Also, we find that

L = 9.163 × 10–7, �1 = 440.682, �2 = 248.882.
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Therefore, (H3) holds with

O ≈ 0.000307 < 1.

Hence, by Theorem 3.1, problem (5.1) has a unique solution.

6 Conclusion
We have proved the existence and uniqueness result of the nonlocal Robin boundary prob-
lem for a fractional Hahn integrodifference equation (1.7) by using the Banach fixed point
theorem, and the existence of at least one solution by Schauder’s fixed point theorem.
Our problem contains three fractional Hahn difference operators and a fractional Hahn
integral with different numbers of q,ω and order, which is a new idea.
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