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Abstract
The centered difference discretization of the spatial fractional coupled nonlinear
Schrödinger equations obtains a discretized linear system whose coefficient matrix is
the sum of a real diagonal matrix D and a complex symmetric Toeplitz matrix˜T which
is just the symmetric real Toeplitz T plus an imaginary identity matrix iI. In this study,
we present a medium-shifted splitting iteration method to solve the discretized linear
system, in which the fast algorithm can be utilized to solve the Toeplitz linear system.
Theoretical analysis shows that the new iteration method is convergent. Moreover,
the new splitting iteration method naturally leads to a preconditioner. Analysis shows
that the eigenvalues of the corresponding preconditioned matrix are tighter than
those of the original coefficient matrix A. Finally, compared with the other algorithms
by numerical experiments, the new method is more effective.

Keywords: Spatial fractional Schrödinger equations; Toeplitz matrix;
Medium-shifting iteration method; Convergence; Preconditioning

1 Introduction

Fractional operators have been more and more applied to model acoustics and thermal
systems, rheology and modeling of materials and mechanical systems, signal processing
and systems identification, control and robotics, and so on [1–5]. Many researchers have
considerable interest in the existence of solutions and numerical methods for fractional
differential equations [2, 6–13], the topics that have been developing rapidly over the last
few decades. We are interested in designing an iteration method for solving the spatial
fractional coupled nonlinear Schrödinger (CNLS) equations

⎧

⎨

⎩

i ∂u(x,t)
∂t + γ (–�) α

2 u(x, t) + ρ(|u|2 + β|v|2)u(x, t) = 0,

i ∂v(x,t)
∂t + γ (–�) α

2 v(x, t) + ρ(|v|2 + β|u|2)v(x, t) = 0,
(x, t) ∈ (xL, xR) × (0, θ ) (1.1)
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under the boundary values and initial conditions

⎧

⎨

⎩

u(x, 0) = u0(x), v(x, 0) = v0(x),

u(xL, t) = u(xR, t) = 0, v(xL, t) = v(xR, t) = 0.

Here and in the sequel, we use i =
√

–1 to denote the imaginary unit, 1 < α < 2 and γ ,ρ >
0,β ≥ 0 are all constants. The fractional Laplacian [1] can be characterized as

–(–�)
α
2 u(x, t) = –F (–1)(|ξ |αF(

u(x, t)
))

,

where F denotes the Fourier transform acting on the spatial variable x. Moreover, it is just
equivalent to the Riesz fractional derivative [2], say the following equation:

–(–�)
α
2 u(x, t) =

∂α

∂|x|α u(x, t) = –
1

2 cos πα
2

[

–∞Dα
x u(x, t) + xDα

+∞u(x, t)
]

,

where –∞Dα
x u(x, t) and xDα

+∞u(x, t) are the left-sided and the right-sided Riemann–
Liouville fractional derivatives defined as follows:

⎧

⎨

⎩

–∞Dα
x u(x, t) = 1

�(2–α) · d2

dx2

∫ xR
x (ξ – x)1–αu(ξ , t) dξ ,

xDα
+∞u(x, t) = 1

�(2–α) · d2

dx2

∫ x
xL

(x – ξ )1–αu(ξ , t) dξ ,

here and in the sequel �(·) is the Gamma function.
The spatial fractional Schrödinger equations have attracted wide attention in recent

years. Their classical forms describe the evolution of microscopic particles, and they arise
in the path integral over the Brownian motion. In [3, 4], Laskin extended firstly the path
integral method to obtain the spatial fractional Schrödinger equations, which comes from
the Brownian motion to the Lévy process. Guo and Xu [5] studied some physical appli-
cations of fractional Schrödinger equations. The existence of a global smooth solution of
fractional nonlinear Schrödinger equations was discussed by Guo et al. [14]. Many authors
have concentrated on the solution of fractional Schrödinger equations in one dimension
[15–17]. Since one of the major characteristics of the fractional differential operator is be-
ing nonlocal, it is pretty hard to gain the true solution of fractional differential equations
generally. Therefore, the numerical methods (e.g., some splitting iteration methods) have
become usable and powerful tools in order to understand the behaviors of fractional dif-
ferential equations. Recently, another approach based on the study of Lie symmetries of
fractional differential equations can be found in the papers [18, 19].

From what we known, there exist certain studies on numerical methods for the fractional
Schrödinger equations. The Crank–Nicolson difference scheme for the coupled nonlin-
ear fractional Schrödinger equations was proposed by Wang et al. [20] in 2013. Subse-
quently, Atangana and Cloot [21] studied its stability and convergence for the space frac-
tional variable-order Schrödinger equations. Since the scheme is nonlinearly implicit and
coupled in computation, the iteration costs at each step are expensive. Moreover, the non-
local property of the fractional operator resulted in dense or full matrices. Consequently,
with the fractional centered difference formula, Wang et al. [22, 23] proposed recently an
implicit conservative difference scheme, which is unconditionally stable, to discretize the
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spatial fractional CNLS equations. The coefficient matrix A of the discretized linear sys-
tem about Eqs. (1.1) is D+˜T , the sum of a real diagonal matrix D and a complex symmetric
Toeplitz matrix ˜T , which is just the real symmetric Toeplitz matrix T plus an imaginary-
identity matrix ˜I , ˜T = T + iI . In view of the coefficient matrix being full or dense, the
Gaussian elimination method is unfeasible because of its heavy computational and stor-
age load. The computational costs of the Krylov subspace iterations [24–27] when solving
the discretized linear system are quite expensive. Moreover, their convergence rates tend
to be considerably worse.

It is appropriated that the coefficient matrix A = D + ˜T is non-Hermitian but positive
definite. And then those derived iteration methods based on the famous HSS can be used
to solve this complex symmetric and non-Hermitian positive definite linear system Au = b,
introduced by Bai et al. [28, 29] and so on. For example, the Hermitian and skew-Hermitian
splitting (HSS) iteration method [30] was directly applied to solve the discretized linear
system, and the following two variants were designed [31]:

Case I
⎧

⎨

⎩

(ωI + T + D)u(k+ 1
2 ) = (ωI – iI)u(k) + b,

(ωI + iI)u(k+1) = (ωI – T – D)u(k+ 1
2 ) + b,

where ω is a given positive constant.
Case II

⎧

⎨

⎩

(ωI + T)u(k+ 1
2 ) = (ωI – D – iI)u(k) + b,

(ωI + D + iI)u(k+1) = (ωI – T)u(k+ 1
2 ) + b,

where ω is a given positive constant.
Cases I and II almost shared the same computational efficiency, reported in the original

paper. That is to say, at each HSS iteration step of Case I, the solution of a subsystem with
the shifted matrix ωI +˜I , where ω is the shifted parameter, made easily due to its diago-
nal structure. However, it is very costly and impractical in solving the shifted Hermitian
subsystem with the coefficient matrix holding full and Toeplitz-like rather than Toeplitz
structure. In order to reduce the complexity, the IHSS iteration or preconditioned HSS
iteration [32, 33] were come up with to solve the non-Hermitian positive definite linear
system. However, the tolerances (or the number of inner iterations) for the inner iterates
about the first linear subsystem may be different and may be changed according to the
outer iteration scheme. Therefore, the IHSS iteration is actually a nonstationary iteration
method for solving the linear system, and the preconditioning matrix is not easy to choose
for the preconditioned HSS iteration method. In order to overcome the disadvantages of
these methods, Ran and Wang [31] proposed another HSS-like iteration method, and it is
precisely stated in Case II.

In this paper, a new splitting iteration method with medium-shifting (MS) can be pre-
sented to solve the discretized linear system of the spatial fractional coupled nonlinear
Schrödinger Eqs. (1.1), in which the inconvenience of alternation can be avoided. The
shifted parameter is the average value of the maximum and minimum elements of the real
diagonal matrix D, say medium-shifting. Theoretical analysis shows that the new iteration
method is convergent. Moreover, the new splitting iteration method naturally induces a
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matrix splitting preconditioner. To further reduce the computational costs of the MS pre-
conditioning matrix, we replace the real Toeplitz matrix T involved in ˜T by a circulant
matrix, obtaining a preconditioner for the discretized linear system from the space frac-
tional coupled nonlinear Schrödinger equations. Thus, the linear system can be solved
economically by the fast Fourier transform. Numerical results show that the PMS itera-
tion method can significantly improve the convergent property.

Here are some essential notations. As usual, we use CM×M to denote the M×M complex
matrix set and C

M the M-dimensional complex vector space. X∗ represents the conjugate
transpose of a matrix or a vector X. The spectral radius of the matrix A is denoted by ρ(A).
λ(·) and �(·) stand for the eigenvalues set and the singular values set of a corresponding
matrix, respectively. ‖ · ‖2 represents the Euclidean norm of a corresponding matrix. By
the way, I represents an identity matrix in general.

The organization of this paper is as follows. In Sect. 2, we derive the discretized linear
system from spatial fractional CNLS equation (Eq. (1.1)). In Sect. 3, we present the MS
iteration method and preconditioned MS iteration method, and establish the convergent
theory. The numerical results are reported in Sect. 4. Finally, we end this document with
some conclusions in Sect. 5.

2 Discretization of the spatial fractional CNLS equations
In this section, the spatial fractional coupled nonlinear Schrödinger equations were dis-
cretized to a linear system. The implicit conservative difference scheme with the fractional
centered difference formula, that is unconditionally stable, will be given.

Let τ = θ
N and h = xR–xL

M+1 be the sizes of time step and spatial grid, respectively, where N
and M are positive integers. A temporal and spatial partition can be defined as tn = nτ ,
n = 0, 1, . . . , N , and xj = xL + jh, j = 0, 1, . . . , M + 1. The corresponding numerical solutions
are defined by un

j ≈ u(xj, tn) and vn
j ≈ v(xj, tn). In terms of the fractional centered difference

[34], the fractional Laplacian (–�) α
2 in the truncated bounded domain can be discretized

as

(–�)
α
2 u(xj) = –

∂α

∂|x|α uj =
1

hα

M
∑

k=1

c(α)
j–kuk + O

(

h2),

where c(α)
k (k = 0, 1, . . . , M – 1) are defined by

c(α)
k =

(–1)k�(α + 1)
�(α/2 – k + 1)�(α/2 + k + 1)

.

It is clear that c(α)
k satisfy the following properties:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c(α)
0 ≥ 0,

c(α)
k = c(α)

–k ≤ 0, k = 1, 2, . . . ,
∑+∞

k=–∞,k 	=0 |c(α)
k | = c(α)

0 .
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Then the following implicit difference scheme for the spatial fractional CNLS Eqs. (1.1)
can be obtained:

⎧

⎨

⎩

i
un+1

j –un–1
j

2τ
+ γ

hα

∑M
k=1 c(α)

j–k( un+1
k +un–1

k
2 ) + ρ(|un

j |2 + β|vn
j |2)

un+1
j +un–1

j
2 = 0,

i
vn+1

j –vn–1
j

2τ
+ γ

hα

∑M
k=1 c(α)

j–k( vn+1
k +vn–1

k
2 ) + ρ(|vn

j |2 + β|un
j |2)

vn+1
j +vn–1

j
2 = 0,

(2.1)

where j = 1, 2, . . . , M, n = 1, 2, . . . , N – 1, and it has been proved that scheme (2.1) conserves
the discrete mass and energy, and is unconditionally stable and convergent with the order
O(τ 2 + h2) in the discrete l2-norm [22, 23]. By the boundary values and initial conditions,
we have

u0
j = u0(xj), v0

j = v0(xj), un
0 = un

M+1 = 0, vn
0 = vn

M+1 = 0.

Moreover, the first step can be obtained by some second or higher order time integrators.
The structure of the first difference equation in (2.1) is the same as that of the second one.
By introducing two M-dimensional vectors

un+1 =
[

un+1
1 , . . . , un+1

M
]T , bn+1 =

[

bn+1
1 , . . . , bn+1

M
]T ,

and two parameters

μ =
γ τ

hα
, dn+1

j = ρτ
(∣

∣un
j
∣

∣

2 + β
∣

∣vn
j
∣

∣

2)

with

bn+1
j = iun–1

j – μ

M
∑

k=1

c(α)
j–kun–1

k – dn+1
j un–1

j , j = 1, 2, . . . , M,

the first difference scheme in (2.1) can be rewritten as the following matrix vector form:

An+1un+1 = bn+1, n = 1, 2, . . . , N – 1, (2.2)

where

An+1 = Dn+1 + ˜T .

Here, Dn+1 is a diagonal matrix defined by Dn+1 = diag(dn+1
1 , dn+1

2 , . . . , dn+1
M ), and ˜T is a com-

plex Toeplitz matrix which is just the symmetric real Toeplitz matrix T plus an imaginary
identity matrix iI as follows:

˜T = μ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c(α)
0 c(α)

–1 · · · c(α)
2–M c(α)

1–M

c(α)
1 c(α)

0 c(α)
–1 · · · c(α)

2–M
...

...
. . .

...
...

c(α)
M–2 c(α)

M–3 · · · c(α)
0 c(α)

–1

c(α)
M–1 c(α)

M–2 · · · c(α)
1 c(α)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ iI � T + iI. (2.3)
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Because of the factors γ ,ρ > 0,β ≥ 0, and the properties of the coefficients c(α)
k , it is clear

that the Toeplitz matrix T is symmetric and strictly diagonally dominant, then symmetric
positive definite, and Dn+1 is a nonnegative diagonal matrix. Thus, the matrix Dn+1 + T
is symmetric positive definite. Consequently, the coefficient matrix An+1 � Dn+1 + ˜T is a
diagonal-plus-Toeplitz matrix and is symmetric and non-Hermitian positive definite.

3 Algorithms
We consider matrix splitting iteration methods for solving the following system of linear
equations:

Au = b, A ∈C
M×M, b ∈C

M, (3.1)

where A is a complex symmetric and non-Hermitian positive definite matrix of the form
A = D + ˜T , D ∈ RM×M is a real diagonal matrix of nonnegative diagonal elements, and
˜T ∈C

M×M is a complex symmetric Toeplitz and non-Hermitian positive definite matrix.
Splitting A with respect to its diagonal and Toeplitz parts D and ˜T , for a medium-

shifting, we have

A = Mω – Nω

with

Mω = ωI + ˜T and Nω = ωI – D, (3.2)

where ω = dmin+dmax
2 , dmin and dmax are the smallest and largest elements of the diagonal

matrix D. Thus, a splitting iteration method with medium-splitting (MS) is precisely stated
in the following.

Algorithm 3.1 (MS) Given an initial guess u(0), for k = 0, 1, . . . , until {u(k)} converges,
compute

(ωI + ˜T)u(k+1) = (ωI – D)u(k) + b. (3.3)

The iteration matrix is given by

Gω = (ωI + ˜T)–1(ωI – D). (3.4)

The following theorem demonstrates the convergence of Algorithm 3.1 under the rea-
sonable assumptions.

Theorem 3.1 Let A = D + ˜T = D + T + iI ∈ CM×M , where ˜T ∈ CM×M is a symmetric and
non-Hermitian positive definite Toeplitz matrix, and D = (d1, d2, . . . , dM) ∈ R

M×M is a di-
agonal matrix with nonnegative elements. Assume that dmin, dmax and ω are described as

dmin = min
1≤p≤M

{dp}, dmax = max
1≤p≤M

{dp} and ω =
dmin + dmax

2
,
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then the spectral radius ρ(Gω) is bounded by

δω =
ω – dmin

√

(ω + λmin)2 + 1
=

dmax – dmin

2
√

(ω + λmin)2 + 1
,

where λmin is the smallest eigenvalue of T .
Moreover, it holds that ρ(Gω) ≤ δω < 1. That is to say, the MS method converges to the

unique solution u∗ of (3.1).

Proof By the similarity invariance of the matrix spectrum as well as (3.4), we have

ρ(Gω) = ρ
(

(ωI + ˜T)–1(ωI – D)
)

= ρ
(

(ωI + T + iI)–1(ωI – D)
)

≤ ∥

∥(ωI + T + iI)–1(ωI – D)
∥

∥

2

≤ ∥

∥(ωI + T + iI)–1∥
∥

2‖ωI – D‖2

= max
λi∈λ(T)

1
√

(ω + λi)2 + 1
max

di∈�(D)
|ω – di|

=
ω – dmin

√

(ω + λmin)2 + 1

=
dmax – dmin

2
√

(ω + λmin)2 + 1
.

The upper bound of ρ(Gω) is obtained.
It is known that δω = ω–dmin√

(ω+λmin)2+1
< 1 is equivalent to

ω2 + d2
min – 2ωdmin < ω2 + λ2

min + 2ωλmin + 1

⇐⇒ λ2
min – d2

min + 2ω(λmin + dmin) + 1 > 0

⇐⇒ (λmin + dmin)(λmin – dmin + 2ω) + 1 > 0

⇐⇒ (λmin + dmin)(λmin + dmax) + 1 > 0.

It is easily obtained that ρ(Gω) ≤ δω < 1 from λmin, dmin and dmax are all nonnegative. Hence,
the MS method converges to the unique solution u∗ of (3.1). �

In Algorithm 3.1, the matrices ωI + ˜T and ωI – D are Toeplitz and diagonal matrices,
respectively. In order to reduce the computing time and improve the efficiency of the MS
method, we can employ the fast and superfast algorithms of the inverse of the Toeplitz
matrix to solve the linear system.

The splitting iteration Algorithm 3.1 naturally induces the preconditioning matrix M–1
ω

defined in (3.2) for the coefficient matrix A ∈ C
M×M of the linear system (3.1). We know

that the Toeplitz matrix T can be approximated well by a circulant matrix. In order to
further reduce the computational costs and accelerate the convergence rate of the MS
iteration method, we changed equivalently the symmetric linear system (3.1) by choosing
a circulant matrix, C ∈C

M×M , obtaining the preconditioned MS (PMS) iteration method.
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More concretely, the preconditioner is generated from Strang’s circulant preconditioner.
We can take C to be Strang’s circulant approximation obtained by copying the central
diagonals of T and bringing them around to complete the circulant requirement. When
M is odd,

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c(α)
0 c(α)

–1 · · · c(α)
M–1

2
c(α)

M–1
2

· · · c(α)
–1

c(α)
1 c(α)

0
. . . . . . c(α)

M–1
2

. . .
...

...
. . . . . . . . . . . . . . . c(α)

M–1
2

c(α)
M–1

2

. . . . . . . . . . . . . . . c(α)
M–1

2

c(α)
M–1

2
c(α)

M–1
2

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . c(α)

–1

c(α)
1 · · · c(α)

M–1
2

c(α)
M–1

2
· · · c(α)

1 c(α)
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

when M is even, it can be treated similarly as follows:

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c(α)
0 c(α)

–1 · · · c(α)
M
2

0 c(α)
M
2

· · · c(α)
–1

c(α)
1 c(α)

0
. . . . . . c(α)

M
2

0
. . .

...
...

. . . . . . . . . . . . . . . . . . c(α)
M
2

c(α)
M
2

. . . . . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . . . . . c(α)

M
2

c(α)
M
2

0
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
. . . c(α)

–1

c(α)
1 · · · c(α)

M
2

0 c(α)
M
2

· · · c(α)
1 c(α)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

According to the property of the coefficients c(α)
k , k = 0, 1, . . . , M – 1, we see that C is sym-

metric and strictly diagonally dominant, resulting in it being symmetric positive definite.

Algorithm 3.2 (PMS) Given an initial guess u(0), for k = 0, 1, . . . , until {u(k)} converges,
compute

(ωI + C + iI)u(k+1) = (ωI – D + C – T)u(k) + b, (3.5)

here ω = dmin+dmax
2 is the medium of dmin and dmax, where dmin and dmax are the minimum

and maximum elements of the diagonal matrix D.

Remark 3.1 In Algorithm 3.2, the matrix ωI + C + iI is circulant, we can complete effec-
tively via fast and superfast algorithms. In fact, scheme (3.5) can be regarded as a standard
stationary iteration method as follows:

˜Mωu(k+1) = ˜Nωu(k) + b, (3.6)
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Figure 1 Comparison of the resulting CPU of these
algorithms in Example 1

where ˜Mω = ωI + C + iI and ˜Nω = ωI – D + C – T . Hence, ˜M–1
ω can be considered as a

preconditioner of (3.1). We have naturally

∥

∥˜M–1
ω A

∥

∥

2 =
∥

∥(ωI + C + iI)–1A
∥

∥

2

≤ ∥

∥(ωI + C + iI)–1∥
∥

2 · ‖A‖2

= max
νp∈λ(C)

1
√

(ω + νp)2 + 1
· ‖A‖2

=
1

√

(ω + νmin)2 + 1
· ‖A‖2

= κ · ‖A‖2,

where κ = 1√
(ω+νmin)2+1

< 1. Therefore, the eigenvalues distribution of the matrix ˜M–1
ω A is

tighter than that of the matrix A by rough estimate. It is verified by numerical experiments
in the next section.

Remark 3.2 Because the circulant preconditioner is the approximation of the Toeplitz ma-
trix, the proof of the convergence property for the PMS iteration method is similar to the
MS iteration method. Therefore, we will not repeat the proof process of the convergence
property in Algorithm 3.2 here.
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Figure 2 Comparison of the resulting CPU of these
algorithms in Example 2

4 Numerical experiments
In this section, two numerical examples to assess the feasibility and effectiveness of Algo-
rithms 3.1–3.2 in terms of iteration number (denoted by “IT”), computing time (in sec-
onds, denoted by “CPU”), and the relative error (denoted as “Error”) are provided. All our
tests are started from zero vector u(0) and terminated once either the maximal number of
iteration steps is over 10,000 (denoted as “–”) or the current iterate satisfies

Error =
‖b – Au(k)‖2

2
‖b‖2

2
< 10–6.

In addition, all the experiments are carried out using MATLAB (version R2013a) on a
personal computer with 2.4 GHz central processing unit (Intel� CoreTM 2 Quad CPU),
4.00 GB memory and Windows 7 operating system.

Example 1 Let γ = 1,ρ = 2,β = 0, 1 < α < 2. Then system (1.1) is decoupled and becomes

i
∂u(x, t)

∂t
+ (–�)

α
2 u(x, t) + 2|u|2u(x, t) = 0, (x, t) ∈ [–20, 20] × (0, 2]

subjected to the initial boundary value conditions

u(x, 0) = sech(x) · exp(2ix), u(–20, t) = u(20, t) = 0.
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Figure 3 The eigenvalues of the matrices A (left)
and ˜M–1

ω A (right) when α = 1.2 and M = 800

Here and in the sequel, the direct methods can be used to solve the linear systems (3.3)
and (3.5), named MS1 and PMS1 methods, respectively. Correspondingly, we employ the
fast Zohar algorithm and the fast Fourier transform (FFT) to solve the linear systems (3.3)
and (3.5), named MS2 and PMS2 methods, respectively.

In Tables 1–2, we report the number of iteration steps, the computing time, and the
relative error of the methods used in the experiments for Example 1 when α = 1.2 and α =
1.4 with respect to different spatial grids. The time step sizes for all numerical experiments
are set to be 0.05.

From Tables 1–2, we see that the iteration steps of PMS2, PMS1, MS2, and MS1 methods
are pretty stable and always kept in 3 with the growth of the number of spatial grid points,
but those of the SOR iteration method are increasing quickly. As for the computing time,
that of the PMS2 method is the least of all methods in the experiments, while the time of
the SOR method has already reached over 1000 seconds when M = 10,000. Figure 1, which
depicts the comparison of resulting CPU of PMS2, MS2, and SOR iteration methods for
Example 1, intuitively shows that the PMS2 method performs pretty well.
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Figure 4 The eigenvalues of the matrices A (left)
and ˜M–1

ω A (right) when α = 1.2 and M = 1600

Table 1 Numerical results of the Example 1 for α = 1.2

Method M

800 1600 3200 5000 10,000 20,000

PMS2 IT 3 3 3 3 3 3
CPU (s) 0.2330 0.8444 2.7600 7.2175 25.8146 121.7182
Error 1.601e–07 1.544e–07 1.662e–07 1.187e–07 3.834e–08 7.336e–08

PMS1 IT 3 3 3 3 3 3
CPU (s) 0.1655 1.1138 4.8821 11.2724 66.1895 436.4372
Error 1.605e–07 1.544e–07 1.622e–07 1.187e–07 3.893e–08 7.448e–08

MS2 IT 3 3 3 3 3 3
CPU (s) 0.4323 1.4621 9.6115 36.8597 187.4272 3436.70
Error 1.605e–07 1.544e–07 1.622e–07 1.187e–07 3.893e–08 7.336e–08

MS1 IT 3 3 3 3 3 3
CPU (s) 0.1554 1.1751 4.8452 12.3658 64.8330 458.5189
Error 1.605e–07 1.788e–06 1.622e–07 1.187e–07 3.817e–08 7.336e–08

SOR IT 10 21 62 153 695 2662
CPU (s) 0.1833 1.6661 17.7699 94.5633 1033.4 28963.00
Error 8.598e–07 5.310e–07 8.710e–07 9.868e–07 9.984e–07 9.983e–07
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Figure 5 The eigenvalues of the matrices A (left)
and ˜M–1

ω A (right) when α = 1.4 and M = 800

Table 2 Numerical results of the Example 1 for α = 1.4

Method M

800 1600 3200 5000 10,000 20,000

PMS2 IT 3 3 3 3 3 3
CPU (s) 0.2344 0.9332 3.0236 7.3649 25.5258 111.9227
Error 5.916e–08 5.860e–08 6.807e–08 8.218e–08 7.691e–08 3.511e–08

PMS1 IT 3 3 3 3 3 3
CPU (s) 0.1598 1.0988 5.1738 11.5349 67.9240 347.5191
Error 5.916e–08 5.860e–08 6.807e–08 8.218e–08 7.691e–08 3.563e–08

MS2 IT 3 3 3 3 3 3
CPU (s) 0.4789 1.7869 8.3820 33.1318 232.2944 1454.50
Error 5.916e–08 5.860e–08 6.807e–08 8.218e–08 7.691e–08 3.846e–08

MS1 IT 3 3 3 3 3 3
CPU (s) 0.1652 1.0106 5.2072 11.7405 64.7608 360.4382
Error 5.916e–08 5.860e–08 6.807e–08 8.218e–08 7.691e–08 3.846e–08

SOR IT 10 21 62 153 695 –
CPU (s) 0.3568 5.2840 96.6897 701.8188 1476.700 –
Error 5.533e–07 8.717e–07 9.815e–07 9.900e–07 9.978e–07 –
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Example 2 Let γ = 1, ρ = 2, β = 1, 1 < α < 2, then we have the following coupled system:

⎧

⎨

⎩

i ∂u(x,t)
∂t + (–�) α

2 u(x, t) + 2(|u|2 + |v|2)u(x, t) = 0,

i ∂v(x,t)
∂t + (–�) α

2 v(x, t) + 2(|v|2 + |u|2)v(x, t) = 0.
(x, t) ∈ [–20, 20] × (0, 2].

We take the initial boundary value conditions in the form

⎧

⎨

⎩

u(x, 0) = sech(x + 1) · exp(2ix), v(x, 0) = sech(x – 1) · exp(–2ix),

u(–20, t) = u(20, t) = 0, v(–20, 0) = v(20, t) = 0.

In Tables 3–4, we list the number of iteration steps, the computing time, and the relative
error of the methods used in the experiments for Example 2 when α = 1.2 and α = 1.4 with

Table 3 Numerical results of the Example 2 for α = 1.2

Method M

800 1600 3200 5000 10,000 20,000

PMS2 IT 3 3 3 3 3 3
CPU (s) 0.2348 0.9579 3.2193 7.1782 29.0157 129.1786
Error 2.770e–07 2.686e–07 2.961e–07 2.079e–07 7.641e–08 1.286e–07

PMS1 IT 3 3 3 3 3 3
CPU (s) 0.2409 1.0279 4.9241 12.0993 67.6799 371.9630
Error 2.770e–07 2.686e–07 2.961e–07 2.079e–07 7.641e–08 1.286e–07

MS2 IT 3 3 3 3 3 3
CPU (s) 0.4332 1.4621 9.2120 41.7877 321.7863 1142.70
Error 2.769e–07 2.686e–07 2.961e–07 2.077e–07 7.641e–08 1.244e–07

MS1 IT 3 3 3 3 3 3
CPU (s) 0.1284 1.2033 5.2434 11.9182 64.7608 385.2560
Error 2.769e–07 2.686e–07 2.961e–07 2.079e–07 7.641e–08 1.293e–07

SOR IT 10 21 62 153 695 2643
CPU (s) 0.4765 1.2821 17.4924 97.5482 2052.3 29904.00
Error 8.763e–07 5.357e–07 8.707e–07 9.933e–07 9.976e–07 9.999e–07

Table 4 Numerical results of the Example 2 for α = 1.4

Method M

800 1600 3200 5000 10,000 20,000

PMS2 IT 3 3 3 3 3 3
CPU (s) 0.2488 0.9239 3.2826 7.3958 24.7668 126.0364
Error 1.353e–07 1.328e–07 1.586e–07 2.159e–07 3.254e–07 5.434e–07

PMS1 IT 3 3 3 3 3 3
CPU (s) 0.1666 1.1425 5.1075 12.1415 68.6869 351.8482
Error 1.353e–07 1.328e–07 1.586e–07 2.160e–07 3.255e–07 5.444e–07

MS2 IT 3 3 3 3 3 3
CPU (s) 0.2034 1.5269 8.6382 63.1743 221.7870 7645.00
Error 1.354e–07 1.327e–07 1.586e–07 2.159e–07 3.255e–07 5.615e–07

MS1 IT 3 3 3 3 3 3
CPU (s) 0.1969 1.0012 4.9433 12.3412 67.0036 385.5151
Error 1.354e–07 1.327e–07 1.586e–07 2.159e–07 3.255e–07 5.533e–07

SOR IT 10 21 62 153 695 –
CPU (s) 0.3228 4.8402 98.6408 723.7896 1854.10 –
Error 5.590e–07 8.608e–07 9.952e–07 9.960e–07 9.900e–07 –
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Figure 6 The eigenvalues of the matrices A (left)
and ˜M–1

ω A (right) when α = 1.4 and M = 1600

respect to different spatial grids. The time step sizes for all numerical experiments are also
set to be 0.05.

Tables 3–4 show that the iteration steps of PMS2 and MS2 methods are constant no
matter what the number of the spatial grid points is, but those of the SOR iteration method
are increasing quickly. The PMS2 and MS2 methods require less computing time than the
SOR iteration method. The advantage of the computing time of the PMS2 method over
the other methods for different values of α and M can be visually shown in Fig. 2.

We also exhibit the preferable numerical behavior for Example 1 in terms of the eigen-
values of ˜M–1

ω A. We can see that the eigenvalues of ˜M–1
ω A are tighter than those of A by

sketching the circles in Figs. 3–6, whose centers are all the middle points of the smallest
and largest eigenvalues of the preconditioner ˜M–1

ω , and their radii are half of the distance
between the two points.

5 Conclusion
According to the discretization of the spatial fractional coupled nonlinear Schrödinger
equations, we have obtained that the coefficient matrix is the sum of a real diagonal matrix
D and a complex symmetric Toeplitz matrix ˜T , which is just the symmetric real Toeplitz T
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plus an imaginary identity matrix iI , and then established a new splitting iteration method
with medium-shifting (MS). Since the structure of the coefficient matrix is Toeplitz ma-
trix, the iteration method with medium-shifting sufficiently employs the fast and super-
fast direct methods of complexity O(M2) and O(M log2 M), respectively. Furthermore,
we replace the Toeplitz matrix T by an appropriate circulant matrix C and obtain the
preconditioned MS (PMS) iteration method. In terms of the special structure of coeffi-
cient matrix in Algorithms 3.1–3.2, we need to solve the linear system associated with the
shifted Toeplitz matrix and the shifted circulant matrix, respectively, by employing fast
and superfast algorithms. Theoretical analysis shows that the approach is convergent, and
numerical experiments have already demonstrated its efficiency.
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11. Xiang, M., Zhang, B., Rǎdulescu, V.D.: Existence of solutions for perturbed fractional p-Laplacian equations. J. Differ.

Equ. 260(2), 1392–1413 (2016)
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