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Abstract
This paper is concerned with the fractional differential equations of Sobolev type with
boundary conditions in a Banach space. With the help of the properties of Hilfer
fractional calculus, the theory of propagation families as well as the theory of the
measure of noncompactness and fixed point methods, we obtain the existence
results of mild solutions for Sobolev-type fractional evolution differential equations
involving the Hilfer fractional derivative. Finally, an example is presented to illustrate
the main result.
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1 Introduction
In the last decades, fractional calculus and fractional differential equations have attracted
much attention; we refer to [1–17] and the references therein. It is found that many phe-
nomena can be modeled with the help of fractional derivatives or integrals, such as frac-
tional Brownian motion [18], anomalous diffusion [19, 20], etc. Fractional differential
equations have been applied to various fields successfully, for example, physics, engineer-
ing, chemistry, aerodynamics, electrodynamics of a complex medium, polymer rheology,
and they have been emerging as an important area of investigation in the last few decades;
see [1, 18, 21–23]. It is a development in the theory and application of fractional differen-
tial equations with the Riemann–Liouville fractional derivative or the Caputo fractional
derivative, see [24–31] and the references therein.

In recent years, Hilfer fractional differential equations have received much atten-
tion. Hilfer [9, 32, 33] proposed a generalized Riemann–Liouville fractional derivative,
for short, Hilfer fractional derivative, which includes the Riemann–Liouville fractional
derivative and the Caputo fractional derivative. It seems that Hilfer et al. [1, 34] have ini-
tially proposed linear differential equations with the new fractional operator, the Hilfer
fractional derivative, and applied operational calculus to solve such simple fractional dif-
ferential equations. Thereafter, Furati et al. [4] discussed the existence and uniqueness for
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the general problem

⎧
⎨

⎩

Dν,μ
a+ u(t) = f (t, u(t)), 0 ≤ ν ≤ 1, 0 < μ < 1, t > a,

I1–γ
a+ u(a+) = c, c > 0,μ ≤ γ = μ + ν – μν < 1,

where Dν,μ
0+ is the Hilfer fractional derivative. Next, Wang and Zhang [35] extended the

above initial condition to a nonlocal boundary value problem of the form

⎧
⎨

⎩

Dν,μ
a+ u(t) = f (t, u(t)), 0 ≤ ν ≤ 1, 0 < μ < 1, t ∈ (a, b],

I1–γ
a+ u(0) =

∑m
i=1 λiu(τi), μ ≤ γ = μ + ν – μν < 1, τi ∈ (a, b].

In [36], Gao and Yu studied Hilfer integral boundary value problems for the following
relaxation fractional differential equations:

⎧
⎨

⎩

Dν,μ
0+ u(t) = cu(t) + f (t, u(t)), c > 0, 0 ≤ ν ≤ 1, 0 < μ < 1, t ∈ (0, b],

I1–γ
0+ u(0+) =

∑m
i=1 λiI1–γ

0+ u(τi), μ ≤ γ = μ + ν – μν < 1, τi ∈ (0, b)

involving Hilfer fractional derivatives, 0 ≤ ν ≤ 1, 0 < μ < 1, by using Mittag–Leffler func-
tions.

In particular, Gu and Trujillo [5] investigated a class of evolution equations,

⎧
⎨

⎩

Dν,μ
0+ u(t) = Au(t) + f (t, u(t)), t ∈ (0, b],

I(1–ν)(1–μ)
0+ u(0) = u0,

with Hilfer fractional derivatives, by the Laplace transform and density function; they first
gave the mild solution definition.

On the other hand, a Sobolev-type equation appears in a variety of physical problems
such as flow of fluid through fissured rocks, thermodynamics, propagation of long waves
of small amplitude and so on [37–39]. The existence result of mild solutions of fractional
integrodifferential equations of Sobolev type with nonlocal condition in a separable Ba-
nach space was studied by using the theory of propagation families as well as the theory
of the measures of noncompactness and the condensing maps [6]. Recently, we used the
fixed point theorems combined with the theory of propagation families to discuss the ex-
istence of mild solutions for nonlinear fractional non-autonomous evolution equations of
Sobolev type with delay of the form

⎧
⎨

⎩

Dν,μ
0+ (Bu(t)) = Au(t) + Bf (t, u(τ1(t)), . . . , u(τm(t))), t ∈ J ,

I(1–ν)(1–μ)
0+ Bu(0) = Bu0,

where Dν,μ
0+ is the Hilfer fractional derivative which will be given in the next section, 0 ≤

ν ≤ 1, 0 < μ < 1, the state u(·) takes values in a Banach space E. J = [0, b] (b > 0), J ′ = (0, b].
This work is based on the theory of propagation families {W (t)}t≥0 introduced by Jin Liang
and Ti-Jun Xiao [19] and the measure of noncompactness, which ensure us that it is not
necessary to assume the nonlinear term f satisfies a Lipschitz type condition; for more
details, see [34].
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To the best of our knowledge, there are no results about Hilfer fractional evolution dif-
ferential equations of Sobolev type with boundary conditions. Motivated by the above
discussion, in this paper, we use fixed point theorems combined with the theory of prop-
agation families to discuss the existence of mild solutions for existence results for Hilfer
fractional evolution differential equations of Sobolev type with boundary conditions of
the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dν,μ
0+ (Bu(t)) = Au(t) + Bf (t, u(t),

∫ t
0 ρ(t, s)h(t, s, u(s)) ds),

0 ≤ ν ≤ 1, 0 < μ < 1, t ∈ J ,

I1–γ
0+ Bu(0) =

∑m
i=1 λiI1–γ

0+ Bu(τi),

μ ≤ γ = μ + ν – μν < 1, τi ∈ (0, b],

(1.1)

where Dν,μ
0+ is the Hilfer fractional derivative of order μ and type ν , which is an interpolator

between Riemann–Liouville and Caputo fractional derivatives. The operator Dν,μ
0+ is a gen-

eralization of the Riemann–Liouville fractional derivative operator introduced by Hifter in
[9, 32, 33], the state u(·) takes values in a Banach space E. J = [0, b](b > 0), J ′ = (0, b]. A and
B are closed (unbounded) linear operators with domains contained in E, the pair (A, B)
generate a propagation family {W (t)}t≥0. f : [0, b] × E × E → D(B) ⊂ E, g : C([0, b], E) →
D(B) ⊂ E are given functions to be specified later, ρ : � → R, h : � × E → E(� = {(t, s) ∈
[0, b] × [0, b] : t ≥ s}), τi, i = 1, 2, . . . , m are pre-fixed points satisfying 0 < τ1 ≤ · · · ≤ τm < b
and λi are real numbers. Here the existence of B–1 is not necessarily assumed.

The rest of this paper is organized as follows: In Sect. 2, we recall some basic known
results and introduce some notation. In Sect. 3, we discuss the existence theorems of mild
solutions for the problem (1.1). Finally, an example will be presented to illustrate the main
results.

2 Preliminaries
In this section, we briefly recall some basic known results which will be used in the sequel.
Throughout this work, we set J = [0, b], where b > 0 is a constant. Let E be a Banach space
with the norm ‖ · ‖ and the pair (A, B) generate a propagation family {W (t)}t≥0 (see Def-
inition 2.6). We denote by B(E) the Banach space of all bounded linear operators from E
to E. For a closed and linear operator W : D(W ) ⊂ E → E, where D(W ) is the domain of
T , we denote by ρ(W ) its resolvent set. We also denote by C(J , E) the Banach space of all
continuous E-value functions on the interval J with the norm ‖u‖ = supt∈J ‖u(t)‖. Let

C1–γ (J , E) =
{

u : J → E|t1–γ u(t) ∈ C(J , E)
}

with the norm ‖ · ‖C1–γ
defined by

‖u‖C1–γ
= sup

0≤t≤b

∣
∣t1–γ u(t)

∣
∣.

Evidently, C1–γ (J , E) is a Banach space. Meanwhile, Cγ
1–γ (J , E) = {f ∈ C1–γ (J , E),c Dα

0+ f (t) ∈
C1–γ (J , E)}.

For completeness we recall the following definitions from fractional calculus.
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Definition 2.1 The Riemann–Liouville fractional integral of order α of a function f :
[0,∞) → R is defined as

Iα
0+f (t) =

1
	(α)

∫ t

0
(t – s)α–1f (s) ds, t > 0,α > 0,

provided the right side is point-wise defined on (0,∞).

Definition 2.2 The Riemann–Liouville derivative of order α with the lower limit zero for
a function f : [0,∞) → R can be written as

Dα
0+ f (t) =

1
	(n – α)

dn

dtn

∫ t

0

f (s)
(t – s)α+1–n ds, t > 0, n – 1 < α < n.

Definition 2.3 The Caputo fractional derivative of order α for a function f : [0,∞) → R
can be written as

cDα
0+ f (t) = Dα

0+

[

f (t) –
n–1∑

k=0

tk

k!
f (k)(0)

]

, t > 0, n – 1 < α < n,

where n = [α] + 1 and [α] denotes the integer part of α.

If u is an abstract function with values in E, then the integrals which appear in Defini-
tions 2.2 and 2.3 are taken in Bochner’s sense.

Definition 2.4 (Hilfer fractional derivative; see [9]). The generalized Riemann–Liouville
fractional derivative of order 0 ≤ ν ≤ 1 and 0 < μ < 1 with lower limit a is defined as

Dν,μ
a+ f (t) = Iν(1–μ)

a+
d
dt

I(1–ν)(1–μ)
a+ f (t)

for functions such that the expression on the right hand side exists.

Recently (Hilfer et al. [32]), this definition for n–1 < μ ≤ n, n ∈ N , 0 ≤ ν ≤ 1, was rewritten
in a more general form:

Dν,μ
a+ f (t) = Iν(n–μ)

a+
dn

dtn I(1–ν)(n–μ)
a+ f (t) = Iν(n–μ)

a+ Dμ+νn–μν
a+ f (t),

where Dμ+νn–μν
a+ is the Riemann–Liouville fractional derivative and Iν(n–μ)

a+ is the Riemann–
Liouville integral.

Remark 2.1 (i) When ν = 0, 0 < μ < 1 and a = 0, the Hilfer fractional derivative corre-
sponds to the classical Riemann–Liouville fractional derivative:

D0,μ
0+ f (t) =

d
dt

I1–μ
0+ f (t) = Dμ

0+f (t).

(ii) When ν = 1, 0 < μ < 1 and a = 0, the Hilfer fractional derivative corresponds to the
classical Caputo fractional derivative:

D1,μ
0+ f (t) = I1–μ

0+
d
dt

f (t) =c Dμ
0+f (t).
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Now, we recall the basic definitions and properties of the Kuratowski measure of non-
compactness that will be used later.

Definition 2.5 ([40]) Let E be a Banach space and 
E be the bounded subsets of E. The
Kuratowski measure of noncompactness is the map α : 
E → [0,∞) defined by (here B ∈

E)

α(B) = inf

{

ε > 0 : B =
n⋃

i=1

Bi and diam(Bi) ≤ ε for i = 1, . . . , n

}

,

here diam Bi = sup{|x – y| : x, y ∈ Bi}.

Lemma 2.1 ([41]) Let S and T be bounded sets of E and a be a real number. Then the
noncompactness measure has the following properties:

(1) α(S) = 0 if and only if S is a relatively compact set.
(2) S ⊂ T implies that α(S) ≤ α(T).
(3) α(S) = α(S).
(4) α(S

⋃
T) = max{α(S),α(T)}.

(5) α(aS) = |a|α(S).
(6) α(S + T) ≤ α(S) + α(T).
(7) α(coS) = α(S), where coS is the convex closure of S.
(8) |α(S) – α(T)| ≤ 2dh(S, T), where dh(S, T) denotes the Hausdorff distance between the

sets S and T , that is,

dh(S, T) = max
{

sup
x∈S

d(x, T), sup
x∈T

d(x, S)
}

,

where d(·, ·) denotes the distance from an element of E to a set of E.

Lemma 2.2 ([42]) Let E be a Banach space, and let D ⊂ E be bounded. Then there exists
a countable set D0 ⊂ D, such that α(D) ≤ 2α(D0).

Lemma 2.3 ([43]) Let E be a Banach space, and let D ⊂ C(I, E) be equicontinuous and
bounded, then α(D(t)) is continuous on I , and α(D) = maxt∈I α(D(t)).

Lemma 2.4 ([44]) Let E be a Banach space, and let D = {un} ⊂ C(I, E) be a bounded and
countable set. Then α(D(t)) is the Lebesgue integral on e, and

α

({∫

I
un(t) dt|n ∈N

})

≤ 2
∫

I
α
(
D(t)

)
dt.

Lemma 2.5 ([45]) Let E be a Banach space. Assume that D ⊂ E is a bounded closed and
convex set on E, Q : D → D is condensing. Then Q has at least one fixed point in D.

We recall the abstract degenerate Cauchy problem as follows [35]:

⎧
⎨

⎩

d
dt Bu(t) = Au(t), t ∈ J ,

Bu(0) = Bu0.
(2.1)
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Definition 2.6 (See [19, Definition 1.4]) A strongly continuous operator family {W (t)}t≥0

of D(B) to a Banach space E, satisfying the requirement that {W (t)}t≥0 is exponentially
bounded, which means that for any u ∈ D(B) there exist a > 0, M > 0 such that

∥
∥W (t)u

∥
∥≤ Meat‖u‖, t ≥ 0,

is called an exponentially bounded propagation family for (2.1) if for λ > a,

(λB – A)–1Bu =
∫ ∞

0
e–λtW (t)u dt, u ∈ D(B).

In this case, we also say that (2.1) has an exponentially bounded propagation family
{W (t)}t≥0.

Motivated by the above definition, we can give the following definition.

Definition 2.7 Let A : D(A) ⊆ E → E, B : D(B) ⊆ E → E be closed linear operators defined
on a Banach space E satisfying D(A) ∩ D(B) �= {0}. Let μ > 0. We say the pair (A, B) is the
generator of an μ-resolvent family, if there exist a ≥ 0 and a strongly continuous function
Kμ : [0,∞) → B(E) such that Kμ(t) is exponentially bounded, {λμ : Reλ > a} ⊂ ρ(A), and
for all x ∈ E,

(
λμB – A

)–1Bu =
∫ ∞

0
e–λtKμ(t)u dt, Reλ > a. (2.2)

In this case, {Kμ(t)}t≥0 is called the μ-resolvent family generated by the pair (A, B).

Lemma 2.6 ([34]) Let f : J × E × E → E be a function such that f ∈ C1–γ (J) for any u ∈
C1–γ (J). A function u ∈ C1–γ (J) is a solution of the fractional initial value problem

⎧
⎨

⎩

Dν,μ
0+ (Bu(t)) = Au(t) + Bf (t, u(t),

∫ t
0 ρ(t, s)h(t, s, u(s)) ds), t ∈ J ,

I1–γ
0+ Bu(0) = Bu0,

if u satisfies

u(t) = Sν,μ(t)u0 +
∫ t

0
Kμ(t – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds, (2.3)

where

Sν,μ(t) = Iν(1–μ)
0+ Kμ(t), Kμ(t) = tμ–1Pμ(t), Pμ(t) = μ

∫ ∞

0
σξμ(σ )W

(
tμσ

)
dσ ,

the function ξμ is a probability density function defined on (0,∞) such that

ξμ(σ ) =
1
μ

σ
–1– 1

μ �μ

(
σ

– 1
μ
)≥ 0

and the one sided stable probability density in [24] is as follows:

�μ(σ ) =
1
π

∞∑

n=1

(–1)n–1σ –μn–1 	(nμ + 1)
n!

sin(nπμ), σ ∈ (0,∞).
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Lemma 2.7 Suppose A and B are closed (unbounded) linear operator with domains con-
tained in E, 0 ≤ ν ≤ 1, 0 < μ < 1, then

Dν,μ
0+
[
BSν,μ(t)u0

]
= A

[
Sν,μ(t)u0

]

and

Dν,μ
0+

(∫ t

0
Kμ(t – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
)

= A
∫ t

0
Kμ(t – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+ Bf
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

.

Proof By Definition 2.7, let λ > a be fixed, then we have

(
λμB – A

)–1Bu =
∫ ∞

0
e–λtKμ(t)u dt, u ∈ D(B). (2.4)

It follows from (2.4) and the Laplace transform; it is obvious that

L
(
BSν,μ(t)u0

)
= L

(
Iν(1–μ)

0+ BKμ(t)u0
)

= λν(μ–1)B
(
λμB – A

)–1Bu0. (2.5)

The difference between fractional derivatives of different types becomes apparent from
the Laplace transformation. In [33] it is found for 0 < μ < 1 that

L
[
Dμ,ν

0+ f (x)
]
(λ) = λμL

[
f (x)

]
(λ) – λν(μ–1)(I(1–ν)(1–μ)

0+ f
)
(0+),

where (I(1–ν)(1–μ)
0+ f )(0+) is the Riemann–Liouville fractional integral of order (1 – ν)(1 – μ)

evaluated in the limits as t → 0+, it being understood that

L
[
f (x)

]
(λ) =

∫ ∞

0
e–λxf (x) dx.

Therefore, we obtain

L
(
Dν,μ

0+
[
BSν,μ(t)u0

])
= λμL

(
BSν,μ(t)u0

)
– λν(μ–1)Bu0

= λμB
[
λν(μ–1)(λμB – A

)–1B
]
u0 – λν(μ–1)Bu0

= λν(μ–1)(λμB – A
)–1B

[
λμB –

(
λμB – A

)]
u0

= λν(μ–1)(λμB – A
)–1B

[
λμB – λμB + A

]
u0

= λν(μ–1)(λμB – A
)–1BAu0

= Aλν(μ–1)(λμB – A
)–1Bu0. (2.6)
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Combining (2.4) and (2.6) yields

Dν,μ
0+
[
BSν,μ(t)u0

]
= A

[
Sν,μ(t)u0

]
.

Similarly, we have

L
(∫ t

0
Kμ(t – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
)

= L
(
Kμ(t)

) ·L
(

Bf
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

))

(2.7)

and

L
(

Dν,μ
0+

[∫ t

0
Kμ(t – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
])

= λμL
(∫ t

0
Kμ(t – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
)

– λν(μ–1) · 0

= λμL
(
Kμ(t)

) ·L
(

Bf
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

))

= λμ
(
λμB – A

)–1B ·L
(

Bf
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

))

=
(
λμB – A + A

)(
λμB – A

)–1B ·L
(

f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

))

= A
(
λμB – A

)–1B ·L
(

f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

))

+ B ·L
(

f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

))

. (2.8)

Thus, it follows from (2.7) and (2.8) that

Dν,μ
0+

[∫ t

0
Kμ(t – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
]

= A
∫ t

0
Kμ(t – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+ Bf
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

.

According to the above fundamental result, a new and important equivalent mixed type
integral equation for the problem can be established. �

Lemma 2.8 Let f be a functions such that f (·, v, w) ∈ C1–γ (J) for any u ∈ C1–γ (J). A function
u ∈ Cγ

1–γ (J) is a solution of Eq. (1.1) if and only if u satisfies the mixed type integral equation

u(t) = Sν,μ(t)d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+
∫ t

0
Kμ(t – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds, (2.9)
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where

d =
1

1 –
∑m

i=1 λiIγ
0+Sν,μ(τi)

.

Proof According to Lemma 2.6, a solution of Eq. (1.1) can be expressed by

u(t) = Sν,μ(t)I1–γ
0+ u(0) +

∫ t

0
Kμ(t – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds. (2.10)

Next, we substitute t = τi into the above equation, we have

λiu(τi) = λiSν,μ(τi)u0

+ λi

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds. (2.11)

Thus, we have

I1–γ
0+ Bu(0) =

m∑

i=1

λiIγ
0+Bu(τi)

=
m∑

i=1

Iγ
0+λiBu(τi)

=
m∑

i=1

λiIγ
0+Sν,μ(τi)Bu0

+
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

= I1–γ
0+ Bu(0)

m∑

i=1

λiIγ
0+Sν,μ(τi)

+
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds,

which implies

I1–γ
0+ Bu(0) = d

m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds, (2.12)

i.e.

I1–γ
0+ u(0) = u0 = d

m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds.

Submitting (2.12) to (2.10), we derive that (2.9). It is probative that u is also a solution of
the integral of Eq. (2.2) when u is a solution of Eq. (1.1).
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The necessity has been already proved, next, we are read to prove its sufficiency. Apply-
ing I1–γ

0+ to both sides of (2.9), we have

I1–γ
0+ Bu(t)

= I1–γ
0+ Sν,μ(t)d

m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+ I1–γ
0+

∫ t

0
Kμ(t – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds.

Substituting t = τi into (2.9), we have

u(τi) = Sν,μ(τi)d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+
∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds.

Then we derive

m∑

i=1

λiIγ
0+Bu(τi)

=
m∑

i=1

λiIγ
0+Sν,μ(τi)d

m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

=
∑m

i=1 λiIγ
0+Sν,μ(τi)

1 –
∑m

i=1 λiIγ
0+Sν,μ(τi)

×
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

= (d – 1)
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

= d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds. (2.13)

It follows (2.12) and (2.13) that

I1–γ
0+ Bu(0) =

m∑

i=1

λiI1–γ
0+ Bu(τi).
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Next, by applying Dν,μ
0+ to both sides of (2.9) and using Lemma 2.7, we can obtain

Dν,μ
0+ (Bu) = Dν,μ

0+

[

BSν,μ(t)d
m∑

i=1

λiIγ
0+

×
∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+
∫ t

0
Kμ(t – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

]

= Dν,μ
0+

[

BSν,μ(t)d
m∑

i=1

λiIγ
0+

×
∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

]

+ Dν,μ
0+

[∫ t

0
Kμ(t – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
]

=

[

d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

]

× Dν,μ
0+
[
BSν,μ(t)

]

+ Dν,μ
0+

[∫ t

0
Kμ(t – s)Bf

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
]

=

[

d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

]

ASν,μ(t)

+ A
∫ t

0
Kμ(t – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+ Bf
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

= A

(

Sν,μ(t)d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+
∫ t

0
Kμ(t – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

)

+ Bf
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

= Au(t) + Bf
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

.

Hence, it reduces to Dν,μ
0+ (Bu) = Au(t) + Bf (s, u(s),

∫ s
0 ρ(s, τ )h(s, τ , u(τ )) dτ ). The results are

proved completely. �

Lemma 2.9 (See [46, Property 2.1]) If α > and β > 0, then

[
Iα

a+(t – a)β–1](x) =
	(β)

	(α + β)
(x – a)α+β–1.
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To end this section, we give the following lemma.

Lemma 2.10 Let μ > 0, k > 0, z ∈ R and f ∈ C(J), then

Ik
0+

∫ z

0
(z – t)μ–1Pμ(t – s)f (s) ds =

B(μ, k)
	(k)

∫ z

0
(z – t)μ+k–1Pμ(t – s)f (s) ds.

Proof According to Lemma 2.9, we have

Ik
0+

∫ z

0
(z – t)μ–1Pμ(t – s)f (s) ds

=
1

	(k)

∫ z

0
(z – u)k–1

∫ u

0
(u – t)μ–1Pμ(t – s)f (s) ds du

=
1

	(k)

∫ z

0

∫ z

t
(z – u)k–1(u – t)μ–1Pμ(t – s)f (s) ds du

=
1

	(k)

∫ z

0
Pμ(t – s)f (s) ds

∫ z

t
(z – u)k–1(u – t)μ–1du

=
1

	(k)

∫ z

0
B(μ, k)(z – t)μ+k–1Pμ(t – s)f (s) ds

=
B(μ, k)
	(k)

∫ z

0
(z – t)μ+k–1Pμ(t – s)f (s) ds.

The desired result is obtained. �

Lemma 2.11 ([34]) Assume that {W (t)}t≥0 is a norm continuous family for t > 0 and
‖W (t)‖ ≤ M, for any fixed t > 0, {Kμ(t)}t>0, and {Sν,μ(t)}t>0 are linear operators, and for
any u ∈ E

∥
∥Kμ(t)

∥
∥≤ Mtμ–1

	(μ)
,

∥
∥Sν,μ(t)

∥
∥≤ Mt(ν–1)(1–μ)

	(ν(1 – μ) + μ)
.

Lemma 2.12 ([34]) Assume that {W (t)}t≥0 is a norm continuous family for t > 0 and
‖W (t)‖ ≤ M, {Kμ(t)}t>0 and {Sν,μ(t)}t>0 are strongly continuous for t > 0.

3 Main results
In this section, we will state and prove our main results. First of all, we introduce the
following assumptions:

(H1) {W (t)}t≥0 is a norm continuous family for t > 0 and uniformly bounded, i.e., there
exists M ≥ 1 such that ‖W (t)‖ ≤ M.

(H2) (i) f : J × E × E → D(B) ⊂ E with f (·, v, w) : J → D(B) ⊂ E is measurable for all
(v, w) ∈ E × E and f (t, ·, ·) : E × E → D(B) ⊂ E is continuous for a.e. t ∈ J , and there
exist a function μ1 ∈ L 1

q
(J , R+) ( 1

q > 1) and a continuous function μ2(·) such that

∥
∥f (t, v, w

∥
∥≤ μ1(t)‖v‖ + μ2(t)‖w‖

and

Iμ
0+μ1 ∈ C

(
J ′, R+), lim

t→0+
t1–γ Iμ

0+μ1(t) = 0,
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Iμ
0+μ2 ∈ C

(
J ′, R+), lim

t→0+
t1–γ Iμ

0+μ2(t) = 0,

for almost all t ∈ J .
(ii) There exist functions η(·) ∈ L 1

q
(J , R+), ξ (·) ∈ L 1

q
(J , R+) and constants L1, L2

such that, for any bounded, equicontinuous and countable sets Dk ⊂ E(k = 1, 2),

α
(
f (t, D1, D2)

)≤ L1η(t)α(D1) + L2ξ (t)α(D2), t ∈ J .

(H3) (i) The function h(t, s, ·) : E → E is continuous for a.e. (t, s) ∈ � for each u ∈ E, the
function h(·, ·, u) : � → E is measurable. Moreover, there exists a function m : � →
R with supt∈J

∫ t
0 m(t, s) ds : m∗ < ∞ such that

∥
∥h(t, s, u)

∥
∥≤ m(t, s)‖u‖, u ∈ E.

(ii) For any bounded set D1 ∈ E, and 0 ≤ s ≤ t ≤ b, there exists a function, a con-
stant ζ : � → R such that

α
(
h(t, s, D1)

)≤ ζ (t, s)α(D1),

where supt∈J
∫ t

0 ζ (t, s) ds := ζ ∗ < ∞.
(H4) For each t ∈ J ,ρ(t, ·) is measurable on J and ρ(t) = sup{|ρ(t, s)|, 0 ≤ s ≤ t} is bounded

on J . The map t → ρt is continuous from J to L∞(J , R), here, ρt(s) = ρ(t, s).
Now we are ready to establish the first existence results for Eq. (1.1) by using the fixed

point theorem.

Theorem 3.1 Assume (H1)–(H4) are satisfied. Then Eq. (1.1) has at least one mild solution
in Cγ

1–γ (J , E) provided that

M2|d|
	(γ )	(μ + γ )

m∑

i=1

|λi|
[(

1 – q
μ + γ – q

)1–q

τ
μ+γ –q
i ‖μ1‖L 1

q
[0,b] +

bμ+γ �m∗μ∗
2

μ + γ

]

+
Mb1–γ

	(μ)

[(
1 – q
μ – q

)1–q

bμ–q‖μ1‖L 1
q

[0,b] +
bμ�m∗μ∗

2
μ

]

< 1 (3.1)

and

Mbμ–q

	(μ)

(
1 – q
μ – q

)1–q(
L1‖η‖L 1

q
[0,b] + L2�ζ ∗‖ξ‖L 1

q
[0,b]
)

<
1
4

.

Proof According to Lemma 2.8, it is sufficient to prove the existence result for the mixed
type integral Eq. (2.9). Consider the operator Q : C1–γ (J , E) → C1–γ (J , E) defined by

(Qu)(t) = Sν,μ(t)d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+
∫ t

0
Kμ(t – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds. (3.2)
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By direct calculation, we know that the operator Q is well defined. From Lemma 2.8, it
is easy to verify that the mild solution of problem (1.1) is equivalent to the fixed point
of the operator Q defined by (3.2). In the following, we will prove that the operator Q :
C1–γ (J , E) → C1–γ (J , E) has at least one fixed point by applying the fixed point theorem.
Our proof will be divided into four steps.

Step 1. We firstly prove that the operator Q defined by (3.2) maps the bounded closed
convex set Br := {u ∈ C1–γ (J , E) : ‖u(t)‖C1–γ

≤ r, t ∈ J} into itself. Observe that

lim
t→0+

t1–γ Sν,μ(t)u0

= lim
t→0+

t1–γ

	(ν(1 – μ))

∫ t

0
(t – s)ν(1–μ)–1Kμ(s)u0 ds

= lim
t→0+

1
	(ν(1 – μ))

∫ 1

0
(1 – s)ν(1–μ)–1Kμ(s)u0 ds

= lim
t→0+

1
	(ν(1 – μ))	(μ)

∫ 1

0
(1 – s)ν(1–μ)–1sμ–1u0 ds

=
u0

	(ν(1 – μ) + μ)
.

Define t1–γ (Qu)(t) as follows:

t1–γ (Qu)(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

t1–γ Sν,μ(t)u0

+ t1–γ
∫ t

0 Kμ(t – s)f (s, u(s),
∫ s

0 ρ(s, τ )h(s, τ , u(τ )) dτ ) ds, t ∈ J ′,
u0

	(ν(1–μ)+μ) , t = 0.

Suppose this is not true. Then, for each r > 0, there exists ur(·) ∈ Br for some t ∈ J such
that ‖(Qur)(t)‖ > r. Combining with Lemma 2.11, Lemma 2.12, the assumption (H1), (H2)
and the Hölder inequality, we get

r <
∥
∥t1–γ (Qur)(t)

∥
∥

≤
∥
∥
∥
∥
∥

t1–γ Sν,μ(t)d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

∥
∥
∥
∥
∥

+
∥
∥
∥
∥t1–γ

∫ t

0
Kμ(t – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

≤ M|d|B(μ,γ )
	(γ )	(γ )

m∑

i=1

× |λi|
∫ τi

0
(τi – s)μ+γ –1Pμ(τi – s)

∣
∣
∣
∣f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)∣
∣
∣
∣ds

+
Mt1–γ

	(μ)

∫ t

0
(t – s)μ–1

∣
∣
∣
∣f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)∣
∣
∣
∣ds

≤ M2|d|
	(γ )	(μ + γ )

×
m∑

i=1

|λi|
∫ τi

0
(τi – s)μ+γ –1

[

μ1(s)r + μ2(s)�r
∫ s

0
m(s, τ ) dτ

]

ds
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+
Mt1–γ

	(μ)

∫ t

0
(t – s)μ–1

[

μ1(s)r + μ2(s)�r
∫ s

0
m(s, τ ) dτ

]

ds

≤ M2|d|r
	(γ )	(μ + γ )

m∑

i=1

|λi|
[∫ τi

0
(τi – s)μ+γ –1μ1(s) ds +

bμ+γ �m∗μ∗
2

μ + γ

]

+
rMt1–γ

	(μ)

[∫ t

0
(t – s)μ–1μ1(s) ds +

bμ�m∗μ∗
2

μ

]

≤ M2|d|r
	(γ )	(μ + γ )

m∑

i=1

|λi|
[(

1 – q
μ + γ – q

)1–q

τ
μ+γ –q
i ‖μ1‖L 1

q
[0,b] +

bμ+γ �m∗μ∗
2

μ + γ

]

+
rMb1–γ

	(μ)

[(
1 – q
μ – q

)1–q

bμ–q‖μ1‖L 1
q

[0,b] +
bμ�m∗μ∗

2
μ

]

. (3.3)

Dividing both sides of (3.3) by r, and taking the lower limit as r → +∞, combined with
(3.1), we get

1 ≤ M2|d|
	(γ )	(μ + γ )

m∑

i=1

|λi|
[(

1 – q
μ + γ – q

)1–q

τ
μ+γ –q
i ‖μ1‖L 1

q
[0,b] +

bμ+γ �m∗μ∗
2

μ + γ

]

+
Mb1–γ

	(μ)

[(
1 – q
μ – q

)1–q

bμ–q‖μ1‖L 1
q

[0,b] +
bμ�m∗μ∗

2
μ

]

< 1,

which is a contradiction. Therefore for some r > 0, Q(Br) ⊂ Br .
Step 2. Now we show that Q is continuous from Br into Br . To show this, for any un, u ∈

Br , n = 1, 2, . . . , with limn→∞ ‖un – u‖C1–γ
= 0, we get

lim
n→∞ un(t) = u(t),

for all t ∈ J . By (H2)(i) and (H3)(i), we see that, for almost every t ∈ J ,

f
(

t, un(t),
∫ t

0
ρ(t, s)h

(
t, s, un(s)

)
ds
)

→ f
(

t, u(t),
∫ t

0
ρ(t, s)h

(
t, s, u(s)

)
ds
)

as n → ∞.
Thus,

lim
n→∞

∥
∥
∥
∥f
(

t, un(t),
∫ t

0
ρ(t, s)h

(
t, s, un(s)

)
ds
)

– f
(

t, u(t),
∫ t

0
ρ(t, s)h

(
t, s, u(s)

)
ds
)∥
∥
∥
∥

C1–γ

= 0.

Noting that un → u in C1–γ (J , E), we infer that there exists ε > 0 such that ‖un – u‖ ≤ ε

for n sufficiently large. Therefore, we have

(t – s)μ–1
∥
∥
∥
∥f
(

t, un(t),
∫ t

0
ρ(t, s)h

(
t, s, un(s)

)
ds
)

– f (t, u(t),
∫ t

0
ρ(t, s)h

(
t, s, u(s)

)
ds
∥
∥
∥
∥

≤ μ1(t)
(∥
∥un(t)

∥
∥ +

∥
∥u(t)

∥
∥
)

+ μ2(t)
(∫ t

0

∥
∥ρ(t, s)h

(
t, s, un(s)

)∥
∥ds –

∫ t

0

∥
∥ρ(t, s)h

(
t, s, u(s)

)
ds
∥
∥

)
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≤ μ1(t)
(∥
∥un(t) – u(t)

∥
∥ + 2

∥
∥u(t)

∥
∥
)

+ μ2(t)
∫ t

0
m(t, s)

(∥
∥un(t) – u(t)

∥
∥ + 2

∥
∥u(t)

∥
∥
)

ds

≤ 2(t – s)μ–1(μ1(t) + μ∗
2�m∗)

(
ε + 2 sup

t∈J

∥
∥u(t)

∥
∥
)

.

It follows from the Lebesgue dominated convergence theorem that, for t ∈ J , un, u ∈ Br ,
we have

∥
∥t1–γ

[
(Qun)(t) – (Qu)(t)

]∥
∥

≤
∥
∥
∥
∥
∥

t1–γ Sν,μ(t)d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)

[

f
(

s, un(s),
∫ s

0
ρ(s, τ )h

(
s, τ , un(τ )

)
dτ

)

– f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)]

ds

+ t1–γ

∫ t

0
Kμ(t – s)

[

f
(

s, un(s),
∫ s

0
ρ(s, τ )h

(
s, τ , un(τ )

)
dτ

)

– f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)]

ds

∥
∥
∥
∥
∥

≤ M2|d|
	(γ )	(μ + γ )

m∑

i=1

|λi|
∫ τi

0
(τi – s)μ+γ –1

[

f
(

s, un(s),
∫ s

0
ρ(s, τ )h

(
s, τ , un(τ )

)
dτ

)

– f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)]

ds

+
Mt1–γ

	(μ)

∫ t

0
(t – s)μ–1

[

f
(

s, un(s),
∫ s

0
ρ(s, τ )h

(
s, τ , un(τ )

)
dτ

)

– f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)]

ds

≤ M2|d| · τμ+2γ –1
i

	(μ + 2γ )

m∑

i=1

|λi| ·
∥
∥
∥
∥f
(

s, un(s),
∫ s

0
ρ(s, τ )h

(
s, τ , un(τ )

)
dτ

)

– f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)∥
∥
∥
∥

C1–γ

+
MbμB(μ,γ )

	(μ)

∥
∥
∥
∥f
(

s, un(s),
∫ s

0
ρ(s, τ )h

(
s, τ , un(τ )

)
dτ

)

– f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)∥
∥
∥
∥

C1–γ

.

This means

∥
∥t1–γ

[
(Qun)(t) – (Qu)(t)

]∥
∥≤

(
M2|d| · τμ+2γ –1

i
	(μ + 2γ )

m∑

i=1

|λi| +
MbμB(μ,γ )

	(μ)

)

·
∥
∥
∥
∥f
(

s, un(s),
∫ s

0
ρ(s, τ )h

(
s, τ , un(τ )

)
dτ

)

– f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)∥
∥
∥
∥

C1–γ

.
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Therefore, we obtain

lim
n→∞‖Qun – Qu‖C1–γ

= 0,

this shows that Q : Br → Br is a continuous operator.
Step 3. We will prove that {Qu : u ∈ Br} is a family of equicontinuous function. For any

u ∈ Br and 0 ≤ t1 < t2 ≤ b, by (3.2) and the assumption (H1), (H2), we get

∥
∥t1–γ

2 (Qu)(t2) – t1–γ
1 (Qu)(t1)

∥
∥

≤ ∥
∥t1–γ

2 Sν,μ(t2) – t1–γ
1 Sν,μ(t1)

∥
∥

×
∥
∥
∥
∥
∥

d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

∥
∥
∥
∥
∥

+
∫ t2

0
t1–γ
2 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

–
∫ t1

0
t1–γ
1 Kμ(t1 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

≤ (∥
∥t1–γ

2 Sν,μ(t2) – t1–γ
2 Sν,μ(t1)

∥
∥ +

∥
∥t1–γ

2 Sν,μ(t1) – t1–γ
1 Sν,μ(t1)

∥
∥
)

×
∥
∥
∥
∥
∥

d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

∥
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t2

t1

t1–γ
2 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1

0
t1–γ
2 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

–
∫ t1

0
t1–γ
1 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1

0
t1–γ
1 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

–
∫ t1

0
t1–γ
1 Kμ(t1 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

= I1 + I2 + I3 + I4 + I5,

where

I1 =
(∥
∥t1–γ

2 Sν,μ(t2) – t1–γ
2 Sν,μ(t1)

∥
∥
)

×
∥
∥
∥
∥
∥

d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

∥
∥
∥
∥
∥

,

I2 =
(∥
∥t1–γ

2 Sν,μ(t1) – t1–γ
1 Sν,μ(t1)

∥
∥
)

×
∥
∥
∥
∥
∥

d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

∥
∥
∥
∥
∥

,

I3 =
∥
∥
∥
∥

∫ t2

t1

t1–γ
2 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥,
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I4 =
∥
∥
∥
∥

∫ t1

0
t1–γ
2 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

–
∫ t1

0
t1–γ
1 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥,

I5 =
∥
∥
∥
∥

∫ t1

0
t1–γ
1 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

–
∫ t1

0
t1–γ
1 Kμ(t1 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥.

Here we calculate

∥
∥t1–γ

2 (Qu)(t2) – t1–γ
1 (Qu)(t1)

∥
∥≤

5∑

i=1

‖Ii‖. (3.4)

Therefore, we observe that ‖Ii‖ tend to 0, when t2 → t1, i = 1, 2, . . . , 5.
For I1, by Lemma 2.12, we get

I1 =
(∥
∥t1–γ

2 Sν,μ(t2) – t1–γ
2 Sν,μ(t1)

∥
∥
)

×
∥
∥
∥
∥
∥

d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

∥
∥
∥
∥
∥

≤ ∥
∥t1–γ

2
(
Sν,μ(t2) – Sν,μ(t1)

)∥
∥

×
∥
∥
∥
∥
∥

d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

∥
∥
∥
∥
∥

→ 0, as t2 → t1.

For I2, by Lemma 2.12, we get

I2 =
(∥
∥t1–γ

2 Sν,μ(t1) – t1–γ
1 Sν,μ(t1)

∥
∥
)

×
∥
∥
∥
∥
∥

d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

∥
∥
∥
∥
∥

≤ Mb1–γ

	(ν(1 – μ) + μ)
∥
∥t1–γ

2 – t1–γ
1
∥
∥

×
∥
∥
∥
∥
∥

d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

∥
∥
∥
∥
∥

→ 0, as t2 → t1.

For I3, by Lemma 2.12 and (H2), we have

I3 =
∥
∥
∥
∥

∫ t2

t1

t1–γ
2 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

≤ Mt1–γ
2

	(μ)

∫ t2

0
(t2 – s)μ–1f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds ds
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= Mt1–γ
2 Iμ

0+f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds → 0, as t2 → t1.

For I4, by Lemma 2.12 and (H2), we have

I4 =
∥
∥
∥
∥

∫ t1

0
t1–γ
2 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

–
∫ t1

0
t1–γ
1 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

≤ 2M
	(μ)

∫ t1

0

[
t1–γ
2 (t2 – s)μ–1 – t1–γ

1 (t1 – s)μ–1]

× f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds,

then, by the Lebesgue dominated convergence theorem, we have

∫ t1

0

[
t1–γ
2 (t2 – s)μ–1 – t1–γ

1 (t1 – s)μ–1]f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds → 0,

as t2 → t1.

For I5, by Lemma 2.12 and (H2), we have

I5 =
∥
∥
∥
∥

∫ t1

0
t1–γ
1 Kμ(t2 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

–
∫ t1

0
t1–γ
1 Kμ(t1 – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

≤
∥
∥
∥
∥

∫ t1

0
t1–γ
1
[
Kμ(t2 – s) – Kμ(t1 – s)

]
f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

≤ ∥
∥Kμ(t2 – s) – Kμ(t1 – s)

∥
∥
∫ t1

0
t1–γ
1 f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

→ 0, as t2 → t1.

In conclusion,

∥
∥t1–γ

2 (Qu)(t2) – t1–γ
1 (Qu)(t1)

∥
∥→ 0

as t2 → t1, which means that the operator Q : Br → Br is equicontinuous.
Let H = coQ(Br). Then it is easy to verify that Q maps H into itself and H ⊂ Br is equicon-

tinuous.
Step 4. Now, we prove that Q : H → H is a condensing operator. For any D ⊂ H , by

Lemma 2.2, there exists a countable set D0 = {un} ⊂ D, such that

α
(
Q(D)

)≤ 2α
(
Q(D0)

)
.

By the equicontinuity of H , we know that D0 ⊂ D is also equicontinuous.
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For t ∈ J , by the definition of Q and (H2)(ii), (H3)(ii), we have

α
(
Q(D0)(t)

)

= α

({

Sν,μ(t)d
m∑

i=1

λiIγ
0+

∫ τi

0
Kμ(τi – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

+
∫ t

0
Kμ(t – s)f

(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)

ds

})

≤ 2M
	(μ)

∫ t

0
(t – s)μ–1α

({

f
(

s, u(s),
∫ s

0
ρ(s, τ )h

(
s, τ , u(τ )

)
dτ

)})

ds

≤ 2M
	(μ)

∫ t

0
(t – s)μ–1[η(s)α

(
D0
(
u(s)

))
+ �ζ ∗ξ (t)α

(
D0
(
u(s)

))]
ds

≤ 2M
	(μ)

α
(
D0(s)

)
∫ t

0
(t – s)μ–1(η(s) + �ζ ∗ξ (s)

)
ds

≤ 2Mbμ–q

	(μ)

(
1 – q
μ – q

)1–q(
L1‖η‖L 1

q
[0,b] + L2�ζ ∗‖ξ‖L 1

q
[0,b]
) · α(D).

Since Q(D0) ⊂ H is bounded and equicontinuous, we know from Lemma 2.3 that

α
(
Q(D0)

)
= max

t∈I
α
(
Q(D0)(t)

)
.

Therefore, we have

α
(
Q(D)

)≤ 4Mbμ–q

	(μ)

(
1 – q
μ – q

)1–q(
L1‖η‖L 1

q
[0,b] + L2�ζ ∗‖ξ‖L 1

q
[0,b]
)≤ α(D).

Thus, Q : Br → Br is a condensing operator. It follows from Lemma 2.5 that the problem
(1.1) has at least one solution u ∈ C1–γ (J , E). Finally, using [4, Lemma 21] and repeating
the process of proof in Lemma 2.8, one can show that this solution is actually in Cγ

1–γ (J , E).
This completes the proof. �

In the following we will present some special cases.
Case 1. When B = I , then D(B) = E, we assume that we generate a norm continuous

semigroup {W (t)}t≥0 of uniformly bounded linear operators on E, then from the proof of
Theorem 3.1 we have the following theorem.

Theorem 3.2 Assume that the nonlinear function f : J × Em → E is continuous and the
assumptions conditions are satisfies, then for the problem

⎧
⎨

⎩

Dν,μ
0+ u(t) = Au(t) + f (t, u(t),

∫ t
0 ρ(t, s)h(t, s, u(s)) ds), t ∈ J ,

I1–γ
0+ u(0) =

∑m
i=1 λiI(1–ν)(1–μ)

0+ u(τi), μ ≤ γ = μ + ν – μν,

there exists at least one mild solution in Cγ
1–γ (J , E).

Case 2. When B = I,ν = 1, then D(B) = E, we assume that we generate a norm continuous
semigroup {W (t)}t≥0 of uniformly bounded linear operator on E, then from the proof of
Theorem 3.1 we have the following theorem.
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Theorem 3.3 Assume that the nonlinear function f : J × Em → E is continuous and the
assumptions conditions are satisfied, then for the problem

⎧
⎨

⎩

CDμ
0+u(t) = Au(t) + Bf (t, u(t),

∫ t
0 ρ(t, s)h(t, s, u(s)) ds), t ∈ J ,

u(0) =
∑m

i=1 λiu(τi),

there exists at least one mild solution in C(J , E).

Case 3. When ν = 1, then D(B) = E, we assume that we generate a norm continuous
semigroup {W (t)}t≥0 of uniformly bounded linear operator on E, then from the proof of
Theorem 3.1 we have the following theorem.

⎧
⎨

⎩

CDμ
0+Bu(t) = Au(t) + Bf (t, u(t),

∫ t
0 ρ(t, s)h(t, s, u(s)) ds), t ∈ J ,

Bu(0) =
∑m

i=1 λiBu(τi).
(3.5)

Proof Let u0 – g(u) =
∑m

i=1 λiu(τi), then Eq. (3.5) is transformed to the following equation:

⎧
⎨

⎩

CDμ
0+Bu(t) = Au(t) + Bf (t, u(t),

∫ t
0 ρ(t, s)h(t, s, u(s)) ds), t ∈ J ,

Bu(0) = B(u0 – g(u)).
(3.6)

For the problem (3.6), for more details see [6]. �

4 Applications
In this section, we give one example to illustrate our main results derived in Sect. 3.

Example 4.1
We consider the following fractional diffusion equations of Sobolev type with delay:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dν,μ
0+ (u(t, x) – ∂2u(t,x)

∂x2 ) = ∂2

∂x2 u(t, x) + f̃ (t, u(t, x),
∫ t

0 ρ(t, s)h(t, s, u(s, x)) ds),

x ∈ 
, t ∈ (0, 1],

I1–γ
0+ (u(0, x) – ∂2

∂x2 u(0, x)) = ϕ̃(x),

x ∈ 
,

(4.1)

where Dν,μ
0+ is the Hilfer fractional derivative, 0 ≤ ν ≤ 1, 0 < μ < 1, τk : J → J are continuous

functions such that 0 ≤ τk(t) < t, k = 1, 2, . . . , m and 
 ⊂ Rm is a bounded domain with a
sufficiently smooth boundary ∂
, and f̃ : J × Rm → R is continuous.

Let E = L2(
) be a Banach space with the L2-norm ‖ · ‖2, we define

D(A) = D(B) = H2(
), Au =
∂2u
∂x2 , Bu = u –

∂2u
∂x2 ,

where H2(
) is the completion of the space C2(
) with respect to the norm

‖u‖H2(
) =
(∫




∑

|μ|≤2

∣
∣Dμu(x)

∣
∣2 dx

) 1
2

,
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C2(
) is the set of all continuous defined on R which have continuous partial derivatives
of order less than or equal to 2. In view of the paper [19], it is easy to see that the pair (A, B)
generates a propagation family W (t) of uniformly bounded, and similarly to the proof of
(2.15), (2.16) and (2.17) in [19], we can see that {W (t)}t≥0 is norm continuous for t > 0 and
‖W (t)‖ ≤ 1, i.e., the assumption condition (H1) is satisfied.

Let ν = 1
2 ,μ = 1

2 , then γ = 3
4 and

f̃
(

t, u(t, x),
∫ t

0
ρ(t, s)h

(
t, s, u(s, x)

)
ds
)

= Bf
(

t, u(t, x),
∫ t

0
ρ(t, s)h

(
t, s, u(s, x)

)
ds
)

=
1

k · k√t
u(t, x) +

t2

k

∫ t

0
s2 · sin

u(s, x)
t

ds,

ϕ̃(·) = 2Iγ
0+B

(

u
(

1
2

, x
)

–
∂2

∂x2 u
(

1
2

, x
))

,

ρ(t, s) = 1,

h
(
t, s, u(s, x)

)
= s2 · sin

u(s, x)
t

.

Equation (4.1) can be rewritten in the abstract form as (1.1). Moreover,

∥
∥
∥
∥f̃
(

t, u(t, x),
∫ t

0
ρ(t, s)h

(
t, s, u(s, x)

)
ds
)∥
∥
∥
∥

≤ 1
k · k√t

∥
∥u(t, x)

∥
∥ +

t2

k

∥
∥
∥
∥

∫ t

0
h
(
t, s, u(s, x)

)
ds
∥
∥
∥
∥

:= μ1(t)
∥
∥u(t, x)

∥
∥ + μ2(t)

∥
∥
∥
∥

∫ t

0
h
(
t, s, u(s, x)

)
ds
∥
∥
∥
∥,

and, for any u1, u2 ∈ E,

∥
∥
∥
∥f̃
(

t, u1(t, x),
∫ t

0
ρ(t, s)h

(
t, s, u1(s, x)

)
ds
)

– f̃
(

t, u2(t, x),
∫ t

0
ρ(t, s)h

(
t, s, u2(s, x)

)
ds
)∥
∥
∥
∥

≤ 1
k · k√t

∥
∥u1(t, x) – u2(t, x)

∥
∥ +

t2

k

∥
∥
∥
∥

∫ t

0
h
(
t, s, u2(s, x)

)
ds –

∫ t

0
h
(
t, s, u1(s, x)

)
ds
∥
∥
∥
∥.

Therefore, for any bounded set D1, D2 ∈ E,

α
(
f̃ (t, D1, D2)

)≤ 1
k · k√t

(
α(D1)

)
+

t2

k
(
α(D2)

)
:= η(t)

(
α(D1)

)
+ ξ (t)

(
α(D1)

)
, t ∈ (0, 1].

Moreover,

∥
∥h
(
t, s, u(s, x)

)∥
∥≤ s2

t
∥
∥u(s, x)

∥
∥ := m(t, s)

∥
∥u(s, x)

∥
∥

and

sup
t∈[0,1]

∫ t

0
m(t, s) ds = sup

t∈[0,1]

∫ t

0

s2

t
ds =

1
3

:= m∗.
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For any u1, u2 ∈ E,

∥
∥h
(
t, s, u1(s, x)

)
– h
(
t, s, u2(s, x)

)∥
∥≤ s2

t
∥
∥u(s, x)

∥
∥ := m(t, s)

∥
∥u(s, x)

∥
∥

≤ s2

t
∥
∥u1(s, x) – u2(s, x)

∥
∥.

So, for any bounded set D1 ⊂ E,

α
(
h(t, s, D1)

)≤ s2

t
α(D1) : ζ (t, s)α(D1)

and

sup
t∈[0,1]

∫ t

0
ζ (t, s) ds = sup

t∈[0,1]

∫ t

0

s2

t
ds =

1
3

:= ζ ∗.

If we put q = 1
4 , k = 5, M = 1, L1 = L2 = 1

2 , τi = 1
2 , b = 1,

∑m
i=1 |λi| = 2, then

‖μ1‖L 1
q

[0,b] = ‖η‖L 1
q

[0,b] =
(

1
5

) 3
4

, μ∗
2 =

1
5

,

‖μ2‖L 1
q

[0,b] = ‖ξ‖L 1
q

[0,b] =
(

1
5

) 3
2

.

On the other hand,

|d| =
∣
∣
∣
∣

1
1 –

∑m
i=1 λiIγ

0+Sν,μ(τi)

∣
∣
∣
∣ =
∣
∣
∣
∣

1
1 – 2

√
2√

π

∣
∣
∣
∣≈ 1.6785,

and we have

M2|d|
	(γ )	(μ + γ )

m∑

i=1

|λi|
[(

1 – q
μ + γ – q

)1–q

τ
μ+γ –q
i ‖μ1‖L 1

q
[0,b] +

bμ+γ �m∗μ∗
2

μ + γ

]

+
Mb1–γ

	(μ)

[(
1 – q
μ – q

)1–q

bμ–q‖μ1‖L 1
q

[0,b] +
bμ�m∗μ∗

2
μ

]

≈ 0.985282 < 1

and

Mbμ–q

	(μ)

(
1 – q
μ – q

)1–q(
L1‖η‖L 1

q
[0,b] + L2�ζ ∗‖ξ‖L 1

q
[0,b]
)≈ 0.211485 <

1
4

.

Now all the assumptions in Theorem 3.1 are satisfied, Eq. (4.1) has at least one solution
in C 1

4
(J).

5 Conclusions
In this paper, we deal with a class of nonlinear fractional differential equations of Sobolev
type with boundary conditions by using the Hilfer fractional derivative, which generalizes
the famous Riemann–Liouville fractional derivative. With the help of the properties of
Hilfer fractional calculus, the theory of propagation families as well as the theory of the
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measure of noncompactness and the fixed point methods, we obtain the existence result
of mild solutions for Sobolev-type fractional evolution differential equations. Finally, an
example is presented to illustrate the main result.
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