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Abstract
In this article, by using the spectral analysis of the relevant linear operator and
Gelfand’s formula, some properties of the first eigenvalue of a fractional differential
equation are obtained. Based on these properties and through the fixed point index
theory, the singular nonlinear fractional differential equations with Riemann–Stieltjes
integral boundary conditions involving fractional derivatives are considered under
some appropriate conditions, and the nonlinearity is allowed to be singular in regard
to not only time variable but also space variable and it includes fractional derivatives.
The existence of positive solutions for boundary conditions involving fractional
derivatives is established. Finally, an example is given to demonstrate the validity of
our main results.
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1 Introduction
Recently, fractional differential equations have drawn more and more attention of the re-
search community due to their numerous applications in various fields of science such as
engineering, chemistry, physics, mechanics, etc. [1–4]. Boundary value problems of frac-
tional differential equations have been investigated for many years. Now, there are many
papers dealing with the problem for different kinds of boundary value conditions such as
multi-point boundary condition (see [5–10]), integral boundary condition (see [11–24]),
and many other boundary conditions (see [25–32]).

In this paper, we consider the existence of positive solutions for the following integral
boundary value problems of singular nonlinear fractional differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + p(t)f (t, u(t), Dβ1

0+ u(t), . . . , Dβn–1
0+ u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

Dβ

0+ u(1) =
∫ 1

0 l(t)Dβn–1
0+ u(t) dA(t),

(1.1)
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where n–1 < α ≤ n, i–1 < βi ≤ i (i = 1, 2, . . . , n–1), α–βn–1 > α–β > 1, p ∈ C((0, 1),R+) and
p(t) is allowed to be singular at t = 0 or t = 1, in which R+ = [0, +∞), f : [0, 1]× (0, +∞)n →
R+ is continuous and f may be singular at x0 = x1 = · · · = xn–1 = 0, l : (0, 1) →R+ is continu-
ous with l ∈ L1(0, 1),

∫ 1
0 l(t)u(t) dA(t) denotes the Riemann–Stieltjes integral with a signed

measure, in which A : [0, 1] →R = (–∞, +∞) is a function of bounded variation.
Zhang et al. [15] studied the existence of positive solutions of the following singular

nonlinear fractional differential equation with integral boundary value conditions:

⎧
⎨

⎩

–Dα
t x(t) = f (t, x(t), Dβ

t x(t)), 0 < t < 1,

Dβ
t x(0) = 0, Dβ

t x(1) =
∫ 1

0 Dβ
t x(s) dA(s),

where 0 < β ≤ 1 < α ≤ 2, f (t, x, y) may be singular at both t = 0, 1 and x = y = 0,
∫ 1

0 x(s) dA(s)
denotes the Riemann–Stieltjes integral with a signed measure, in which A : [0, 1] → R

is a function of bounded variation. Through the spectral analysis and fixed point index
theorem, the author obtained the existence of positive solutions.

By means of the fixed point index theory, Hao et al. [16] studied the existence of positive
solutions of the following nth order differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

u(n)(t) + λa(t)f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

u(1) =
∫ 1

0 u(s) dA(s),

where λ > 0 is a parameter, 0 ≤ � :=
∫ 1

0 tn–1 dA(t) < 1, a : (0, 1) →R+ is continuous and a(t)
may be singular at t = 0 and t = 1, f : [0, 1] × (0, +∞) → R+ is continuous and f (t, x) may
also have singularity at x = 0.

∫ 1
0 u(s) dA(s) denotes the Riemann–Stieltjes integral with a

signed measure, that is, A has bounded variation.
Li et al. [17] studied the existence of positive solutions of the following singular nonlinear

fractional differential equation with integral boundary value conditions:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + p(t)f (t, u(t)) + q(t)g(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

u(1) =
∫ 1

0 h(s)u(s) dA(s),

where n – 1 < α ≤ n, p, q ∈ C((0, 1),R+), p(t) and q(t) are allowed to be singular at t = 0 or
t = 1, f , g : [0, 1] × (0, +∞) →R+ are continuous and f (t, x), g(t, x) may be singular at x = 0,
h : (0, 1) → R+ is continuous with h ∈ L1(0, 1);

∫ 1
0 h(s)u(s) dA(s) denotes the Riemann–

Stieltjes integral with a signed measure, in which A : [0, 1] → R is a function of bounded
variation. Through a well-known fixed point theorem, the author obtained the existence
and multiplicity of positive solutions.

Zhang [29] obtained several cases of local existence and multiplicity of positive solutions
for the following infinite-point boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + q(t)f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

u(i)(1) =
∑∞

j=1 αju(ξj),
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where α > 2, n – 1 < α ≤ n, i ∈ [1, n – 2] is fixed, f : (0, 1) × (0, +∞) is continuous and f (t, x)
permits singularities with t = 0, 1 and x = 0.

Motivated by the above mentioned papers, the purpose of this article is to investigate
the existence of positive solutions for a more general problem. Obviously, our work is
different from those in [15–17, 29]. The main new features presented in this paper are
as follows. Firstly, the nonlinear term f in our question includes multiple fractional or-
der derivatives of unknown function, and the boundary value conditions also involve
the fractional derivative. Secondly, the nonlinear term f in our work can be singular at
x0 = x1 = · · · = xn–1 = 0, which implies all of the above work. Lastly, by using the spectral
analysis and fixed point index theorem, we get the existence of positive solutions.

The rest of the paper is organized as follows. Firstly, we present some preliminaries and
lemmas that are to be used to prove our main results and develop some properties of
the Green function. Secondly, we prove the existence of a positive solution of BVP (1.1).
Finally, we give an example to prove our main conclusion.

2 Preliminaries and lemmas
In this section, for the convenience of the reader, we present some notations and lemmas
that will be used in the proof of our main results.

Definition 2.1 ([4]) The Riemann–Liouville fractional integral of order α > 0 of a function
y : (0,∞) →R is given by

Iα
0+ y(t) =

1
�(α)

∫ t

0
(t – s)α–1y(s) ds,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2 ([4]) The Riemann–Liouville fractional derivative of order α > 0 of a con-
tinuous function y : (0,∞) →R is given by

Dα
0+ y(t) =

1
�(n – α)

(
d
dt

)n ∫ t

0

y(s)
(t – s)α–n+1 ds,

where α > 0 and n–1 < α ≤ n (n = 1, 2, 3, . . . ), provided that the right-hand side is pointwise
defined on (0,∞).

Lemma 2.1 ([2]) Let α > 0. If we assume u ∈ C(0, 1) ∩ L1(0, 1), then the fractional differen-
tial equation

Dα
0+ u(t) = 0

has

u(t) = C1tα–1 + C2tα–2 + · · · + CN tα–N , Ci ∈R, i = 1, 2, . . . , N ,

as the unique solution, where N = [α] + 1.

From the definition of the Riemann–Liouville derivative, we can obtain the statement.
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Lemma 2.2 ([2]) Assume that u ∈ C(0, 1) ∩ L1(0, 1) with a fractional derivative of order
α > 0 that belongs to C(0, 1) ∩ L1(0, 1). Then

Iα
0+ Dα

0+ u(t) = u(t) + C1tα–1 + C2tα–2 + · · · + CN tα–N ,

for some Ci ∈R (i = 1, 2, . . . , N ), where N = [α] + 1.

In the following, we present the Green function of the fractional differential equation
boundary value problem.

Lemma 2.3 Take f be as in (1.1) and let v(t) = Dβn–1
0+ u(t). Then problem (1.1) is transformed

to the following equation:
⎧
⎨

⎩

Dα–βn–1
0+ v(t) + f (t, Iβn–1

0+ v(t), Iβn–1–β1
0+ v(t), . . . , v(t)) = 0, t ∈ (0, 1),

Iβn–1–n+2
0+ v(0) = 0, Dβ–βn–1

0+ v(1) =
∫ 1

0 l(t)v(t) dA(t).
(2.1)

Furthermore, assume that 0 ≤ δ �= �(α–βn–1)
�(α–β) , then the solution of problem (2.1) is equivalent

to the solution of the following fractional integral equation:

v(t) =
∫ 1

0
G(t, s)f

(
s, Iμn–1

0+ v(s), . . . , Iμn–1–μn–2
0+ v(s), v(s)

)
, (2.2)

where

G(t, s) = K(t, s) +
tα–βn–1–1

�(α–βn–1)
�(α–β) – δ

gA(s),

in which

K(t, s) =
1

�(α – βn–1)

⎧
⎨

⎩

tα–βn–1–1(1 – s)α–β–1 – (t – s)α–βn–1–1, 0 ≤ s ≤ t ≤ 1,

tα–βn–1–1(1 – s)α–β–1, 0 ≤ t ≤ s ≤ 1,

δ =
∫ 1

0
tα–βn–1–1l(t) dA(t), (2.3)

gA(s) =
∫ 1

0
K(t, s)l(t) dA(t).

Moreover, if v(t) is a positive solution of (2.1), then u(t) = Iμn–1
0+ v(t) is a positive solution of

problem (1.1).

Proof Let v(t) = Dβn–1
0+ u(t), then from the boundary value conditions of (1.1) we have u(t) =

Iβn–1
0+ v(t), and

u(n–2) =
(

d
dt

)(n–2) 1
�(βn–1)

∫ t

0
(t – s)βn–1–1v(s) ds

=
1

�(βn–1)
× βn–1 × · · · × (βn–1 – n + 2)

∫ t

0
(t – s)βn–1–n+1v(s)

= Iβn–1–n+2
0+ v(t),

and from Lemma 2.3 we have Dβ

0+ u(t) = Dβ

0+ Iβn–1
0+ v(t) = Dβ–βn–1

0+ v(t).
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Next, we may apply Lemma 2.2 to reduce (2.1) to an equivalent integral equation

v(t) = –Iα–βn–1
0+ y(t) + C1tα–βn–1–1 + C2tα–βn–1–2

for some Ci ∈ R (i = 1, 2).

Iβn–1–n+2
0+ v(t) = Iβn–1–n+2

0+
(
–Iα–βn–1

0+ y(t) + C1tα–βn–1–1 + C2tα–βn–1–2)

= –Iα–n+2
0+ y(t) + C1Iβn–1–n+2

0+ tα–βn–1–1 + C2Iβn–1–n+2
0+ tα–βn–1–2

= –Iα–n+2
0+ y(t) + C1

�(α – βn–1)
�(α – n + 2)

tα–n+1 + C2
�(α – βn–1 – 1)
�(α – n + 1)

tα–n. (2.4)

From (2.4) and Iβn–1–n+2
0+ v(0) = 0, we know that C2 = 0. Then we obtain

v(t) = –Iα–βn–1
0+ y(t) + C1tα–βn–1–1. (2.5)

From (2.5) we have

Dβ–βn–1
0+ v(t) = –Dβ–βn–1

0+ Iα–βn–1
0+ y(t) + C1Dβ–βn–1

0+ tα–βn–1–1

= –Iα–β

0+ y(t) + C1
�(α – βn–1)
�(α – β)

tα–β–1

= –
1

�(α – β)

∫ t

0
(t – s)α–β–1y(s) ds + C1

�(α – βn–1)
�(α – β)

tα–β–1.

So, we have

Dβ–βn–1
0+ v(1) = –

1
�(α – β)

∫ 1

0
(1 – s)α–β–1y(s) ds + C1

�(α – βn–1)
�(α – β)

. (2.6)

And from (2.5) we also have

∫ 1

0
l(t)v(t) dA(t) =

∫ 1

0
l(t)

[

–
1

�(α – βn–1)

∫ t

0
(t – s)α–βn–1–1y(s) ds + C1tα–βn–1–1

]

dA(t)

= –
1

�(α – βn–1)

∫ 1

0

∫ t

0
l(t)(t – s)α–βn–1–1y(s) ds dA(t)

+ C1

∫ 1

0
tα–βn–1–1l(t) dA(t). (2.7)

From (2.6), (2.7), and Dβ–βn–1
0+ v(1) =

∫ 1
0 l(t)v(t) dA(t), we obtain that

[
�(α – βn–1)
�(α – β)

– δ

]

C1 =
1

�(α – β)

∫ 1

0
(1 – s)α–β–1y(s) ds

–
1

�(α – βn–1)

∫ 1

0

∫ t

0
l(t)(t – s)α–βn–1–1y(s) ds dA(t),

where δ =
∫ 1

0 tα–βn–1–1l(t) dA(t), thus

C1 =
1

�(α–β)
∫ 1

0 (1 – s)α–β–1y(s) ds – 1
�(α–βn–1)

∫ 1
0

∫ t
0 l(t)(t – s)α–βn–1–1y(s) ds dA(t)

�(α–βn–1)
�(α–β) – δ

.
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Putting C1 into equation (2.5), we obtain that

u(t) = –
1

�(α – βn–1)

∫ t

0
(t – s)α–βn–1–1y(s) ds + tα–βn–1–1

1
�(α–β)

∫ 1
0 (1 – s)α–β–1y(s) ds
�(α–βn–1)

�(α–β) – δ

– tα–βn–1–1
1

�(α–βn–1)
∫ 1

0
∫ t

0 l(t)(t – s)α–βn–1–1y(s) ds dA(t)
�(α–βn–1)

�(α–β) – δ

=
∫ t

0 (tα–βn–1–1(1 – s)α–β–1 – (t – s)α–βn–1–1)y(s) ds +
∫ 1

t tα–βn–1–1(1 – s)α–β–1y(s) ds
�(α – βn–1)

+
tα–βn–1–1

�(α – βn–1)

∫ 1
0

∫ t
0 [tα–βn–1–1l(t)(1 – s)α–β–1 – l(t)(t – s)α–βn–1–1]y(s) ds dA(t)

�(α–βn–1)
�(α–β) – δ

+
tα–βn–1–1

�(α – βn–1)

∫ 1
0

∫ 1
t tα–βn–1–1l(t)(1 – s)α–β–1y(s) ds dA(t)

�(α–βn–1)
�(α–β) – δ

.

Let

K(t, s) =
1

�(α – βn–1)

⎧
⎨

⎩

tα–βn–1–1(1 – s)α–β–1 – (t – s)α–βn–1–1, 0 ≤ s ≤ t ≤ 1,

tα–βn–1–1(1 – s)α–β–1, 0 ≤ t ≤ s ≤ 1,

gA(s) =
∫ 1

0
l(t)K(t, s) dA(t).

From the above we obtain that

u(t) =
∫ 1

0
K(t, s)y(s) ds +

tα–βn–1–1

�(α–βn–1)
�(α–β) – δ

∫ 1

0
gA(s)y(s) ds =

∫ 1

0
G(t, s)y(s) ds.

Lastly, by the computation above, we know that if v(t) is a positive solution of (2.1), then
u(t) = Iμn–1

0+ v(t) is a positive solution of problem (1.1). Thus we complete the proof. �

Lemma 2.4 Let 0 ≤ δ < �(α–βn–1)
�(α–β) and gA(s) ≥ 0, s ∈ [0, 1], the Green function G(t, s) defined

by (2.2) satisfies
(1) G : [0, 1] × [0, 1] → R+ is continuous,
(2) For any t, s ∈ [0, 1], we have tα–βn–1–1φ(s) ≤ G(t, s) ≤ φ(s), where

φ(s) = K(1, s) +
gA(s)

�(α–βn–1)
�(α–β) – δ

, s ∈ [0, 1].

Proof (1) holds obviously, so we only prove (2) holds. By (2.3), when 0 ≤ s ≤ t ≤ 1,

∂K(t, s)
∂t

=
1

�(α – βn–1)
[
(α – βn–1 – 1)tα–βn–1–2(1 – s)α–β–1

– (α – βn–1 – 1)(t – s)α–βn–1–2]

=
(α – βn–1 – 1)
�(α – βn–1)

tα–βn–1–2
[

(1 – s)α–β–1 –
(

1 –
s
t

)α–βn–1–2]

≥ 0,
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and

K(t, s) – tα–βn–1–1K(1, s) =
tα–βn–1–1(1 – s)α–β–1 – (t – s)α–βn–1–1

�(α – βn–1)

– tα–βn–1–1 (1 – s)α–β–1 – (1 – s)α–βn–1–1

�(α – βn–1)

=
tα–βn–1–1(1 – s)α–βn–1–1 – (t – s)α–βn–1–1

�(α – βn–1)
≥ 0.

In the same way, when 0 ≤ t ≤ s ≤ 1,

∂K(t, s)
∂t

=
1

�(α – βn–1)
(α – βn–1 – 1)tα–βn–1–2(1 – s)α–β–1 ≥ 0,

and

K(t, s) – tα–1K(1, s) =
tα–βn–1–1(1 – s)α–β–1

�(α – βn–1)
– tα–βn–1–1 (1 – s)α–β–1 – (1 – s)α–βn–1–1

�(α – βn–1)

=
tα–βn–1–1(1 – s)α–βn–1–1

�(α – βn–1)
≥ 0.

It follows from the above that

tα–βn–1–1K(1, s) ≤ K(t, s) ≤ K(1, s), t, s ∈ [0, 1].

Furthermore, by the definition of φ(s), the conclusion of (2) is proved. �

Let E = C[0, 1], ‖v‖ = sup0≤t≤1 |v(t)|. Then (E,‖ · ‖) is a Banach space. Let

P =
{

v ∈ E : v(t) ≥ 0, t ∈ [0, 1]
}

,

K =
{

v ∈ P : v(t) ≥ tα–βn–1–1‖v‖, t ∈ [0, 1]
}

,

K (i) =
{

v ∈ P : v(t) ≥ tα–βi–1‖v‖, t ∈ [0, 1]
}

, i = 0, 1, . . . , n – 2,

where β0 = 0. And for any r > 0, define 
r = {v ∈ K : ‖v‖ < r}, ∂
r = {v ∈ K : ‖v‖ = r}, 
r =
{v ∈ K : ‖v‖ ≤ r}, 
(i)

r = {v ∈ K (i) : ‖v‖ < r}. It is easy to see that K and K (i) (i = 0, 1, . . . , n – 2)
are cones in E and 
R \ 
r ⊂ K for any 0 < r < R. Throughout the paper we need the
following conditions:

(H1) A : [0, 1] →R is a function of bounded variation and gA(s) ≥ 0 for all s ∈ [0, 1];
(H2) l ∈ C(0, 1) ∩ L1(0, 1) and

0 ≤ δ =
∫ 1

0
tα–βn–1–1l(t) dA(t) <

�(α – βn–1)
�(α – β)

;

(H3) p : (0, 1) →R+ is continuous, and
∫ 1

0 φ(s)p(s) ds < +∞;
(H4) f : [0, 1] × (0,∞)n →R+ is continuous, and for any 0 < r < R < +∞,

lim
m→∞ sup

xi∈
Ri \

(i)
ri (i=0,1,...,n–2)

xn–1∈
R\
r

∫

H(m)
φ(s)p(s)f

(
s, x0(s), x1(s), . . . , xn–1(s)

)
ds = 0,
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where Ri = R
�(βn–1–βi+1) , ri = �(α–βn–1)

�(α–βi)r
(i = 0, 1, . . . , n–2), and H(m) = [0, 1

m ]∪ [ m–1
m , 1],

φ(s) is defined in Lemma 2.4.
In what follows, let us define a nonlinear operator L : 
R \
r → E and a linear operator

T : E → E by

(Lv)(t) =
∫ 1

0
G(t, s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds (2.8)

and

(Tv)(t) =
∫ 1

0
G(t, s)p(s)v(s) ds, t ∈ [0, 1], (2.9)

respectively. And for any τ : 0 < τ < δ, we define Tτ : E → E by

Tτ u(t) =
∫ 1–τ

τ

G(t, s)p(s)u(s) ds, t ∈ [0, 1]. (2.10)

Lemma 2.5 Suppose that (H1)–(H4) hold. Then L : 
R \ 
r → K is a completely continu-
ous operator, and the fixed point of L in 
R \ 
r is the positive solutions to BVP (2.1).

Proof It follows from (H4) that there exists a natural number m1 ≥ 2 such that

sup
v∈
R\
r

∫

H(m1)
φ(s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds < 1.

It is easy to see that for each v ∈ 
R \ 
r there exists r1 ∈ [r, R] such that ‖v‖ = r1. For
v ∈ 
, we have

tα–βn–1–1r ≤ tα–βn–1–1r1 ≤ v(t) ≤ r1 ≤ R,

and for any i = 0, 1, . . . , n – 2, we have

Iβn–1–βi
0+ v(t) =

1
�(βn–1 – βi)

∫ t

0
(t – s)βn–1–βi–1v(s) ds

≥ 1
�(βn–1 – βi)

∫ t

0
(t – s)βn–1–βi–1sα–βn–1–1r1 ds

≥ �(α – βn–1)
�(α – βi)

tα–βi–1r,

and

Iβn–1–βi
0+ v(t) =

1
�(βn–1 – βi)

∫ t

0
(t – s)βn–1–βi–1v(s) ds

≤ 1
�(βn–1 – βi)

∫ t

0
(t – s)βn–1–βi–1r1 ds

≤ 1
�(βn–1 – βi + 1)

R.
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And for all t ∈ [ 1
m , m–1

m ], we have 1
mα–βn–1–1 r ≤ v(t) ≤ R, and

�(α – βn–1)
�(α – βi)

r
mα–βi–1 ≤ Iβn–1–βi

0+ v(t) ≤ 1
�(βn–1 – βi + 1)

R.

Let

M1 = max
{

f (t, x0, . . . , xn–1) : (t, x0, . . . , xn–1) ∈ I × J0 × J1 × · · · × Jn–1
}

,

where I = [ 1
m1

, m1–1
m1

], Ji = [ �(α–βn–1)r
�(α–βi)m

α–βi–1
1

, 1
�(βn–1–βi+1) R] (i = 0, 1, 2, . . . , n – 2), Jn–1 =

[ 1
mα–βn–1–1

1
r, R]. So, by Lemma 2.4(2), (H3), and (H4), we have

sup
v∈
R\
r

∫ 1

0
G(t, s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

≤ sup
v∈
R\
r

∫ 1

0
φ(s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

≤ sup
v∈
R\
r

∫

H(m1)
φ(s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

+ sup
v∈
R\
r

∫ m1–1
m1

1
m1

φ(s)p(s)f
(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

≤ 1 + M1

∫ m1–1
m1

1
m1

φ(s)p(s) ds

≤ 1 + M1

∫ 1

0
φ(s)p(s) ds < +∞. (2.11)

This implies that the operator L defined by (2.8) is well defined.
Next, we show that L : 
R \ 
r → K . For any v ∈ 
R \ 
r , t ∈ [0, 1], we have

(Lv)(t) =
∫ 1

0
G(t, s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

≤
∫ 1

0
φ(s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds.

Hence,

‖Lv‖ ≤
∫ 1

0
φ(s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds.

On the other hand, by Lemma 2.4, we have

(Lv)(t) ≥ tα–βn–1–1
∫ 1

0
φ(s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

≥ tα–βn–1–1‖Lv‖, t ∈ [0, 1],

thus Lv ∈ K . Therefore L : 
R \ 
r → K .
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Finally, we prove that L : 
R \ 
r → K is a completely continuous map. Suppose D ⊂

R \ 
r is an arbitrary bounded set. Firstly, from the above proof, we know that L(D) is
uniformly bounded. Secondly, we show that L(D) is equicontinuous. In fact, for any ε > 0,
there exists a natural number m2 ≥ 3 such that

sup
v∈
R\
r

∫

H(m2)
φ(s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds <

ε

4
. (2.12)

Since G(t, s) is uniformly continuous on [0, 1] × [0, 1], for the above ε > 0, there exists δ > 0
such that, for any t1, t2 ∈ [0, 1], |t1 – t2| < δ, s ∈ [ 1

m2
, m2–1

m2
],

∣
∣G(t1, s) – G(t2, s)

∣
∣ <

ε

2pM2
,

where

M2 = max
{

f (t, x0, . . . , xn–1) : (t, x0, . . . , xn–1) ∈ I × J0 × J1 × · · · × Jn–1
}

,

in which

I =
[

1
m2

,
m2 – 1

m2

]

,

Ji =
[

�(α – βn–1)r
�(α – βi)mα–βi–1

2
,

1
�(βn–1 – βi + 1)

R
]

, i = 0, 1, 2, . . . , n – 2,

Jn–1 =
[

1
mα–βn–1–1

2
r, R

]

.

Consequently, for any v ∈ D, t1, t2 ∈ [0, 1], |t1 – t2| < δ, we have

∣
∣(Lv)(t1) – (Lv)(t2)

∣
∣

=
∣
∣
∣
∣

∫ 1

0

(
G(t1, s) – G(t2, s)

)
∣
∣
∣
∣p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

≤ 2
∫

H(m2)
φ(s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

+ sup
v∈D

∫ m2–1
m2

1
m2

∣
∣
(
G(t1, s) – G(t2, s)

)∣
∣p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

≤ 2 × ε

4
+

ε

2pM2
pM2

= ε,

where

p = max

{

p(t) :
1

m2
≤ t ≤ m2 – 1

m2

}

.

This shows that L(D) is equicontinuous. By the Arzela–Ascoli theorem, L : 
R \ 
r → K
is compact. Thirdly, we prove that L : 
R \
r → K is continuous. Assume v0, vn ∈ 
R \
r
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and ‖vn – v0‖ → 0 (n → ∞). Then r ≤ ‖vn‖ ≤ R and r ≤ ‖v0‖ ≤ R. From (H4) there exists
a natural number m3 > m2 such that

sup
v∈
R\
r

∫

H(m3)
φ(s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds <

ε

4
. (2.13)

Since f (t, x0, . . . , xn–1) is uniformly continuous in

[
1

m3
,

m3 – 1
m3

]

×
n–2∏

i=0

[
�(α – βn–1)r

�(α – βi)mα–βi–1 ,
1

�(βn–1 – βi + 1)
R
]

×
[(

1
m3

)α–βn–1–1

r, R
]

,

we have

lim
n→∞

∣
∣f

(
s, Iβn–1

0+ vn(s), Iβn–1–β1
0+ vn(s), . . . , vn(s)

)
– f

(
s, Iβn–1

0+ v0(s), Iβn–1–β1
0+ v0(s), . . . , v0(s)

)∣
∣ = 0

uniformly on s ∈ [ 1
m3

, m3–1
m3

]. Then the Lebesgue dominated convergence theorem yields
that

∫ m3–1
m3

1
m3

φ(s)p(s)
∣
∣f

(
s, Iβn–1

0+ vn(s), Iβn–1–β1
0+ vn(s), . . . , vn(s)

)

– f
(
s, Iβn–1

0+ v0(s), Iβn–1–β1
0+ v0(s), . . . , v0(s)

)∣
∣ds → 0, n → ∞.

Thus, for the above ε > 0, there exists a natural number N such that for n > N we have

∫ m3–1
m3

1
m3

φ(s)p(s)
∣
∣f

(
s, Iβn–1

0+ vn(s), Iβn–1–β1
0+ vn(s), . . . , vn(s)

)

– f
(
s, Iβn–1

0+ v0(s), Iβn–1–β1
0+ v0(s), . . . , v0(s)

)∣
∣ds <

ε

2
. (2.14)

It follows from (2.13), (2.14) that when n > N

‖Lvn – Lv0‖ ≤ sup
v∈
R\
r

∫

H(m3)
φ(s)p(s)

∣
∣f

(
s, Iβn–1

0+ vn(s), Iβn–1–β1
0+ vn(s), . . . , vn(s)

)

– f
(
s, Iβn–1

0+ v0(s), Iβn–1–β1
0+ v0(s), . . . , v0(s)

)∣
∣ds

+ sup
v∈
R\
r

∫ m3–1
m3

1
m3

φ(s)p(s)
∣
∣f

(
s, Iβn–1

0+ vn(s), Iβn–1–β1
0+ vn(s), . . . , vn(s)

)

– f
(
s, Iβn–1

0+ v0(s), Iβn–1–β1
0+ v0(s), . . . , v0(s)

)∣
∣ds

≤ ε

4
+

ε

4
+

ε

2
= ε.

This implies that L : 
R \ 
r → K is continuous. Thus L : 
R \ 
r → K is completely
continuous. It is clear that if v is a fixed point of L in 
R \ 
r , then v satisfies (2.1) and is a
positive solution of BVP (2.1). �
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Lemma 2.6 Assume that (H1)–(H3) hold, then for the linear bounded operator T the spec-
tral radius r(T) �= 0 and T has a positive eigenfunction ϕ1 corresponding to its first eigen-
value λ1 = (r(T))–1, that is, ϕ1 = λ1Tϕ1. In the same way, Tτ has a positive eigenfunction
corresponding to its first eigenvalue λτ = (r(Tτ ))–1.

Proof The proof is similar to Lemma 2.5 of [12], so we omit it. �

To prove the main results, we need the following well-known fixed point index theorem.

Lemma 2.7 ([33]) Let K be a cone in a real Banach space E. Suppose that L : 
r → K is
a completely continuous operator. If there exists u0 ∈ K\{θ} such that u – Lu �= μu0 for any
u ∈ ∂
r and μ ≥ 0, then i(L,
r , K) = 0.

Lemma 2.8 ([33]) Let K be a cone in a real Banach space E. Suppose that L : 
r → K is a
completely continuous operator. If Lu �= μu for any u ∈ ∂
r and μ ≥ 1, then i(L,
r , K) = 1.

3 Existence of positive solutions
Theorem 3.1 Assume that (H1)–(H4) hold, and

f ∞ = lim sup
xn–1→+∞

sup
t∈[0,1]

xi>0(i=0,1,...,n–2)

f (t, x0, x1, . . . , xn–1)
xn–1

< λ1, (3.1)

f
0

= lim inf
xi→0

i=1,2,...,n–1

min
t∈[0,1]

f (t, x0, x1, . . . , xn–1)
x0 + x1 + · · · + xn–1

> λ1. (3.2)

Then BVP (1.1) has at least one positive solution, where λ1 is the first eigenvalue of the
operator T defined by (2.9).

Proof From (3.2) we can choose ε0 > 0, there exists r > 0 such that, for any t ∈ [0, 1] and
0 ≤ xi ≤ r

�(βn–1–βi+1) (i = 0, 1, . . . , n – 2), 0 ≤ xn–1 ≤ r, we have

f (t, x0, x1, . . . , xn–1) ≥ (λ1 + ε0)(x0 + x1 + · · · + xn–1). (3.3)

For any v ∈ ∂
r , since

0 ≤ Iβn–1–βi
0+ v(t) ≤ r

�(βn–1 – βi + 1)
(i = 0, 1, . . . , n – 2), 0 ≤ v(t) ≤ r,

thus from (3.3), we have

(Lv)(t) =
∫ 1

0
G(t, s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

≥
∫ 1

0
G(t, s)p(s)(λ1 + ε0)

(
Iβn–1

0+ v(s) + Iβn–1–β1
0+ v(s) + · · · + v(s)

)
ds

≥
∫ 1

0
G(t, s)p(s)(λ1 + ε0)v(s) ds

≥ λ1(Tv)(t), t ∈ [0, 1].
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Let ϕ1 be the positive eigenfunction corresponding to the first eigenvalue λ1, thus ϕ1 =
λ1Tϕ1. We may suppose that L has no fixed points on ∂
r (otherwise, the proof is fin-
ished). Now we show that

v – Lv �= μϕ1, v ∈ ∂
r ,μ ≥ 0. (3.4)

If not, there exist v1 ∈ ∂
r and μ1 ≥ 0 such that v1 – Lv1 = μ1ϕ1, then μ1 > 0 and v1 =
Lv1 + μ1ϕ1 ≥ μ1ϕ1. Let μ̃ = sup{μ|v1 ≥ μϕ1}, then μ̃ ≥ μ1, v1 ≥ μ̃ϕ1 and Lv1 ≥ λ1Tv1 ≥
λ1μ̃Tϕ1 = μ̃ϕ1. Thus,

v1 = Lv1 + μ1ϕ1 ≥ μ̃ϕ1 + μ1ϕ1 = (μ̃ + μ1)ϕ1,

which contradicts the definition of μ̃. So (3.4) is true, and by Lemma 2.7 we have

i(L,
r , K) = 0. (3.5)

On the other hand, from (3.1) we can choose ε1 > 0, 0 < σ < 1 such that, for any R > r > 0,
t ∈ [0, 1], xi ≥ 0 (i = 0, 1, . . . , n – 2), and xn–1 ≥ R, we have

f (t, x0, x1, . . . , xn–1) < σ (λ1 – ε1)xn–1. (3.6)

Let Tv = σλ1Tv, then T : E → E is a bounded linear operator and T(
) ⊂ K . Since λ1 is
the first eigenvalue of T and 0 < σ < 1,

(
r(T)

)–1 =
(
σλ1

(
r(T)

))–1 = σ –1 > 1. (3.7)

Let ε2 = 1
2 (1 – r(T)), then by r(T) = limn→∞ ‖Tn‖ 1

n , we know that there exists a natural
number N ≥ 1 such that n ≥ N implies that ‖Tn‖ ≤ [r(T) + ε2]n. For any v ∈ E, define

‖v‖∗ =
N∑

i=1

[
r(T) + ε2

]N–i∥∥Ti–1v
∥
∥,

where T0 = I is the identity operator. It is easy to verify that ‖v‖∗ is a new norm in E. Let

M = sup
v∈∂
R

∫ 1

0
φ(s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds,

by (2.11) we know that M < +∞. Select R1 > max{R, 2M∗ε–1
2 }, where M∗ = ‖M‖∗.

In the following we prove that

Lv �= μv, v ∈ ∂
R1 ,μ ≥ 1. (3.8)

If otherwise, there exist v1 ∈ ∂
R1 and μ1 ≥ 1 such that Lv1 = μ1v1. Let ṽ(t) = min{v1(t), R},
t ∈ [0, 1] and D(v1) = {t ∈ [0, 1] : v1(t) > R}. Notice that ṽ ∈ C([0, 1],R+), tα–βn–1–1R1 ≤
v1(t) ≤ ‖v1‖ = R1, and R1 > R, thus there exists some t0 ∈ (0, 1] satisfying v1(t0) = R. So, by
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the definition of ṽ, we have ṽ(t) ≤ R, ṽ(t0) = min{v1(t0), R}, ṽ(t) ≥ tα–βn–1–1R. Hence ‖̃v‖ = R,
so ṽ ∈ ∂
R. From (3.6) and the definition of M, we have

μ1v1(t) = (Lv1)(t) =
∫ 1

0
G(t, s)p(s)f

(
s, Iβn–1

0+ v1(s), Iβn–1–β1
0+ v1(s), . . . , v1(s)

)
ds

≤
∫

D(v1)
G(t, s)p(s)f

(
s, Iβn–1

0+ v1(s), Iβn–1–β1
0+ v1(s), . . . , v1(s)

)
ds

+
∫

[0,1]\D(v1)
φ(s)p(s)f

(
s, Iβn–1

0+ v1(s), Iβn–1–β1
0+ v1(s), . . . , v1(s)

)
ds

≤
∫

D(v1)
G(t, s)p(s)σ (λ1 – ε1)v1(s) ds

+
∫ 1

0
φ(s)p(s)f

(
s, Iβn–1

0+ v1(s), Iβn–1–β1
0+ v1(s), . . . , v1(s)

)
ds

≤ (Tv1)(t) + M, t ∈ [0, 1].

Since T(
) ⊂ K , we have 0 ≤ (T)j(Lv1)(t) ≤ (T)j(Tv1 + M)(t) (j = 0, 1, 2, . . . , N – 1), then

∥
∥(T)j(Lv1)

∥
∥ ≤ ∥

∥(T)j(Tv1 + M)
∥
∥, j = 0, 1, 2, . . . , N – 1.

Hence

‖Lv1‖∗ =
N∑

i=1

[
r(T) + ε2

]N–i∥∥(T)i–1(Lv1)
∥
∥

≤
N∑

i=1

[
r(T) + ε2

]N–i∥∥(T)i–1(Tv1 + M)
∥
∥

= ‖Tv1 + M‖∗.

Thus

μ1‖v1‖∗ = ‖Lv1‖∗ ≤ ‖Tv1‖∗ + M∗ =
N∑

i=1

[
r(T) + ε2

]N–i∥∥Tiv1
∥
∥ + M∗

=
[
r(T) + ε2

]
N–1∑

i=1

[
r(T) + ε2

]N–i–1∥∥Tiv1
∥
∥ +

∥
∥TN v1

∥
∥ + M∗

≤ [
r(T) + ε2

]
N–1∑

i=1

[
r(L) + ε2

]N–i–1∥∥Tiv1
∥
∥ +

[
r(L) + ε2

]N‖v1‖ + M∗

=
[
r(T) + ε2

]
N∑

i=1

[
r(T) + ε2

]N–i∥∥Ti–1v1
∥
∥ + M∗

=
[
r(T) + ε2

]‖v1‖∗ + M∗

≤ [
r(T) + ε2

]‖v1‖∗ +
ε2

2
‖v1‖∗

=
[

1
4

r(T) +
3
4

]

‖v1‖∗ < ‖v1‖∗,
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that is, μ1 < 1, which contradicts μ1 ≥ 1. This implies that (3.8) holds. It follows from
Lemma 2.8 that

i(L,
R, K) = 1. (3.9)

By (3.4) and (3.8), we have

i(L,
R\
r , K) = i(L,
R, K) – i(L,
r , K) = 1.

Therefore, L has at least one fixed point v∗ ∈ 
R\
r , and v∗ is a positive solution of BVP
(2.1). Therefore problem (1.1) also has at least one positive solution. �

Lemma 3.1 Suppose that (H1)–(H3) hold, then there exists an eigenvalue λ̃1 of T such that
limτ→0 λτ = λ̃1.

Proof Take τ1 ≥ τ2 ≥ · · · ≥ τn ≥ · · · and τn → 0 (n → +∞), τn ∈ (0, δ). For any m > n and
ϕ ∈ E, we have

(Tτnϕ)(t) ≤ (Tτmϕ)(t) ≤ (Tϕ)(t), t ∈ [0, 1],
(
Tk

τnϕ
)
(t) ≤ (

Tk
τmϕ

)
(t) ≤ (

Tkϕ
)
(t), t ∈ [0, 1], k = 2, 3, . . . ,

where Tk
τn = Tτn (Tk–1

τn ) (k = 2, 3, . . .). Consequently, ‖Tk
τn‖ ≤ ‖Tk

τm‖ ≤ ‖Tk‖ (k = 1, 2, . . .), by
Gelfand’s formula, we know that λτn ≥ λτm ≥ λ1, where λ1 is the first eigenvalue of T . Since
λτn is monotonous with lower boundedness λ1, let limn→∞ λτn = λ̃1.

In the following we shall show that λ̃1 is an eigenvalue of T . Let ϕτn be the positive
eigenfunction corresponding to ϕτn , i.e.,

ϕτn (t) = λτn

∫ 1–τn

τn

G(t, s)p(s)ϕτn (s) ds = λτn Lτnϕτn (t), t ∈ [0, 1], (3.10)

with ‖ϕτn‖ = 1 (n = 1, 2, . . .). From

‖Lτnϕτn‖ = max
t∈[0,1]

∫ 1–τn

τn

G(t, s)p(s)ϕτn (s) ds

≤
∫ 1

0
φ(s)p(s) ds < +∞,

we know that Tτnϕτn ⊂ E is uniformly bounded.
On the other hand, for any n and t1, t2 ∈ [0, 1], we have

∣
∣Tτnϕτn (t1) – Tτnϕτn (t2)

∣
∣ ≤

∫ 1–τn

τn

∣
∣G(t1, s) – G(t2, s)

∣
∣p(s)ϕτn (s) ds

≤
∫ 1

0

∣
∣G(t1, s) – G(t2, s)

∣
∣p(s) ds.

So, as G(t, s) is uniformly continuous on [0, 1] × [0, 1], we obtain that Tτnϕτn (t) is equicon-
tinuous for t ∈ [0, 1]. By the Arzela–Ascoli theorem and limn→∞ λτn = λ̃1, we get that
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ϕτn → ϕ0 as n → ∞. This leads to ‖ϕ0‖ = 1, and then by (3.10) we have

ϕ0(t) = λ̃1

∫ 1

0
G(t, s)p(s)ϕ0(s) ds, t ∈ [0, 1],

that is, ϕ0 = λ̃1Tϕ0. This completes the proof. �

Theorem 3.2 Assume that (H1)–(H4) hold, and

f 0 = lim sup
xi→0

i=0,1,...,n–1

max
t∈[0,1]

f (t, x0, x1, . . . , xn–1)
xn–1

< λ1, (3.11)

f
+∞ = lim inf

∑n–1
i=0 xi→+∞

min
t∈[0,1]

f (t, x0, x1, . . . , xn–1)
x0 + x1 + · · · + xn–1

> λ̃1. (3.12)

Then BVP (1.1) has at least one positive solution, where λ1 is the first eigenvalue of T defined
by (2.9), and λ̃1 is the eigenvalue of T .

Proof Firstly, from (3.11) we know that there exist r > 0, τ0 > 0 such that, for any t ∈ [0, 1],
and 0 ≤ xi ≤ r

�(βn–1–βi+1) (i = 0, 1, . . . , n – 2), 0 ≤ xn–1 ≤ r, we have

f (t, x0, x1, . . . , xn–1) ≤ (λ1 – τ0)xn–1. (3.13)

For any v ∈ ∂
r , since

0 ≤ Iβn–1–βi
0+ v(t) ≤ r

�(βn–1 – βi + 1)
(i = 0, 1, . . . , n – 2), 0 ≤ v(t) ≤ r,

thus from (3.13) we obtain that

(Lv)(t) =
∫ 1

0
G(t, s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

≤
∫ 1

0
G(t, s)p(s)(λ1 – τ0)v(s) ds

≤ λ1(Tv)(t), t ∈ [0, 1],

that is,

Lv ≤ λ1Tv, v ∈ ∂
r . (3.14)

Without loss of generality, we may suppose that T has no fixed point in ∂
r (otherwise
the conclusion is proved). In what follows, we will show that

Lv �= μv, ∀v ∈ ∂
r ,μ ≥ 1. (3.15)

As a contradiction, if there exist v1 ∈ ∂
r ,μ1 ≥ 1 such that Lv1 = μ1v1, obviously, μ1 > 1
and μ1v1 = Lv1 ≤ λ1Tv1. By induction we have μn

1v1 ≤ λn
1Tnv1 (n = 1, 2, . . .), so we have
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‖Tn‖ ≥ ‖Tnv1‖
‖v1‖ ≥ μn

1
λn

1
. By Gelfand’s formula, we have

r(T) = lim
n→∞

∥
∥Tn∥∥

1
n ≥ μ1

λ1
>

1
λ1

,

which contradicts r(T) = 1
λ1

. So Tv �= μv, v ∈ ∂
r , μ ≥ 1. From Lemma 2.8 we have

i(L,
r , K) = 1. (3.16)

From (3.12) and limτ→0 λτ = λ̃1, we know there exists sufficiently small τ ∈ (0, 1). Taking

lτ =
n–2∑

i=0

�(α – βn–1)
�(α – βi)

τα–βi–1 + τα–βn–1–1,

there exist τ0 > 0, R > r > 0 such that, for any xi ≥ 0 (i = 0, 1, . . . , n – 1) and x0 + x1 + · · · +
xn–1 > lτ R, t ∈ [0, 1], we have

f (t, x0, x1, . . . , xn–1) ≥ (λτ + τ0)(x0 + x1 + · · · + xn–1) ≥ (λτ + τ0)xn–1, (3.17)

where λτ is the first eigenvalue of Tτ .
Let ϕτ be the positive eigenfunction of Tτ corresponding to λτ , i.e., ϕτ = λτ Tτ ϕτ . For any

v ∈ ∂
R, s ∈ [τ , 1 – τ ], taking β0 = 0, then

n–2∑

i=0

Iβn–1–βi
0+ v(s) + v(s)

=
n–2∑

i=0

1
�(βn–1 – βi)

∫ s

0
(s – τ )βn–1–βi–1v(τ ) dτ + v(s)

≥
n–2∑

i=0

1
�(βn–1 – βi)

∫ s

0
(s – τ )βn–1–βi–1τα–βn–1–1 dτ‖v‖ + sα–βn–1–1‖v‖

≥
( n–2∑

i=0

�(α – βn–1)
�(α – βi)

sα–βi–1 + sα–βn–1–1

)

R

≥
( n–2∑

i=0

�(α – βn–1)
�(α – βi)

τα–βi–1 + τα–βn–1–1

)

R

= lτ R. (3.18)

So, from (3.17) and (3.18) we have

(Lv)(t) =
∫ 1

0
G(t, s)p(s)f

(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

≥
∫ 1–τ

τ

G(t, s)p(s)f
(
s, Iβn–1

0+ v(s), Iβn–1–β1
0+ v(s), . . . , v(s)

)
ds

≥
∫ 1–τ

τ

G(t, s)p(s)(λτ + τ0)v(s) ds

≥ λτ (Tτ u)(t), t ∈ [0, 1].
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We may suppose that L has no fixed points on ∂
R (otherwise, the proof is ended). Fol-
lowing the procedure used in the first part of Theorem 3.1, it follows that

v – Lv �= μϕτ , v ∈ ∂
R,μ ≥ 0.

From Lemma 2.7, we know

i(L,
R, K) = 0. (3.19)

So, from (3.16) and (3.19) we have

i(L,
R\
r , K) = i(L,
R, K) – i(L,
r , K) = 0 – 1 = –1.

Therefore, L has at least one fixed point on 
R\
r , which is a positive solution of BVP
(2.1). Consequently, it is a positive solution of BVP (1.1). The proof is completed. �

4 An example
Example 4.1 We consider the singular fractional differential equation as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
7
2
0+ u(t) + p(t)f (t, u(t), D

1
16
0+ u(t), D

9
8
0+ u(t), D

9
4
0+ u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0,

D
19
8

0+ u(1) =
∫ 1

0 l(t)D
9
4
0+ u(t) dA(t),

(4.1)

where p(t) = (1 – t)– 1
8 , l(t) = t– 1

20 , f (t, x0, x1, x2, x3) = [x0 + x1 + x2 + x3]– 1
3 + ln x3, and

A(t) =

⎧
⎨

⎩

0, t ∈ [0, 1
4 ),

1
200 , t ∈ [ 1

4 , 1].

It is obvious that p(t) is singular at t = 1, and f is singular at x0 = x1 = x2 = x3 = 0. Let
u(t) = I

9
4

0+ v(t), then problem (4.1) can be transformed to the following equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
5
4
0+ v(t) + p(t)f (t, I

9
4

0+ v(t), I
35
16

0+ v(t), I
9
8

0+ v(t), v(t)) = 0, 0 < t < 1,

I
1
4

0+ v(0) = 0,

D
1
8
0+ v(1) =

∫ 1
0 l(t)v(t) dA(t).

(4.2)

Then

K(t, s) =
1

�( 5
4 )

⎧
⎨

⎩

t 1
4 (1 – s) 1

8 – (t – s) 1
4 , 0 ≤ s ≤ t ≤ 1,

t 1
4 (1 – s) 1

8 , 0 ≤ t ≤ s ≤ 1,
(4.3)

and

gA(s) =

⎧
⎨

⎩

1
200 K2( 1

4 , s)l( 1
4 ) = 1

200
1

�( 5
4 )

( 1
4 )

1
5 (1 – s) 1

8 , 0 ≤ s ≤ 1
4 ,

1
200 K1( 1

4 , s)l( 1
4 ) = 1

200 [ 1
�( 5

4 )
( 1

4 ) 1
4 (1 – s) 1

8 – ( 1
4 – s) 1

4 ]( 1
4 )– 1

20 , 1
4 ≤ s ≤ 1.
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Obviously, 0 ≤ gA(s) ≤ (1 – s) 1
8 , δ =

∫ 1
0 t 1

4 l(t) dA(t) =
∫ 1

0 t
1
5 dA(t) = ( 1

4 )
1
5 × 1

200 = 0.00125,

that is, �( 5
4 )

�( 9
8 )

– δ > 0, and

φ(s) = K(1, s) +
gA(s)

�(α–βn–1)
�(α–β) – δ

≤ 100(1 – s)
1
8 .

Now we will check that all the conditions of Theorem 3.1 are satisfied, define a cone

K =
{

v ∈ C[0, 1] : v(t) ≥ t
1
4 ‖v‖, t ∈ [0, 1]

}
.

K (0) = {v ∈ C[0, 1] : v(t) ≥ t 5
2 ‖v‖, t ∈ [0, 1]}, K (1) = {v ∈ C[0, 1] : v(t) ≥ t

39
16 ‖v‖, t ∈ [0, 1]},

K (2) = {v ∈ C[0, 1] : v(t) ≥ t 11
8 ‖v‖, t ∈ [0, 1]}.

For any 0 < r < R < +∞ and v ∈ 
R\
r , we have v(t) ≥ tα–βn–1–1‖v‖ = t 1
4 ‖v‖, t ∈ [0, 1],

then

0 ≤ rt
1
4 ≤ x3(t) = v(t) ≤ R, t ∈ [0, 1],

�( 5
4 )

�( 7
2 – βi)

t
5
2 –βi r ≤ xi(t) = I

9
4 –βi

0+ v(t) ≤ 1
�( 13

4 )
R, t ∈ [0, 1], i = 0, 1, 2,

where β0 = 0, β1 = 1
16 , β2 = 9

8 . Since | ln x| is decreasing on (0, 1) and is increasing on
(1, +∞), we have

∣
∣ln v(x)

∣
∣ ≤ ∣

∣ln rt
1
4
∣
∣ + | ln R| ≤ | ln r| + | ln R| +

∣
∣ln t

1
4
∣
∣,

[x0 + x1 + x2 + x3]– 1
3 ≤

[
�( 5

4 )
�( 7

2 )
+

�( 5
4 )

�( 55
16 )

+
�( 5

4 )
�( 19

8 )
+ 1

]– 1
3

r– 1
3 t– 1

12 ,

and

∫ 1

0

∣
∣ln t

1
4
∣
∣dt +

∫ 1

0
t– 1

12 dt =
1
4

+
12
11

=
59
44

< +∞.

The absolute continuity of the integral yields that

lim
n→∞

∫

e(n)

∣
∣ln t

1
4
∣
∣dt = 0, lim

n→∞

∫

e(n)
t– 1

12 dt = 0. (4.4)

So,

sup
xi∈
Ri \


(i)
ri

x3∈
R\
r

∫

e(n)
φ(s)p(s)f

(
s, x0(s), x1(s), x2(s), x3(s)

)
ds

≤ sup
xi∈
Ri \


(i)
ri

x3∈
R\
r

∫

e(n)
100(1 – s)

1
8 (1 – s)– 1

8
[(

x0(s) + x1(s) + x2(s) + x3(s)
)– 1

3 + ln
∣
∣x3(s)

∣
∣
]

ds

≤ sup
xi∈
Ri \


(i)
ri

x3∈
R\
r

∫

e(n)
100

[

| ln r| + | ln R| +
∣
∣ln t

1
4
∣
∣
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+
(

�( 5
4 )

�( 7
2 )

+
�( 5

4 )
�( 55

16 )
+

�( 5
4 )

�( 19
8 )

+ 1
)– 1

3
r– 1

3 t– 1
12

]

ds

= 2
(
ln |r| + ln |R|) 1

n
+

1
4

∫

e(n)
| ln s|ds

+
(

�( 5
4 )

�( 7
2 )

+
�( 5

4 )
�( 55

16 )
+

�( 5
4 )

�( 19
8 )

+ 1
)– 1

3
r– 1

3

∫

e(n)
s– 1

12 ds,

and from (4.4) we obtain that

lim
n→∞ sup

xi∈
Ri \

(i)
ri

x3∈
R\
r

∫

e(n)
φ(s)p(s)f

(
s, x0(s), x1(s), x2(s), x3(s)

)
ds = 0.

On the other hand, by a simple calculation, we have

f ∞ = lim sup
x3→+∞

sup
t∈[0,1]

xi>0,i=0,1,2

f (t, x0, x1, x2, x3)
x3

= 0 < λ1,

f
0

= lim inf
xi→0

i=0,1,2,3

min
t∈[0,1]

f (t, x0, x1, x2, x3)
x0 + x1 + x2 + x3

= +∞ > λ1.

Therefore, the assumptions of Theorem 3.1 are satisfied. Thus the above problem pos-
sesses at least one positive solution in K .

5 Conclusions
In this paper, we study a type of singular nonlinear fractional differential equation with
integral boundary conditions involving derivatives. The biggest difference from other pa-
pers is that our nonlinear term and boundary value conditions contain several fractional
derivatives, and f is singular at x0 = x1 = · · · = xn–1 = 0. So our work is valued.
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