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Abstract
The aim of this paper is to investigate the existence of weak solutions for a boundary
value problem of a second order differential equation. As the main tool, we apply a
Krasnosel’skii type fixed point theorem in conjunction with the technique of
measures of weak noncompactness in Banach spaces. Finally, two examples are given
to illustrate our abstract results.
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1 Introduction
In this paper, we investigate the existence of weak solutions for the boundary value prob-
lem of second order differential equations of the form

(
x(t) – g(t, x(t))

h(t, x(t))

)′′
+ f

(
t, x(t)

)
= 0, 0 < t < 1, (1.1)

x(0) = g
(
0, x(0)

)
, x(1) = g

(
1, x(1)

)
, (1.2)

where the functions f , g : [0, 1] × R → R and h : [0, 1] × R → R\{0} satisfy some special
assumptions that will be given in detail in Section 3.

Boundary value problems arise in a variety of applied mathematics and physics areas
(refer to [1, 2] etc.). Some boundary value problems of ordinary equations may be turned
into (1.1)-(1.2). For example, in the design of bridge, denote u(t) by the displacement of
the bridge from the unloaded position. Small size bridges are often designed with two
supported points, which leads to a two-point boundary value problem (cf. [3]):

u′′(t) + υ(t) + ϕ
(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = 0, u(1) = 0.

If we define x(t) = g(t, x(t)) + h(t, x(t))u(t) for the known functions g and h, and f (t, x(t)) =
υ(t) + ϕ(t, u(t)), then the above problem is turned into (1.1)-(1.2).
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As another example, for appropriate functions p(t) and ψ(t, x), if we take the functions
involved in Eq. (1.1) in the form

g
(
t, x(t)

)
= e–

∫ t
0 p(s) ds

∫ t

0
x(s)p(s)e

∫ s
0 p(τ ) dτ ds,

h
(
t, x(t)

)
= e–

∫ t
0 p(s) ds and f

(
t, x(t)

)
= e

∫ t
0 p(s) dsψ

(
t, x(t)

)
,

then Eq. (1.1) can be easily transformed into the following equation:

x′′(t) + p(t)x′(t) + ψ
(
t, x(t)

)
= 0, 0 < t < 1.

Unlike initial value problems, which are normally uniquely solvable, boundary value
problems can have no solution or several solutions. However, we will adopt a strategy
in the present paper to cope with the weak solutions of this problem. To consider the exis-
tence of weak solutions for problem (1.1)-(1.2), we will turn it into the following perturbed
quadratic integral equation:

x(t) = g
(
t, x(t)

)
+ h

(
t, x(t)

)∫ 1

0
G(t, s)f

(
s, x(s)

)
ds, 0 ≤ t ≤ 1, (1.3)

where G is the Green’s function associated with problem (1.1)-(1.2). Our considerations
are put in L1(I), the Banach space consisting of all real functions defined and Lebesgue
integrable on the interval I := [0, 1]. More specifically, by using the techniques of fixed
point associated with measures of weak noncompactness, we will establish the existence
of integrable solutions to Eq. (1.3) in a certain ball of L1(I). For the existence of integrable
solutions of some nonlinear integral equations, we refer the reader to the literature [4–10].

2 Preliminaries
Let E be a Banach space. From now on we denote by B(E) the collection of all nonempty
bounded subsets of E, and W(E) is a sub-collection of B(E) consisting of all weakly com-
pact subsets of E. Denote by Br the closed ball in E centered at zero with radius r. In what
follows we accept the following definition (cf. [11]).

Definition 2.1 A mapping ω : B(E) → R
+ is said to be a (regular) measure of weak non-

compactness if, for all M, N ∈ B(E), the following conditions are satisfied:
(1) The family ker(ω) := {M ∈ B(E) : ω(M) = 0} is nonempty, and M ∈ ker(ω) if and only

if M is relatively weakly compact;
(2) N ⊆ M ⇒ ω(N) ≤ ω(M);
(3) ω(Mω) = ω(M), where Mω is the weak closure of M;
(4) ω(M ∪ N) = max{ω(M),ω(N)};
(5) ω(λM) = |λ|ω(M) for all λ ∈R;
(6) ω(co(M)) = ω(M), where co(M) is the convex hull of M;
(7) ω(M + N) ≤ ω(M) + ω(N);
(8) If (Mn)∞n=1 is a decreasing sequence of nonempty, bounded and weakly closed

subsets of E with limn→∞ ω(Mn) = 0, then M∞ :=
⋂∞

n=1 Mn is nonempty.
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The family ker(ω) described in (1) is called the kernel of the measure of weak noncom-
pactness ω. Note that the intersection set M∞ from (8) belongs to ker(ω) since ω(M∞) ≤
ω(Mn) for all n ∈N and limn→∞ ω(Mn) = 0.

The first important example of a measure of weak noncompactness was defined by De
Blasi [12] as follows:

ω(M) = inf
{

r > 0 : ∃W ∈W(E) such that M ⊆ W + Br
}

.

The De Blasi measure of weak noncompactness has some interesting properties. It plays
a significant role in nonlinear analysis and has some applications.

Nevertheless, it is rather difficult to express the above De Blasi measure of weak non-
compactness with the help of a convenient formula in a concrete Banach space. Such a
formula is known in the case of the space of L1(I). In [13], Appell and De Pascale showed
that the measure of noncompactness ω(·) in L1(I) possesses the following simple form:

ω(M) = lim sup
ε→0

{
sup
x∈M

[∫
D

∣∣x(t)
∣∣dt : D ⊆ I, meas(D) ≤ ε

]}
(2.1)

for any nonempty bounded subset M of L1(I), where meas(·) denotes the Lebesgue mea-
sure.

Recall that a useful characterization of relatively weakly compact sets in L1(I) is provided
by the following Dunford-Pettis theorem (cf. [14, p. 115]).

Theorem 2.2 A bounded set N is relatively weakly compact in L1(I) if and only if N is
equi-integrable, that is,

∀ε > 0,∃δ > 0 such that
∫

D

∣∣x(t)
∣∣dt ≤ ε, ∀x ∈ N ,

for any measurable set D ⊆ I with meas(D) ≤ δ.

Definition 2.3 (see [15, 16]) Let E1 and E2 be two Banach spaces, and let D be a subset
of E1. A continuous operator T : D → E2 is said to be

(1) ws-compact if (xn)n∈N ⊆D is a weakly convergent sequence in E1, the sequence
(Txn)n∈N has a strongly convergent subsequence;

(2) ww-compact if (xn)n∈N ⊆D is a weakly convergent sequence in E1, the sequence
(Txn)n∈N has a weakly convergent subsequence.

Remark 2.4 A continuous operator is ws-compact if and only if it maps relatively weakly
compact sets into relatively strongly compact ones; and it is ww-compact if and only if it
maps relatively weakly compact sets into relatively weakly compact ones, since the weak
compactness of a set in Banach spaces is equivalent to its weakly sequential compactness
by the Eberlein-S̆mulian theorem (cf. [17, p. 430]).

A function f : I ×R →R is said to satisfy the Carathéodory conditions if it is measurable
in t for each x in R and continuous in x for almost every (or a.e. for short) t ∈ I .

Let m(I) denote the collection of all measurable functions x : I → R. If a function f :
I × R → R satisfies the Carathéodory condition, then f defines a mapping Nf : m(I) →
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m(I) by Nf x(t) := f (t, x(t)). This mapping is called the superposition operator (Nemytskii
operator) associated with f . Regarding its continuity, we have the following theorem (cf.
[18, p. 93]).

Theorem 2.5 The superposition operator Nf maps L1(I) into L1(I) if and only if there exist
a function a ∈ L1

+(I) and a constant b > 0 such that

∣∣f (t, x)
∣∣ ≤ a(t) + b|x|,

where L1
+(I) denotes the positive cone of L1(I). In this case, Nf is continuous and bounded

in the sense that it maps bounded sets into bounded ones.

Definition 2.6 LetD be a nonempty subset of the Banach space E. An operator T : D → E
is said to be

(1) contractive with 
 if there exists 
 ∈ [0, 1) such that ‖Tx1 – Tx2‖ ≤ 
‖x1 – x2‖ for all
x1, x2 ∈D;

(2) ω-contractive with 
 if it maps bounded sets into bounded sets, and there exists

 ∈ [0, 1) such that ω(T(M)) ≤ 
ω(M) for all bounded sets M in D.

We end these preliminaries with the following Krasnosel’skii type fixed point result (cf.
[19, Corollary 3.4]). It plays an important role in the proof of our main result.

Theorem 2.7 Let M be a nonempty, bounded, closed and convex subset of a Banach space
E. Suppose that the operators A : M → E and B : E → E satisfy

(i) A is ω-contractive with α, and A is ws-compact;
(ii) B is contractive with β , and B is ww-compact;

(iii) the equality y = By + Ax with x ∈ M implies y ∈ M.
Then there exists x ∈ M such that x = Ax + Bx provided α + β < 1.

3 Main results
Throughout this paper, L1(I) will denote the Banach space consisting of all real functions
defined and Lebesgue integrable on I := [0, 1], with the standard norm ‖ · ‖; and L∞(I) will
denote the Banach space consisting of all real functions defined and essentially bounded
on I , with the standard norm ‖ · ‖∞.

Lemma 3.1 A function x = x(t) is a solution of the boundary value problem (1)-(2) if and
only if x is a solution of the following integral equation:

x(t) = g
(
t, x(t)

)
+ h

(
t, x(t)

)∫ 1

0
G(t, s) f

(
s, x(s)

)
ds, (3.1)

where the Green’s function associated with (1.1)-(1.2) is defined by

G(t, s) =

⎧⎨
⎩

s(1 – t), 0 ≤ s ≤ t ≤ 1,

t(1 – s), 0 ≤ t ≤ s ≤ 1.
(3.2)
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Proof x : I →R is a solution of Eq. (1.1) if and only if it satisfies

d
dt

(
x(t) – g(t, x(t))

h(t, x(t))

)
= –

∫ t

0
f
(
s, x(s)

)
ds + c1,

it follows that

x(t) – g(t, x(t))
h(t, x(t))

= –
∫ t

0
(t – s) f

(
s, x(s)

)
ds + c1t + c0. (3.3)

By choosing t = 0 and t = 1 in (3.3) respectively and applying the boundary condition
(1.2), we get

c0 =
x(0) – g(0, x(0))

h(0, x(0))
= 0, c1 =

∫ 1

0
(1 – s) f

(
s, x(s)

)
ds. (3.4)

From (3.3)-(3.4) we deduce that

x(t) – g(t, x(t))
h(t, x(t))

=
∫ t

0
s(1 – t) f

(
s, x(s)

)
ds +

∫ 1

t
t(1 – s) f

(
s, x(s)

)
ds

=
∫ 1

0
G(t, s) f

(
s, x(s)

)
ds.

Thus, problem (1.1)-(1.2) has been transformed into the perturbed quadratic integral
equations (3.1). �

Remark 3.2 Since the maximum value of the Green’s function G will be gotten as s =
t, we have max(t,s)∈I2 G(t, s) = maxt∈I t(1 – t) = 1/4. Thus, the linear operator G defined
by

Gx(t) :=
∫ 1

0
G(t, s)x(s) ds, ∀x ∈ L1(I),

is bounded from L1(I) into L∞(I). In fact, we have

‖Gx‖∞ ≤ 1
4

∫ 1

0

∣∣x(s)
∣∣ds ≤ 1

4
‖x‖. (3.5)

Definition 3.3 A function x ∈ L1(I) is said to be a weak solution of problem (1.1)-(1.2) if
x satisfies Eq. (3.1) on the interval I .

We will consider (1.1)-(1.2) under the following assumptions.

(H1) The functions f : I × R → R and h : I × R → R\{0} satisfy the Carathéodory con-
ditions. Moreover, there exist functions f0, h0 ∈ L1

+(I) and positive numbers η and γ ,
respectively, such that

∣∣f (t, x)
∣∣ ≤ f0(t) + η|x|, ∣∣h(t, x)

∣∣ ≤ h0(t) + γ |x|, ∀x ∈R and a.e. t ∈ I.
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(H2) The function g : I ×R → R satisfies the Carathéodory conditions, and there exists a
positive number β such that

∣∣g(t, x) – g(t, y)
∣∣ ≤ β|x – y|, ∀x, y ∈R and a.e. t ∈ I.

Moreover, g0(t) := |g(t, 0)| belongs to L1
+(I).

(H3) The following inequality holds:

4β + γ ‖f0‖ + η‖h0‖ + 2
√

γ η
(
4‖g0‖ + ‖f0‖‖h0‖

)
< 4. (3.6)

Remark 3.4 (1) Note that from (H2) we deduce that |g(t, x)| ≤ g0(t) + β|x| for all x ∈ R

and a.e. t ∈ I . Thus, by Theorem 2.5, (H1) and (H2) imply that the superposition operators
Nf , Ng and Nh, respectively, map L1(I) into itself continuously. Further, according to [7,
Lemma 3.2], Nf , Ng and Nh are ww-compact.

(2) It is easily deduced from inequality (3.6) of (H3) that the following quadratic inequal-
ity about r

γ ηr2 –
(
4 – 4β – γ ‖f0‖ – η‖h0‖

)
r + 4‖g0‖ + ‖f0‖‖h0‖ ≤ 0 (3.7)

has positive solutions, since inequality (3.6) implies that

(
4 – 4β – γ ‖f0‖ – η‖h0‖

)2 – 4γ η
(
4‖g0‖ + ‖f0‖‖h0‖

)
> 0,

4 – 4β – γ ‖f0‖ – η‖h0‖
2γ η

> 0.

Further, there is a certain solution r0 of (3.7) such that

0 < r0 ≤ 4 – 4β – γ ‖f0‖ – η‖h0‖
2γ η

. (3.8)

Theorem 3.5 Under assumptions (H1)-(H3), problem (1.1)-(1.2) has at least one weak
solution x ∈ M, where M := {x : ‖x‖ ≤ r0} is a closed ball of L1(I), and r0 is a solution of
(3.7) and satisfies (3.8) .

Proof Let B := Ng . Define A by Ax(t) := Nhx(t) · GNf x(t) for x ∈ M. For proving the op-
erator equation x = Ax +Bx has a unique solution in L1(I), our processes are divided into
several steps.

(1). A is ws-compact.
For all x1, x2 ∈ M, from (H1)-(H2), Remark 3.4 and Remark 3.2, we deduce that

‖Ax1 – Ax2‖
≤ ∥∥G(Nf x1 – Nf x2)

∥∥∞ · ‖Nhx1‖ + ‖GNf x2‖∞ · ‖Nhx1 – Nhx2‖

≤ 1
4
(‖h0‖ + γ r0

) · ‖Nf x1 – Nf x2‖ +
1
4
(‖f0‖ + ηr0

) · ‖Nhx1 – Nhx2‖.

Thus, according to the continuity of the operators Nf and Nh, we obtain that A is contin-
uous on M.
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Further, let us take a weakly convergent sequence (xn)n∈N from M. Then, for any mea-
surable subset D of the interval I , from (3.5) we obtain the following estimate:

∫
D

∣∣Axn(t)
∣∣dt ≤ ‖GNf xn‖∞

∫
D

∣∣Nhxn(t)
∣∣dt

≤ 1
4
(‖f0‖ + ηr0

)∫
D

∣∣Nhxn(t)
∣∣dt (n = 1, 2, . . .). (3.9)

Since the sequence (Nhxn)n∈N is relatively weakly compact (cf. Remark 3.4(1)), then ap-
plying formula (2.1) we deduce from (3.9) that (Axn)n∈N is relatively weakly compact as
well.

In what follows, let us fix a number ε > 0. According to Theorem 2.2, we can choose a
number δ > 0 such that, for any measurable subset Dδ of the interval I with meas(Dδ) ≤ δ,
we have

∫
Dδ

∣∣Axn(s)
∣∣ds ≤ ε

3
, m = 1, 2, . . . . (3.10)

According to Remark 3.4(1), (Nf xn)n∈N has a weakly convergent subsequence, say
(Nf xnk )k∈N. Since the continuity of the linear operator G implies its weak continuity on
L1(I) for a.e. t ∈ I , then (GNf xnk )k∈N converges pointwise for a.e. t ∈ I . Now, applying
Egoroff’s theorem, there exists a measurable subset I0 ⊆ I with meas(I\I0) ≤ δ such that
(GNf xnk )k∈N is uniformly convergent on I0.

On the other hand, (Nhxnk )k∈N has a weakly convergent subsequence as well according
to Remark 3.4(1). Without loss of generality, we can assume that it is still (Nhxnk )k∈N. Thus,
the sequence (Nhxnk · GNf xnk )k∈N, that is, (Axnk )k∈N is strongly convergent in L1(I0) (cf.
[14, Proposition 3.5, p. 58]). Therefore, (Axnk )k∈N satisfies the Cauchy criterion on I0, i.e.,
there exists k0 ∈N such that for arbitrary natural numbers j, k ≥ k0 the following inequality
holds:

∫
I0

∣∣Axnj (t) – Axnk (t)
∣∣dt ≤ ε

3
. (3.11)

Thus, we deduce from (3.10) and (3.11) that

‖Axnj – Axnk ‖ ≤
∫

I0

∣∣Axnj (t) – Axnk (t)
∣∣dt

+
∫

I\I0

∣∣Axnj (t)
∣∣dt +

∫
I\I0

∣∣Axnk (t)
∣∣dt

≤ ε,

which implies that the sequence (Axnk )k∈N is convergent in L1(I), and then A maps rela-
tively weakly compact subsets of M into relatively strongly compact ones.

Thus, we complete the proof that A is ws-compact.
(2). A is ω-contractive.
Let D be a measurable subset of the interval I , and let S be a nonempty subset of M.

From Remark (3.4) and Remark (3.2), for all x ∈ S, we deduce that
∫

D

∣∣Ax(t)
∣∣dt ≤ ‖GNf x‖∞

∫
D

∣∣Nhx(t)
∣∣dt ≤ 1

4
(‖f0‖ + η‖x‖)

∫
D

(
h0(t) + γ

∣∣x(t)
∣∣)dt.
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Taking into account the facts that the set of a single element is weakly compact and ‖x‖ ≤
r0, the use of formula (2.1) leads to

ω
(
A(S)

) ≤ (‖f0‖ + ηr0)γ
4

ω(S) = αω(S), (3.12)

where α := (‖f0‖ + ηr0)γ /4. Applying inequality (3.8), we have

α <
γ

4

(
‖f0‖ +

4 – 4β – γ ‖f0‖ – η‖h0‖
γ

)
< 1 – β . (3.13)

Thus, (3.12) implies that A is ω-contraction with α.
(3). If y = By + Ax for x ∈ M, then y ∈ M.
If y ∈ L1(I) satisfies y = By + Ax for x ∈ M, then we have

∣∣y(t)
∣∣ ≤ ∣∣Ngy(t)

∣∣ +
∣∣Nhx(t)

∣∣ · ∣∣GNf x(t)
∣∣

≤ g0(t) + β
∣∣y(t)

∣∣ +
(
h0(t) + γ

∣∣x(t)
∣∣) · 1

4
(‖f0‖ + η‖x‖),

for a.e. t ∈ I , it follows that

4‖y‖ ≤ 4‖g0‖ + 4β‖y‖ +
(‖f0‖ + η‖x‖)(‖h0‖ + γ ‖x‖).

Noting that ‖x‖ ≤ r0 and applying inequality (3.7), we deduce from the above that

‖y‖ ≤ 4‖g0‖ + ‖f0‖‖h0‖ + (γ ‖f0‖ + η‖h0‖)r0 + γ ηr2
0

4(1 – β)
≤ r0,

which implies y ∈ M.
(4). Conclusion.
The condition (i) of Theorem 2.7 is verified in (1)-(2), and the condition (iii) of Theo-

rem 2.7 is verified in (3). Moreover, B = Ng is contractive with β by (H2), and B is ww-
compact by Remark 3.4(1). Then the condition (ii) of Theorem 2.7 is satisfied. The estimate
α + β < 1 is from (3.13).

Now, according to Theorem 2.7, we obtain that Eq. (3.1) has at least one solution in M,
and then the existence of weak solutions in L1(I) for problem (1.1)-(1.2) is proved. �

4 Examples
In this section we give two examples to illustrate the existence result involved in Theo-
rem 3.5.

Example 4.1 Consider the following boundary problem of second order ordinary differ-
ential equations:

(
2x(t) – (t – t2) sin x(t)√

et + [x(t)]2

)′′
+

ln(1 + t) + x(t)
1 + [x(t)]2 = 0, 0 < t < 1, (4.1)

x(0) = 0, x(1) = 0. (4.2)
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In order to show that problem (4.1)-(4.2) admits at least one weak solution in a certain
ball of L1(I), we are going to check that the conditions of Theorem 3.5 are satisfied. To this
end, define the functions as follows:

g(t, x) :=
1
2
(
t – t2) sin x, h(t, x) :=

1
2
√

et + x2, f (t, x) :=
ln(1 + t) + x

1 + x2 .

For all x ∈R and t ∈ [0, 1], we have

∣∣f (t, x)
∣∣ ≤ ln(1 + t) + |x|, ∣∣h(t, x)

∣∣ ≤ 1
2
√

et +
1
2
|x|.

Thus, (H1) is satisfied with f0(t) = ln(1 + t), η = 1, h0(t) =
√

et/2 and γ = 1/2.
For any x1, x2 ∈R and t ∈ I , we have

∣∣g(t, x1) – g(t, x2)
∣∣ =

t – t2

2
| sin x1 – sin x2| ≤ 1

8
|x1 – x2|.

Thus, (H2) is satisfied with β = 1/8 and g0(t) = 0.
Moreover, a simple calculation yields

‖f0‖ = 2 ln 2 – 1, ‖g0‖ = 0, ‖h0‖ =
√

e – 1.

It is easy to infer that inequality (3.6) holds, and then (H3) is satisfied.
Now, based on Theorem 3.5, we infer that there exists x ∈ L1(I) such that it is a weak

solution of problem (4.1)-(4.2) in the set M := {x : ‖x‖ ≤ r0}, where r0 satisfies

0 < r0 ≤ 4 – 4β – γ ‖f0‖ – η‖h0‖
2γ η

= 5 – ln 2 –
√

e = 2.8581 . . . .

Example 4.2 Consider the following boundary problem of second order ordinary differ-
ential equations:

x′′(t) + tx′(t) + ln
(
1 +

∣∣x(t)
∣∣) + 2 – t + 2t2 – ln

(
1 + t – t2) = 0, t ∈ [0, 1], (4.3)

x(0) = 0, x(1) = 0. (4.4)

According to the introduction in Section 1, we can take the functions as follows:

g
(
t, x(t)

)
= e– 1

2 t2
∫ t

0
x(s)se

1
2 s2

ds, h
(
t, x(t)

)
= e– 1

2 t2 ,

f
(
t, x(t)

)
= e

1
2 t2[

ln
(
1 +

∣∣x(t)
∣∣) + 2 – t + 2t2 – ln

(
1 + t – t2)].

For all x ∈R and t ∈ [0, 1], we have

∣∣f (t, x)
∣∣ ≤ e

1
2 t2[

2 – t + 2t2 – ln
(
1 + t – t2)] +

√
e|x|,

∣∣h(t, x)
∣∣ ≤

∫ 1

0
e– 1

2 t2
dt + γ |x|.
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Thus, (H1) is satisfied with f0(t) = e 1
2 t2 [2 – t + 2t2 – ln(1 + t – t2)], η =

√
e, h0(t) = e– 1

2 t2 and
γ being chosen as enough small positive number.

Further, for all x1, x2 ∈R and t ∈ [0, 1], we have

∣∣g(t, x1) – g(t, x2)
∣∣ = e– 1

2 t2
∫ t

0
|x1 – x2|se

1
2 s2

ds ≤
(

1 –
1√
e

)
|x1 – x2|,

and g0(t, 0) = 0. Thus, (H2) is satisfied with β = 1 – 1/
√

e. Note that a simple calculation
yields

‖h0‖ =
∫ 1

0
e– 1

2 t2
dt ≤ 0.9, ‖g0‖ = 0, ‖f0‖ ≤

∫ 1

0
e– 1

2 t2(
2 – t + 2t2)dt ≤ 1.69.

Thus, if we take 0 < γ ≤ 0.02, then we have

4β + γ ‖f0‖ + η‖h0‖ + 2
√

γ η
(
4‖g0‖ + ‖f0‖‖h0‖

)

≤ 4
(

1 –
1√
e

)
+ 0.02 × 1.69 +

√
e × 0.9 + 2

√
0.02 × √

e × 1.69 × 0.9

= 3.5394 . . . < 4,

which implies that (H3) is satisfied.
Finally, based on Theorem 3.5, we infer that there exists x ∈ L1(I) such that it is a weak

solution of problem (4.3)-(4.4). Moreover, it is easy to see that the exact solution of (4.3)-
(4.4) is x(t) = t – t2.

5 Conclusions
In this work, we have established an existence result for weak solutions of the boundary
value problem of nonlinear differential equations of second order. Our main assumptions
about the functions being involved in the equation are the Carathéodory conditions, and
the main tool is a Krasnosel’skii type fixed point theorem in conjunction with the tech-
nique of measures of weak noncompactness.

In the proof of Theorem 3.5, we avoided using the Scorza-Dragoni theorem [20], the
Arzelà-Ascoli theorem, the modulus of continuity of the function G, etc. By using Egoroff’s
theorem, we have replaced this method so that the proof process is simplified. The reader
can compare it with [5, 8, 10, 21, 22].
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