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Abstract
In this paper, we study the following nonlinear Kirchhoff type equation:

–
(
a + b

∫

RN
|∇u|2 dx

)
�u + Vu = f (u) + h(x), x ∈R

N ,

where a, b, V are positive constants, N = 2 or 3. Under appropriate assumptions on f
and h, we get that the equation has two positive solutions by using variational
methods.
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1 Introduction and main results
We consider the following nonlinear Kirchhoff type equation:

–
(

a + b
∫

RN
|∇u|2 dx

)
�u + Vu = f (u) + h(x), x ∈R

N , (1.1)

where a, b, V are positive constants, N = 2 or 3.
In recent years, the existence or multiplicity of solutions for the following Kirchhoff type

equation

–
(

a + b
∫

RN
|∇u|2 dx

)
�u + V (x)u = f (x, u), x ∈R

N ,

where a, b are positive constants, N = 1, 2, 3, has been widely investigated by many au-
thors, for example [1–6], etc. But in those papers, the nonlinearity f satisfies 3-superlinear
growth at infinity, which assures the boundedness of any Palais-Smale sequence or Cerami
sequence.

Very recently, Guo [7], Li and Ye [8], Liu and Guo [9], Tang and Chen [10] studied re-
spectively the following equation:

–
(

a + b
∫

R3
|∇u|2 dx

)
�u + V (x)u = f (u), x ∈ R

3,
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where a, b are positive constants, f only needs to satisfy superlinear growth at infinity. By
using the Pohozaev equality, it is easy to obtain a bounded Palais-Smale sequence. Thus
they obtained the existence of positive solution.

Inspired by [7–10], we study equation (1.1); in here, very weak conditions are assumed
on f . Exactly, f ∈ C(R+,R) satisfies

(f1) when N = 2, there exists p ∈ (2, +∞) such that limt→+∞ f (t)
tp–1 = 0; when N = 3,

limt→+∞ f (t)
t5 = 0;

(f2) limt→0+
f (t)

t = m ∈ (–∞, V );
(f3) limt→+∞ f (t)

t = +∞.

On h, we make the following hypotheses:

(h1) h ∈ L2(RN ) ∩ C1(RN ) is nonnegative and h �≡ 0;
(h2) when N = 2, 0 ≤ (∇h(x), x) ∈ L2(R2); when N = 3, (∇h(x), x) ∈ L2(R3);
(h3) h is radially symmetric.

By using Ekeland’s variational principle [11] and Struwe’s monotonicity trick [12], we
get the following.

Theorem 1.1 Suppose that (f1)-(f3) and (h1)-(h3) hold. Then there exists m0 > 0 such that,
when (

∫
RN h2 dx) 1

2 < m0, equation (1.1) has two positive solutions.

When f (t) < 0, by (f2) and (f3), there exists l > 0 such that f (t) + lt ≥ 0 for all t ≥ 0. Thus
equation (1.1) is equivalent to the following equation:

–
(

a + b
∫

RN
|∇u|2 dx

)
�u + Wu = k(u) + h(x), x ∈R

N , (1.2)

where W = V + l > 0 and k(t) = f (t) + lt ∈ C(R+,R+) satisfies

(k1) when N = 2, there exists p ∈ (2, +∞) such that limt→+∞ k(t)
tp–1 = 0; when N = 3,

limt→+∞ k(t)
t5 = 0;

(k2) limt→0+ k(t)
t = m + l := d ∈ [0, W );

(k3) limt→+∞ k(t)
t = +∞.

Hence in order to prove Theorem 1.1, we only need to prove the following.

Theorem 1.2 Suppose that (k1)-(k3) and (h1)-(h3) hold. Then there exists m0 > 0 such that
when (

∫
RN h2 dx) 1

2 < m0, equation (1.2) has two positive solutions.

Remark 1.3 Under hypotheses on k, we are not able to obtain directly the bound-
edness of the Palais-Smale sequences. Inspired by Jeanjean’s idea in [13] and [14], we
will use an indirect approach, i.e., Struwe’s monotonicity trick developed by Jeanjean.
It is worth pointing out that comparing with N = 3, when N = 2, it is more com-
plex to prove the boundedness of the Palais-Smale sequences, which will be seen in
Lemma 3.8.
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2 Preliminaries
From now on, we will use the following notations.

• E := {u ∈ H1(RN ) : u(x) = u(|x|)} is the usual Sobolev space endowed with the norm

‖u‖ =
(∫

RN
|∇u|2 + u2 dx

) 1
2

.

• D1,2(RN ) is completion of C∞
0 (RN ) with respect to the norm

‖u‖D1,2(RN ) =
(∫

RN
|∇u|2 dx

) 1
2

.

• For any 1 ≤ p < ∞, Lp(RN ) denotes the Lebesgue space and its norm is denoted by

|u|p =
(∫

RN
|u|p dx

) 1
p

.

• 〈·, ·〉 denotes the action of dual, (·, ·) denotes the inner product in R
N .

• C, Ci denote various positive constants.
Since we are looking for positive solution, we may assume that k(t) = 0 for all t < 0. Under

the assumptions on k and h, it is obvious that the functional I : E →R defined by

I(u) =
a
2

∫

RN
|∇u|2 dx +

b
4

(∫

RN
|∇u|2 dx

)2

+
W
2

∫

RN
u2 dx –

∫

RN
K(u) dx –

∫

RN
hu dx

is of class C1, where K(t) =
∫ t

0 k(s) ds and

〈
I ′(u), v

〉
=

(
a + b

∫

RN
|∇u|2 dx

)∫

RN
(∇u,∇v) dx + W

∫

RN
uv dx –

∫

RN
k(u)v dx

–
∫

RN
hv dx,

for all u, v ∈ E. As is well known, the weak solution of equation (1.2) is the critical point of
I in E.

3 Proof of the main results
Next lemma can be viewed as a generalization of Struwe’s monotonicity trick [12] and is
the main tool for obtaining a bounded Palais-Smale sequence.

Lemma 3.1 (see [13] or [14]) Let X be a Banach space equipped with a norm ‖ · ‖X , and
let J ⊂R

+ be an interval. We consider a family {�μ}μ∈J of C1-functionals on X of the form

�μ(u) = A(u) – μB(u), ∀μ ∈ J ,

where B(u) ≥ 0 for all u ∈ X and such that either A(u) → +∞ or B(u) → +∞ as ‖u‖X →
+∞. We assume that there are two points v1, v2 in X such that

cμ = inf
γ∈�

max
t∈[0,1]

�μ

(
γ (t)

)
> max

{
�μ(v1),�μ(v2)

}
,
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where

� =
{
γ ∈ C

(
[0, 1], X

)
: γ (0) = v1,γ (1) = v2

}
.

Then, for almost every μ ∈ J , there is a bounded (PS)cμ sequence for �μ, that is, there exists
a sequence {un} ⊂ X such that

(1) {un} is bounded in X ,
(2) �μ(un) → cμ,
(3) �′

μ(un) → 0 in X∗, where X∗ is the dual of X .

Remark 3.2 In [13], it is also proved that, under the assumptions of Lemma 3.1, the map
μ �→ cμ is left-continuous.

In the paper, we set X := E, ‖ · ‖X := ‖ · ‖ and J := [ 1
2 , 1]. Let us define Iμ : E → R by

Iμ(u) = A(u) – μB(u), where

A(u) =
a
2

∫

RN
|∇u|2 dx +

b
4

(∫

RN
|∇u|2 dx

)2

+
W
2

∫

RN
u2 dx –

∫

RN
hu dx,

B(u) =
∫

RN
K(u) dx.

Then I1(u) = I(u). By (k1)-(k3) and (h1), it is obvious that Iμ ∈ C1(E,R), B(u) ≥ 0 for all
u ∈ E and A(u) ≥ min{a,W }

2 ‖u‖2 – C|h|2‖u‖ → +∞ as ‖u‖ → +∞.

Lemma 3.3 Assume that (k1)-(k3) and (h1) hold. Then there exist ρ > 0, α > 0 and m0 > 0
such that Iμ(u)|‖u‖=ρ ≥ α for all h satisfying |h|2 < m0 and for all μ ∈ J .

Proof First, we consider N = 2. It follows from (k1) and (k2) that, for all t ∈R, we have

∣∣K(t)
∣∣ ≤ W + d

4
|t|2 + C|t|p. (3.1)

By (3.1), the Hölder inequality and the Sobolev inequality, for all μ ∈ J and u ∈ E, one has

Iμ(u) ≥ a
2

∫

R2
|∇u|2 dx +

W
2

∫

R2
u2 dx –

∫

R2
K(u) dx –

∫

R2
hu dx

≥ a
2

∫

R2
|∇u|2 dx +

W
2

∫

R2
u2 dx –

W + d
4

∫

R2
u2 dx – C

∫

R2
|u|p dx – |h|2|u|2

≥ min{2a, W – d}
4

‖u‖2 – C1‖u‖p – C2|h|2‖u‖

= ‖u‖
(

min{2a, W – d}
4

‖u‖ – C1‖u‖p–1 – C2|h|2
)

.

Let g1(t) = min{2a,W –d}
4 t – C1tp–1 for t ≥ 0. Since p > 2, we know that there exists a constant

ρ > 0 such that maxt≥0 g1(t) = g1(ρ) > 0. Choose m0 = 1
2C2

g1(ρ), then there exists α > 0 such
that Iμ(u)|‖u‖=ρ ≥ α for all h satisfying |h|2 < m0.

Next when N = 3, it follows from (k1) and (k2) that, for all t ∈R, we have

∣∣K(t)
∣∣ ≤ W + d

4
|t|2 + C|t|6. (3.2)



She et al. Boundary Value Problems  (2018) 2018:10 Page 5 of 13

By (3.2), the Hölder inequality and the Sobolev inequality, for all μ ∈ J and u ∈ E, one has

Iμ(u) ≥ a
2

∫

R3
|∇u|2 dx +

W
2

∫

R3
u2 dx –

∫

R3
K(u) dx –

∫

R3
hu dx

≥ a
2

∫

R3
|∇u|2 dx +

W
2

∫

R3
u2 dx –

W + d
4

∫

R3
u2 dx – C

∫

R3
|u|6 dx – |h|2|u|2

≥ min{2a, W – d}
4

‖u‖2 – C3‖u‖6 – C4|h|2‖u‖

= ‖u‖
(

min{2a, W – d}
4

‖u‖ – C3‖u‖5 – C4|h|2
)

.

Let g2(t) = min{2a,W –d}
4 t – C3t5 for t ≥ 0, we know that there exists a constant ρ > 0 such

that maxt≥0 g2(t) = g2(ρ) > 0. Choose m0 = 1
2C4

g2(ρ), then there exists α > 0 such that
Iμ(u)|‖u‖=ρ ≥ α for all h satisfying |h|2 < m0. �

Lemma 3.4 Assume that (k1)-(k3) and (h1) hold. Then –∞ < c := inf{I(u) : ‖u‖ ≤ ρ} < 0,
where ρ is given by Lemma 3.3.

Proof Since h ∈ L2(RN ) and h �≡ 0, then for ε = |h|2
2 , there exists φ ∈ C∞

0 (RN ) such that
|h – φ|2 < ε. Thus

∫

RN

(
h2 – hφ

)
dx ≤

∫

RN

∣∣h2 – hφ
∣∣dx ≤ |h – φ|2|h|2 < ε|h|2,

and then

∫

RN
hφ dx ≥ |h|22 – ε|h|2 =

|h|22
2

> 0.

Hence

I(tφ) ≤ at2

2

∫

RN
|∇φ|2 dx +

bt4

4

(∫

RN
|∇φ|2 dx

)2

+
Wt2

2

∫

RN
φ2 dx – t

∫

RN
hφ dx < 0

for t > 0 small enough. Then we get c = inf{I(u) : ‖u‖ ≤ ρ} < 0. c > –∞ is obvious. �

In order to prove the compactness, we define g(t) = k(t) – dt, ∀t ∈ R. Then, by (k1) and
(k2), we get that

lim
t→0+

g(t)
t

= 0, (3.3)

and when N = 2,

lim
t→+∞

g(t)
tp–1 = 0, (3.4)

when N = 3,

lim
t→+∞

g(t)
t5 = 0. (3.5)
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Lemma 3.5 Suppose that (k1)-(k3), (h1) and (h3) hold. Assume that {un} ⊂ E is a bounded
Palais-Smale sequence of Iμ for each μ ∈ J . Then {un} has a convergent subsequence in E.

Proof Since {un} is bounded in E and E ↪→ Ls(R3), ∀s ∈ (2, 6), E ↪→ Ls(R2), ∀s ∈ (2, +∞) are
compact (see [15]), up to a subsequence, we can assume that there exists u ∈ E such that
un ⇀ u in E, un → u in Ls(R3), ∀s ∈ (2, 6), un → u in Ls(R2), ∀s ∈ (2, +∞), un(x) → u(x)
a.e. in R

N .
By (3.3) and (3.4), for any ε > 0, we have

∣∣g(t)
∣∣ ≤ ε|t| + Cε|t|p–1, ∀t ≥ 0. (3.6)

Then, by (3.6) and the Hölder inequality, one has

∣∣∣∣
∫

R2
g(un)(un – u) dx

∣∣∣∣

≤ ε

∫

R2
|un||un – u|dx + Cε

∫

R2
|un|p–1|un – u|dx

≤ ε|un|2|un – u|2 + Cε

(∫

R2
|un|p dx

) p–1
p

|un – u|p

≤ Cε + on(1).

Similarly, we can obtain that

∣∣∣∣
∫

R2
g(u)(un – u) dx

∣∣∣∣ = on(1).

By (3.3) and (3.5), for any ε > 0, we have

∣∣g(t)
∣∣ ≤ ε

(|t| + |t|5) + Cε|t|3, ∀t ≥ 0. (3.7)

Hence, by (3.7) and the Hölder inequality, one has

∣∣∣∣
∫

R3
g(un)(un – u) dx

∣∣∣∣

≤ ε

∫

R3
|un||un – u|dx + ε

∫

R3
|un|5|un – u|dx + Cε

∫

R3
|un|3|un – u|dx

≤ ε|un|2|un – u|2 + ε

(∫

R3
|un|6 dx

) 5
6 |un – u|6 + Cε

(∫

R3
|un| 9

2 dx
) 2

3 |un – u|3

≤ Cε + on(1).

Similarly, we can obtain that

∣∣∣∣
∫

R3
g(u)(un – u) dx

∣∣∣∣ = on(1).
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Hence when N = 2 or 3, one has

∣∣∣∣
∫

RN

(
g(un) – g(u)

)
(un – u) dx

∣∣∣∣ = on(1).

It is clear that

〈
I ′
μ(un) – I ′

μ(u), un – u
〉

= on(1)

and

b
(∫

RN

(|∇u|2 – |∇un|2
)

dx
)∫

RN

(∇u,∇(un – u)
)

dx = on(1).

Note that

〈
I ′
μ(un) – I ′

μ(u), un – u
〉

=
(

a + b
∫

RN
|∇un|2 dx

)∫

RN

∣∣∇(un – u)
∣∣2 dx

+ (W – μd)
∫

RN
|un – u|2 dx

– b
(∫

RN

(|∇u|2 – |∇un|2
)

dx
)∫

RN

(∇u,∇(un – u)
)

dx

– μ

∫

RN

(
g(un) – g(u)

)
(un – u) dx

≥ min{a, W – μd}‖un – u‖2

– b
(∫

RN

(|∇u|2 – |∇un|2
)

dx
)∫

RN

(∇u,∇(un – u)
)

dx

– μ

∫

RN

(
g(un) – g(u)

)
(un – u) dx.

Therefore we get that ‖un – u‖ → 0 as n → ∞. �

Proof of the first solution of Theorem 1.2 By Lemma 3.4 and Ekeland’s variational principle
[11], there exists a sequence {un} ⊂ E such that ‖un‖ ≤ ρ , I(un) → c and I ′(un) → 0 as
n → ∞. From Lemma 3.5 with μ = 1, there exists u0 ∈ E such that un → u0 in E and then
I ′(u0) = 0 and I(u0) = c < 0. Put u–

0 := max{–u0, 0}, one has

0 =
〈
I ′(u0), u–

0
〉

= –a
∫

RN

∣∣∇u–
0
∣∣2 dx – b

∫

RN
|∇u0|2 dx

∫

RN

∣∣∇u–
0
∣∣2 dx – W

∫

RN

∣∣u–
0
∣∣2 dx

–
∫

RN
hu–

0 dx, (3.8)

which implies that u–
0 = 0 and then u0 ≥ 0. By the strong maximum principle, we get

u0 > 0. �

For ρ and α in Lemma 3.3, we have following result.
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Lemma 3.6 Assume that (k1)-(k3) and (h1) hold. Then

(∗) ∃v2 ∈ E with ‖v2‖ > ρ such that Iμ(v2) < 0, ∀μ ∈ J .
(∗∗) cμ = infγ∈� maxt∈[0,1] Iμ(γ (t)) > max{Iμ(0), Iμ(v2)}, ∀μ ∈ J , where

� =
{
γ ∈ C

(
[0, 1], E

)
: γ (0) = 0,γ (1) = v2

}
.

Proof It follows from (k3) that, for any L > 0, there exists CL > 0 such that, for all t ≥ 0, one
has

K(t) ≥ Lt2 – CL. (3.9)

Fix 0 ≤ w ∈ C∞
0 (RN ) with supp w ⊂ B1 := {x ∈R

N : |x| < 1} and w �≡ 0. Define wt(x) = tw( x
t2 )

for t > 0, then

supp wt =
{

t2y : y ∈ supp w
}

.

By direct computation, we have

∫

RN
|∇wt|2 dx = t2N–2

∫

RN
|∇w|2 dx,

∫

RN
w2

t dx = t2N+2
∫

RN
w2 dx

and, by (3.9),

∫

RN
K(wt) dx =

∫

supp wt

K(wt) dx

≥ L
∫

supp wt

w2
t dx – CL

∫

supp wt

dx

≥ Lt2N+2
∫

supp w
w2 dx – CL

∫

{t2y:y∈B1}
dx

= Lt2N+2
∫

RN
w2 dx – CLCt2N .

Therefore

Iμ(wt)

=
a
2

∫

RN
|∇wt|2 dx +

b
4

(∫

RN
|∇wt|2 dx

)2

+
W
2

∫

RN
w2

t dx

– μ

∫

RN
K(wt) dx –

∫

RN
hwt dx

≤ at2N–2

2

∫

RN
|∇w|2 dx +

bt4N–4

4

(∫

RN
|∇w|2 dx

)2

+
Wt2N+2

2

∫

RN
w2 dx

–
Lt2N+2

2

∫

RN
w2 dx + CLCt2N
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for all μ ∈ J . When N = 2, we choose L = 2W . When N = 3, we choose L = 2W +
b (

∫
RN |∇w|2 dx)2
∫
RN w2 dx . Then Iμ(wt) → –∞ as t → +∞. Hence there exists t′ > 0 such that v2 := wt′

with ‖v2‖ > ρ and Iμ(v2) < 0, ∀μ ∈ J . This completes the proof of (∗).
By Lemma 3.3 and the definition of cμ, for all μ ∈ J , we have

0 < α ≤ c1 ≤ cμ ≤ c 1
2

≤ max
t∈[0,1]

I 1
2

(tv2) < +∞.

Therefore, by Iμ(0) = 0 and Iμ(v2) < 0, we obtain the proof of (∗∗). �

So far we have verified all the conditions of Lemma 3.1. Then there exists {μj} ⊂ J such
that

(i) μj → 1– as j → ∞, {uj
n} is bounded in E;

(ii) Iμj (u
j
n) → cμj as n → ∞;

(iii) I ′
μj

(uj
n) → 0 as n → ∞.

Using (i)-(iii) and Lemma 3.5, there exists uj ∈ E such that uj
n → uj in E as n → ∞

and then Iμj (uj) = cμj and I ′
μj

(uj) = 0. Hence, from Iμj (uj) = cμj and 〈I ′
μj

(uj), uj〉 = 0, we get
respectively

a
2

∫

RN
|∇uj|2 dx +

b
4

(∫

RN
|∇uj|2 dx

)2

+
W
2

∫

RN
u2

j dx

– μj

∫

RN
K(uj) dx –

∫

RN
huj dx = cμj , (3.10)

a
∫

RN
|∇uj|2 dx + b

(∫

RN
|∇uj|2 dx

)2

+ W
∫

RN
u2

j dx

– μj

∫

RN
k(uj)uj dx –

∫

RN
huj dx = 0. (3.11)

Next, for obtaining {uj} is bounded in E, we need the following lemma (Pohozaev type
identity). The proof is similar to Lemma 2.6 in [16], and we omit its proof in here.

Lemma 3.7 Suppose that (h1) and (h2) hold. If I ′
μ(u) = 0, we have

a(N – 2)
2

∫

RN
|∇u|2 dx +

b(N – 2)
2

(∫

RN
|∇u|2 dx

)2

+
NW

2

∫

RN
u2 dx

– Nμ

∫

RN
K(u) dx – N

∫

RN
hu dx –

∫

RN

(∇h(x), x
)
u dx = 0.

Since I ′
μj

(uj) = 0, by Lemma 3.7, we get that

a(N – 2)
2

∫

RN
|∇uj|2 dx +

b(N – 2)
2

(∫

RN
|∇uj|2 dx

)2

+
NW

2

∫

RN
u2

j dx

– Nμj

∫

RN
K(uj) dx – N

∫

RN
huj dx –

∫

RN

(∇h(x), x
)
uj dx = 0. (3.12)

Lemma 3.8 Assume that (k1)-(k3) and (h1)-(h3) hold. Then {uj} is bounded in E.
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Proof It follows from (3.10) and (3.12) that

a
∫

RN
|∇uj|2 dx +

b(4 – N)
4

(∫

RN
|∇uj|2 dx

)2

+
∫

RN

(∇h(x), x
)
uj dx = Ncμj . (3.13)

Be similar to (3.8), by I ′
μj

(uj) = 0, we obtain uj ≥ 0.
Firstly, we consider N = 2. From (3.13) and cμj ≤ c 1

2
, we get

a
∫

R2
|∇uj|2 dx ≤ a

∫

R2
|∇uj|2 dx +

b
2

(∫

R2
|∇uj|2 dx

)2

– 2cμj + 2cμj

= –
∫

R2

(∇h(x), x
)
uj dx + 2cμj . (3.14)

Since (∇h(x), x) ≥ 0, by (3.14) and uj ≥ 0, one has {∫
R2 |∇uj|2 dx} is bounded. Next we

prove {∫
R2 u2

j dx} is bounded. Inspired by [14], we suppose by contradiction that λj :=
|uj|2 → +∞. Define wj := uj(λjx), then

∫

R2
|∇wj|2 dx =

∫

R2
|∇uj|2 dx ≤ C

and

∫

R2
|wj|2 dx =

1
λ2

j

∫

R2
|uj|2 dx = 1. (3.15)

Hence {wj} is bounded in E. Up to a subsequence, we may assume that wj ⇀ w in E, wj →
w in Ls(R2), ∀s ∈ (2, +∞), wj → w in Ls

loc(R2), ∀s ∈ [1, +∞), wj(x) → w(x) a.e. in R
2. By

I ′
μj

(uj) = 0, one has

–
(

a + b
∫

R2
|∇wj|2 dx

)
1
λ2

j
�wj + (W – dμj)wj = μjg(wj) + h(λjx). (3.16)

For any v ∈ C∞
0 (R2), one has

∣∣∣∣
∫

R2
h(λjx)v dx

∣∣∣∣ ≤ |v|2
(∫

R2

∣∣h(λjx)
∣∣2 dx

) 1
2

=
1
λj

|v|2|h|2 → 0 (3.17)

and by the Lebesgue dominated convergence theorem, we have

∣∣∣∣
∫

R2
g(wj)v dx –

∫

R2
g(w)v dx

∣∣∣∣ ≤ C
∫

supp v

∣∣g(wj) – g(w)
∣∣dx → 0. (3.18)

Hence by (3.16)-(3.18), we have (W – d)w = g(w) in R
2, from which we get that w = 0.

Indeed, since 0 is an isolated solution of (W – d)z = g(z), w = 0. Therefore by (3.6), (3.15)
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and (3.16), one has

W – d = (W – d)
∫

R2
|wj|2 dx

≤
(

a + b
∫

R2
|∇wj|2 dx

)
1
λ2

j

∫

R2
|∇wj|2 dx + (W – dμj)

∫

R2
|wj|2 dx

= μj

∫

R2
g(wj)wj dx +

∫

R2
h(λjx)wj dx

≤ ε

∫

R2
|wj|2 dx + Cε

∫

R2
|wj|p dx +

1
λj

|h|2|wj|2

≤ Cε + on(1),

which implies a contradiction. Hence {∫
R2 |uj|2 dx} is bounded and then {uj} is bounded

in E.
Secondly, for N = 3, we have a simple proof. From (3.13), (h2) and cμj ≤ c 1

2
, we get

a
∫

R3
|∇uj|2 dx ≤ a

∫

R3
|∇uj|2 dx +

b
4

(∫

R3
|∇uj|2 dx

)2

– 3cμj + 3cμj

= –
∫

R3

(∇h(x), x
)
uj dx + 3cμj

≤ ∣∣(∇h(x), x
)∣∣

2|uj|2 + 3c 1
2

≤ C|uj|2 + 3c 1
2

. (3.19)

We prove directly {∫
R3 u2

j dx} is bounded. Similar to (3.19), we obtain

b
4

(∫

R3
|∇uj|2 dx

)2

≤ a
∫

R3
|∇uj|2 dx +

b
4

(∫

R3
|∇uj|2 dx

)2

– 3cμj + 3cμj

≤ C|uj|2 + 3c 1
2

. (3.20)

By the Hölder inequality, we have

(∫

R3
|∇uj|2 dx

)3

≤ C
(∫

R3
u2

j dx
) 3

4
+ C. (3.21)

By (3.3) and (3.5), for all t ∈ R, one has

∣∣g(t)t
∣∣ ≤ W – d

2
|t|2 + C|t|6. (3.22)

From (3.11), (3.21), (3.22), μj ≤ 1 and D1,2(R3) ↪→ L6(R3), it follows that

(W – d)
∫

R3
u2

j dx ≤ a
∫

R3
|∇uj|2 dx + b

(∫

R3
|∇uj|2 dx

)2

+ (W – μjd)
∫

R3
u2

j dx

= μj

∫

R3
g(uj)uj dx +

∫

R3
huj dx
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≤ W – d
2

∫

R3
u2

j dx + C
∫

R3
u6

j dx + |h|2
(∫

R3
u2

j dx
) 1

2

≤ W – d
2

∫

R3
u2

j dx + C
(∫

R3
|∇uj|2 dx

)3

+ |h|2
(∫

R3
u2

j dx
) 1

2

≤ W – d
2

∫

R3
u2

j dx + C
(∫

R3
u2

j dx
) 3

4
+ C + |h|2

(∫

R3
u2

j dx
) 1

2
,

which implies that {∫
R3 u2

j dx} is bounded. Combining with (3.19), we get that {uj} is
bounded in E. �

Proof of the second solution of Theorem 1.2 By Iμj (uj) = cμj , I ′
μj

(uj) = 0, μj → 1– and Re-
mark 3.2, we get I(uj) → c1 and I ′(uj) → 0 as n → +∞. By Lemmas 3.5 and 3.8, there exists
v0 ∈ E such that uj → v0 in E as n → +∞ and then I(v0) = c1 > 0, I ′(v0) = 0. Be similar to
(3.8), we get v0 ≥ 0. By the strong maximum principle, one has v0 > 0. �

4 Conclusions
The goal of this paper is to study the multiplicity of positive solutions for the following
nonlinear Kirchhoff type equation:

–
(

a + b
∫

RN
|∇u|2 dx

)
�u + Vu = f (u) + h(x), x ∈R

N ,

where a, b, V are positive constants, N = 2 or 3. Under very weak conditions on f , we get
that the equation has two positive solutions by using variational methods.
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