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Abstract

The aim of this work is to study a nonlocal Dirichlet boundary value problem for
sequential Caputo fractional Hahn integrodifference equation. The problem contains
two fractional Hahn difference operators and a fractional Hahn integral with different
numbers of order. We use the Banach fixed point theorem to prove the existence and
uniqueness of the solution. In particular, the existence of at least one solution is
presented by using the Schauder fixed point theorem.
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1 Introduction
In this paper, we study the quantum calculus that is the calculus without considering limits
based on the sets of non-differentiable functions. Some examples of quantum difference
operators are the Jackson g-difference operator, the forward (delta) difference operator,
and the backward (nabla) difference operator. The quantum difference operators have
been employed in many applications [1-9] of mathematical areas such as the theory of
relativity, particle physics, and quantum mechanics.

In this work, we focus on the Hahn difference operator that is the generalization of the
forward difference operator and the Jackson g-difference operator.

The Hahn difference operator D, , is defined by [10]

Dy 0 =LELDTO

Note that

D, of(t) = A,f(t) wheneverg=1, Dy.f(t) =Dyf(t) whenever w =0, and

D,.f(t)=f'(¢) wheneverg=1,0w— 0.

This operator is used to construct families of orthogonal polynomials (see [11, 12] and the

references therein).
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In 2009, Aldwoah [13, 14] defined the right inverse of D, in terms of the Jackson g-
integral containing the right inverse of D, [15] and the Nérlund sum containing the right
inverse of A, [15].

Next, the Hahn quantum variational calculus was introduced by Malinowska and Tor-
res [16, 17] in 2010, and the generalized transversality conditions for the Hahn quantum
variational calculus were described by Malinowska and Martins [18] in 2013.

The studies of existence and uniqueness results for the initial value problems for Hahn
difference equations were presented in 2013 by Hamza et al. [19, 20] by using the method
of successive approximations. In addition, they proved Gronwall’s and Bernoulli’s inequal-
ities with respect to the Hahn difference operator and also established the mean value
theorems for this calculus.

Recently, Sitthiwirattham [21] proposed a nonlinear Hahn difference equation with non-
local boundary value conditions of the form

D;'wx(t) +f(t,x(t),Dp,9x(pt + 9)) =0, telwnTlgw
x(wo) = ¢(x), (1.1)

x(T)=2rx(n), 1€ (w0, T)gw

where 0 < g<1,0<w< T, wy := ﬁ, 1<ac< g:sg,p:qm,meN,H:w(i%’;),f:
[wo, T]g0 x R x R — R is a given function, and ¢ : C([wo, T14,.,R) — R is a given func-
tional.

In 2017, Sriphanomwan et al. [22] considered a nonlocal boundary value problem for
second-order nonlinear Hahn integro-difference equation with integral boundary condi-

tion of the form

D;,wx(t) =f(t,%(8), Dpox(pt + 0), Wpox(pt +0)), t€ [wo, T)ger

T (1.2)
*wo) =), () = u f g6)%(8) dgoss 1 € (@0 Ty

0

where 0<g<1,0<w< T, wy:= 1%q,MfwTO,g'(r)alq,,wr;!1,,ueR,p:q"‘,np&I\L@ =w(}:—§ ,
f € Clwo; TNgo x R x R x R,R), and g € C([wo, Ty, R*) are given functions, and for
¢ € C([wo, T]q,w x [wo, T]q,wr [0,00)),

t
W, 0x(t) = f @(t,ps +6)x(ps + 0) dyps.

0

For the fractional Hahn difference operators, Cermék and Nechvital [23] introduced
the fractional (g, /1)-difference operator and the fractional (g, /)-integral for g > 1. Next,
Cermik et al. [24] presented discrete Mittag-Leffler functions in linear fractional differ-
ence equations for g > 1. On discrete time scales for g > 1, Rahmat [25, 26] considered the
(g, h)-Laplace transform and some (g, /1)-analogues of integral inequalities. In 2016, Du et
al. [27] studied the monotonicity and convexity for nabla fractional (g, 1)-difference for
q>0,q+#1.

We observed from the above research that these operators are not fractional Hahn op-
erators because the conditions are not satisfied with 0 < g < 1. To fill this gap, Brikshavana
and Sitthiwirattham [28] introduced the fractional Hahn operators.
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In this paper, we study the boundary value problem for fractional Hahn difference equa-
tion containing a sequential Caputo fractional Hahn integrodifference equation with non-
local Dirichlet boundary conditions. The governing problem is given by

‘Dy CDﬁw[ Eoye + qu,w}u(t) = F(6,u(6), V) ,u(®)), £ € [wo, Tlgwm
] Pgw(t) *
(o) = $(a), (13)

Pao(T)U(T) = pgo(mMu(n) =¥ (w), ne (o, T)gw

where [wo, T]g0 = IT = {4"T + wlkly : k € No} U {wo}; @ >0, g € (0,1); o, B,y € (0,1];
the shift operator E{, JU(E) = u(og0(1)); F € C( » X R x R R) is a given function; ¢, ¢ :
cur [0,00)), we define

70> R) = R are given functionals; and for ¢ e C( o X

qw’

t

\P;wu(t) = (I,;’,wgou)(t) =T (t crqw(s)) go(t S)u(s) dg,s.

q,a)(y) o

We give some basic definitions and lemmas in the next section. In Section 3, we present
the main results of the study. The existence and uniqueness of a solution to problem (1.3)
are proved by using the Banach fixed point theorem. In addition, the existence of at least
one solution to problem (1.3) is proved by using the Schauder fixed point theorem in Sec-
tion 4. We end up with some example in the last section.

2 Preliminaries
In this section, we introduce notations, definitions, and lemmas used in the main results.
For g € (0,1) and w > 0, we define

1-¢" L1-4¢
1 =¢"'+...+g+1 and [n]qlzzl_[ 1

, nelk.
1-¢g i 1-¢g

[n]q =

The g-analogue of the power function (a — Io)qE with n € Ng:=[0,1,2,...] is defined by
n-1
(@a-bys:=[](a-b4"), abeR,

k=0

where (a - b)g := 1. The g, w-analogue of the power function (a— b)g,w with z € Ny := NU{0}

is defined by
n-1
(@a-b),=[[la- (bq" +wlkly)], abeR,
k=0

where (a — b)g,w := 1. Generally, if @ € R, we have

“1_[ 1-(b)g 040,

~ By’

= 1- () .
(a—b)‘;,f(a—wo)“]‘[_(TO;ZM (-0 - (b-0)’, aon.

n=0 a-w(
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Note that a% =a“and (a - a)o)%w = (a—wp)”. Here, we use the notation (0)% = (wo)%,w =0
for o > 0. The following are the definitions of g-gamma and g-beta functions, respectively:

r@yzﬂlﬁzi xeR\{0,-1,-2,...}
q . (1_q)x_1) ) ) 1)
b _ [y (x)y(s)
- L1 _gp)s=lg g= — 4 a%)
B,(x,5) .—/0 (1 qt)—dgt = Crrs)

Definition 2.1 ([10]) Assuming g € (0,1), ® > 0 and letting f be the function defined on
an interval / C R containing wy := ﬁ, the Hahn difference of f is defined by

St @) —f®)
Dyuf(t) = tlg-1)+w

for t # wy.
In addition, Dg.f(wo) = f'(wo) when f is differentiable at wy. We call D,f the g,w-
derivative of f and f is ¢, w-differentiable on I.

Remarks
(1) Dyolf(t) +g(t)] = Dgof (£) + Dy,ug(t);
2) Dq,w[af(t)] = aDq,aaf(t);

(
(3) Dyulf()g()] = f(£)Dyg,ug(t) + g(qt + w)Dyuf ();
4) D [&] _ 8()Dgwf (0)f(1)Dg,wg(t)

Polg(t)! — g()glgt+w)

Letting a, b € I, where a < wy < b and [k], = %, k € Ny, we define the g, w-interval by

[a,b],,, = {d'a + wlkl; : k € No} U{q"b + w[k], : k € No} U {wo}

= [a, wol g, U [wo, b]q,w

g

= (“) b)q,w Ufa,b} = [a, b)q,a) U {b}= (ﬂr b]q,w U {a}.

For each s € [a, b],,., the sequence {G;_w(s)};io ={f's + wlk]4}72, is uniformly convergent
to wy.
We define the forward and backward jump operators as O‘;’w(t) = ¢*t + w[k], and

p;w(t) = H;# for k € N, respectively.

Definition 2.2 ([13]) Let I be any closed interval of R containing a, b, and wy. Letting
f I — R be a given function, we define g, w-integral of f from a to b by

b b a
/f(t)dq,wtzz FOdt— [ O dyot,

where

oo

xf(t) dgot = [x(l -q)— a)] quf(qu + a)[k]q), xel.

k=0

Assuming that the series converges at x = a and x = b, we say that f is g, w-integrable on
[a, b], and the sum to the right-hand side is called the Jackson-No6rlund sum.



Patanarapeelert et al. Boundary Value Problems (2018) 2018:6 Page 5 of 17

We note that the actual domain of function f is defined on [a, b],., C 1.
We next introduce the fundamental theorem of Hahn calculus in the following lemma.

Lemma 2.1 ([13]) Let f :1 — R be continuous at wy and define

F(x) := xf(t) dgwt, xel

o)
Then F is continuous at wo. Furthermore, D, F(x) exists for every x € I and
DyoF(x) = f(%).
Conversely,

b
/ Dy oF(t)dgut =F(b)—F(a) foralla,bel.

Lemma 2.2 ([21]) Let g € (0,1), w >0, and f : I — R be continuous at wy. Then

t r t t
/ / x(8) dgwsdgowr = / / h(s)dgordyws,
wg J wg wg J gs+w

t

/ dq,a)s =t - wo,
2n)
t

f [t - aq,w(s)] dgws =

(t — wo)?

l+qg

In the sequel, we define fractional Hahn integral, fractional Hahn difference of Riemann-
Liouville and Caputo types.

Definition 2.3 ([28]) For o, >0, g € (0,1) and f defined on [wy, T'];, the fractional
Hahn integral is defined by

1 t .
Ty(@) Jo, (¢~ “qvw(s))q,jlf (8) dgws

I;J(t) =

oo

_[H1-g)-o] 3 g (-0l 0) S (o, 0),

q,
I'ger) — ©

where (Z0,/)(¢) = f(¢).

Definition 2.4 ([28]) For o, >0, g € (0,1) and f defined on [wy, T'];, the fractional
Hahn difference of the Caputo type of order « is defined by

D;f(0) = (T3, Dyf) (©)
L t (t — aq,w(s))MDN of (8)dyws,

TN -a) /)y, e

and Dg’af () = CD(q),mf (£) =f(¢), where N is the smallest integer that is greater than .
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Lemma 2.3 ([28]) Leta >0,q€ (0,1), w >0, andf : I;w — R. Then
Ig,ch;,wf(t) =f(t) + C() + Cl(t — a)()) + -0+ CN_l(t — (,()0)N71
forsome C;eR,i=Noy_1and N-1<a <N,NeN.
The following lemma is used to simplify the calculations in this study.

Lemma 2.4 ([28]) Lettingo,8 >0, p,q€(0,1), and v >0,

t
[ (= 0o~ nl s = = ) By 4 L),

0

t X — a+p
/ / (t - ap,w(x));;wl(x - aq,w(s))i;wldq,ws ApX = %Bp(ﬁ +1,a).
wQ v W q

The next lemma presents the solution of the linear variant of problem (1.3).

Lemma 2.5 Let o, €(0,1),w>0,4€(0,1),h e C(I,;w,R) be a given function, and ¢, :
C(I qT, o R) = R be given functionals. Then the problem

E
¢pe Cpf [ﬂ + qu,w:|u(t) =h@t), tel’

w0 20 (@ e
ulwo) = $(a), @1)
pq,w(T)u(T) = pq,w(n)u(n) =vyu), ne I;:w —{wo, T}
has the unique solution
u(t) = #{ oo (a)
T 2T
t t
+ i |:A*(h, u) | (s—w)dgws—B*(hu) / (s — w)(s — wp) dq,ws:|
Q wo wo
. / / / (5 — )5 = 040 (0)) 0 (¢ — 0402 M drd nd S} )
w Jwo Jwy Fq(a)rq(ﬂ) pemTaeTTOn '
where

T n n T
Q::/ (s—w)dq,ws/ (s—a))(s—a)o)dq,ws—/ (s—a))dq,ws/ (s — w)(s — wo) dyg08

0 0

(T —wo)(n—wo)  @oq(T +1—2w0) i

=(77—T)(T—w0)(n_w0)|:(q+1)(q2+q+1) P +q+1 q+1

} 23)
the functionals A*(h, u), B*(h, u) are defined by

A*(h,u) := A(u) + A1 (h) — Ay (h), (2.4)
B*(h,u) := B(u) + B1(h) — By(h), (2.5)
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and
T
A() := (wodp(u) — ¥ (w)) / (s — )(s — w0) g0, (2.6)
n
[X (s = w)(s — w0) dys
h) = 20
Ailh) Fq(a)rq(ﬂ)
n ps x
x / / f (5 = ) (s = 0 ()2 (¥ = 04,0(2)) 2 1(2) g2 g% g,
(2.7)
a? (s — w)(s — wo) dy,ws
h _ 0
A= ar, )
T ps x
x / / (s—w)(s- oqw(x)) (x oqw(z)) Ly ) Ay Ay dyyws,
(2.8)
T
B(u) = (wop(u) - 1//(14))/ $dy0s, (2.9)
n
L1 (s = ) dgos
Bih)=""2 —
1) Fq(a)rq(ﬂ)
n ps x
X / / f (s—w)(s- aqw(x)) (x aqw(z)) h(2) dg 0z dgwx dg,ws,
(2.10)
Ji (5 = @) dys
Bo(h) =222
)= T 8)
x / / (5 = (s = 0 ()2 (¥ = 04,0(2)) 2 1(2) g2 g 5.
(2.11)
Proof We first take fractional g, w-integral of order « for (2.1) to obtain
cpp [ Lo Dy |u(t) = Cy + T2 k() (2.12)
g (t) +q .0 u 1+ g . .
Pg,w

Next, we take fractional g, w-integral of order g for (2.12). Thus,

M qDg,u(t) = Cy + Cy(t — wo) + 15, g h(@),
Pro(®) e
M(%Tw(t)) P ODgntt) = G2 ¢ P

.\ Pgo(t)
qlq(a)T4(B)

X LO /(;o(t—aq,w(s)):,;wl( qu(x)) h(x)d wxd S,
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or

C C
prwmmm=ﬁv—M+ﬁuﬂmwww

1
T 2T (@, (B)

t s
x / (s = )t = 04 (9)) ) (5 = 0o () o 1) g0 5.

0 v w0

(2.13)

Finally, we take g, w-integral for (2.13) to obtain

t

1
mAmw=@+Q?/

wo

C t
(s —w)dyws + q_21 / (s — w)(s — wo) dy,ws

1
T 2T (@, ()

t s X
X / / (s—w) (s - aq,w(x))s%wl(x —0g0 (z)):jlh(z) Ay dgwX dg,ws.
wo Jwg J wy

(2.14)
By substituting ¢ = w, into (2.14) and employing the first condition of (2.1), we have

Cs = wop(u).
Therefore,

t

C [
(s—w)dgw+ ?/ (s — w)(s — wo) dy,ws

o

meWﬁwWW+Q%/

1
T 2T (@, ()

t s x
x f / (5 = ) (s — 00 ()2 (¥ = 04,0(2)) 25 1(2) g2 g% g 5.
wo Y wgy J wg

(2.15)

Further, by letting ¢ = 5, T into (2.15) and employing the second and third conditions of
(2.1), we have

T

= Heww-wow)| [ c-w)dyo— [ 6-o)d
1=5 q (V¥ (u) — wopp(u s—w)dg, — wos—a) 1S

wo

S (5 = @) dgos
T, (@), (B)

n s x
x / / (s— @) (s — 0g0 (x))i;wl(x — g (z));;wlh(z) gz dgordy,s
wo Yoy Jwy
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30 (s —w)dyws

[y(a)T4(B)
T s X
X / / (s— a))(s - qu(x)) (x qu(z)) h(z) dgwzdgwxdg, ws},
1 r n
C = e {qz(w(u) — wop(u)) [ (s—w)(s—wo)dgws — | (s—w)(s—wo) dq,ws:l

qu; (s — w)(s — o) dyg s
C T@Ty()

n s x
x/m/w()/wo(s—w)(s-aqw(x)) o 040(2) U(2) dyz dy ok dy s

CZO (s — w)(s — wo) dyws

Fq(a)rq(ﬂ)
T s X
X /;)0 /wo /wo(s—w)(s—aqw(x)) (x qu(z)) h(z)d wZdguXdy ws},

where Q is defined in (2.3).
To accomplish solution (2.2), we substitute the constants Cj, C, into (2.15). a

3 Existence and uniqueness of solution

In this section, we present the existence and uniqueness of solution for problem (1.3). Let

C = C(IT,R) be a Banach space of all function « with the norm defined by

g0’

llulle = max {|ul},
telqﬂ,

where w > 0, g € (0, 1). Define an operator F : C — C by

t

e 1 2 l Kk _
(Fu)(t) := 7quq,w(t) {q wop(u) + R [.A (F,u) /wo(s W) dgos

- B*(F,u) t(s —w)(s —wyp) dq,ws]
P
Fq(a)rq(ﬂ)

t s x
X / / (s—w) (s - Gq,w(x))i;wl(x - crq,w(z)):;w1
wo Jwg J wy
F(z, u(z), W;wu(z)) AywZ A% dq,ws}, (3.1)
where Q #0 is defined in (2.3), the functionals A**(F, u), B**(F, u) are defined by

A (Fyu) = Aw) + AL(F) — AL(F), (3.2)
B**(F,u) := B(u) + By (F) — B3 (F), (3.3)
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and
o S s-o)s—wo)dgus 1 s [ _
$(F):= Fq(a)Fq(;) 1 /wo fwo 3 (s—w)(s— oq,w(x))%(x —040(2))
x F(z,u(2), ¥ Y WU(2)) dgwzdywxdyys,
AE) i fczo (s — w)(s — o) dyg s

x F (z, u(z), \I/(;wu(z)) A2y wX dg,ws,
S5 =@)dgus (1 5 3 po1 wu1
Bi(F):= wo—/ f / (s—o)(s—0,0Xx)—(x-0,0()
! rq(a)rq(ﬂ) wQ Y wgy Yoy ( 1 )q,w ( 1 )q,w
x F(z,u(z), 124 Wi(2)) dygwzdgwx dg,ws,

fgo(s—w)d,ws T ps px ~ o
T // [ (5= 0)(s = 00 0) 5 (5= 00 @)

x F (z, u(z), \Il;”wu(z)) A2 AgwX dg,ws,

Bi(F) :=

with functionals A(x), B(u) defined in (2.6), (2.9), respectively.

Page 10 of 17

a-1

90

(3.4)

T ps x
_ _ Bl a-1
Fq(a)rq(ﬂ) /(:)0 /c:)o /wo =) (S %ge (x))q’w (x Oge (Z))q,w

(3.5)

(3.6)

(3.7)

We find that problem (1.3) has solutions if and only if the operator F has fixed points.

Theorem 3.1 Assume that the following conditions hold:

(H1) There exist constants A1, Ly > 0 such that, for each t € I;w and u,v € R,
|F(t,u, W) u) - F(t,v, ‘I/[;wv)| <Mlu-v|+ )»2|‘I/;wu - \IJ;wv|.
(Hy) There exist constants £y, £y > 0 such that, for each u,v € C,
6@) —oW)| < llu—~vie and |y -y ()| < tllu-ve.

(H3) L]O1 + Oq] < *wy, where

L :=max{{ A1+A2¢0% £ =|woly — Lo
' ’ Ly+1) [
(T — wp)*
Op:=wo + 7|Q|0 (A1 + (T = wo) A1),
(T — wo)?
@, := Tﬁ(Am +(T = wp)[ Az + O) + (T - ) O,
and
T? + Tn + 0% = 3wo(T + n — wy) (T +n - 2ay)
A1 :=(T-n) > + woq ,
P +q+1 l+g
(n = wo)*(T — wy)? 1 1
A1y = By(B +1,0)[(T — o)™~ — (1 — wp)* 7!,
2T @B +1) ! | 0 o]
T-n
Aoy = —|T+n—wo(2—q—q2)\’

l+q

(3.9

(3.10)

(3.11)

(3.12)

(3.13)
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(1= w0)*(T — ax)?

Ay = (@, (B+ 1) B,(B + 1,(X)|(T — wp)**P - (n- wo)? P |, (3.14)
_ (T— CUo)ct+/3+2
O:= WBq(ﬂ + 1,0[). (3.15)

Then problem (1.3) has a unique solution.

Proof In order to prove that our problem has a unique solution, we show that F is a con-

traction. Since

Hlu—v|(t) := ‘F(t, u(t), \I'(’I"wu(t)) - F(t, v(t), \D(;wv(t)) ,
for each t € I;w and u, v € C, we obtain

| A(u) — AW)|

= (wo|@ (W) — p(v)| — | () =¥ (v)])

T
/ (s — w)(s — wo) dy,ws
n

—w)? = (7 — wo)? (T - wp)* = (n — wp)?
)

< EIIM—VIIC‘

P+q+1 0 1+p
T? + Tn +n% = 3wo(T + n — ) (T +n —2ay)
:ZHM_V”C(T—’?)‘ 5 0 %+ wog o1 (3.16)
qg*+q+1 l+q
Similarly, we have
T-n 9
(B - BO)| < = vlie 3| +n-wo(2-q- ). (3.17)

In addition, we have

AT (F@) = AT (F0)|

qu;(S—w)(S—wo)dq,ws n L
) Fq(O{)Fq(IB) ‘/0)0 ‘/6;0 /a‘)o(s_a)) S_qu(x)) (x GQw(Z)) -

x H|u —v|(s) dgwz dgwx dgws

(T-wo) 1-¢*—¢%
1+q+q2|T wO( l+q )l

- q(a)rq(/s)
" p-1 -1
X (s — )(s - 040 (x))q‘fw(x - aq,w(z))q,w A0z g X dg,ws
wo Jwg J g

(Aalu—v|+ )L2|\D,;wu— \D;wv|)

(n = wo)(T — wp)? T wip
mBq(ﬁ + 1,0() » S dq'ws}

Aago y+l (1 = wo)**P(T - wy)?
=< (}»1+ W(T—wo)q,M)HU—V”C{ (@B + 1) Bq(ﬁ+1y0!)},
(3.18)

( 1|M—V|+)L2|\py u— \y)/ |){
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and

A3 (F@) = A3 ()|

Aa@o y+l (1 = @0)*(T — wp)*+F+2
(T - wo)gew JNlu—vlc

= (“ "N +D Fr,rn il 1’“)}’

(3.19)
|B (F(w)) - By (F(v)) |

A2¢o y+l (1 — wo)* P(T — wy)?
= <A1+ m(T—wo)q,w>||M—V||c{ @), (B+1) Bq(,B"'l’“)},

(3.20)

|83 (F(w)) - B3 (F0)]

Aago y+l (1 — wo)X(T — wp)*+F+2
= (kl + W(T—wo)q,w>||u—‘/”c{ Fq(a)Fq(ﬁ+1) Bq(ﬂ+l,a)}.

(3.21)
Based on (3.16)-(3.21), we have
‘A**(F, Lt) _ .A**(F, V)‘
A +1
<Lllu—-vlcAn + ()»1 + 27@)(7" - wo);,_w) lle = viic A2, (3.22)
Fyly +1)
|B**(F,u) - B**(E,v)|
A 1
< Cllu—vllc Az + (xl b2 (7 wo)Z,L) lu=vlielAn +O), (3.23)
Fyly+1)
where A11, A1z, Ag1, Ay, and O are defined on (3.11)-(3.15), respectively.
Consider
|(Fu)(®) - (Fv)(©)|
<5 wolllu—v|
9? Pg0(@o) { ° ¢
1
+ @[(T_ w0)2|A**(F; M) - A**(Fr V)|
+ (T = o) |B*(E,w) - B*(E, )]
A2¢o y+1>
+ A+ == (T -wo)ga |lu—vlc(T -w )O}
< ! Fq()’ +1) 0a 0
(C] A + ®
< Cllu—vle—— + (xl " 2—“"’(T—wo)§,£) et = vl —
q°wo Ly +1) qwo
L
< ——llu-vlc[®1 + O], (3.24)
q-wo

where £, ®1, and ©; are defined on (3.8)-(3.10), respectively.



Patanarapeelert et al. Boundary Value Problems (2018) 2018:6 Page 13 of 17

From (H3), this implies that F is a contraction. Therefore, by using the Banach fixed
point theorem, we can conclude that F has a fixed point which is a unique solution of
problem (1.3) ont el . O

4 Existence of at least one solution
In this section, we also deduce the existence of a solution to (1.3) by using the following

Schauder fixed point theorem.

Lemma 4.1 ([29] (Arzeld-Ascoli theorem)) A set of functions in Cla,b] with the sup
norm is relatively compact if and only if it is uniformly bounded and equicontinuous on
|a, b].

Lemma 4.2 ([29]) Ifa set is closed and relatively compact, then it is compact.

Lemma 4.3 ([30] (Schauder’s fixed point theorem)) Let (D, d) be a complete metric space,
U be a closed convex subset of D, and T : D — D be the map such that the set Tu :
u € U is relatively compact in D. Then the operator T has at least one fixed point u* € U:

Tu* = u*.
Theorem 4.1 Suppose that (Hy)-(H,) hold. Then (1.3) has at least one solution.

Proof We divide the proof into three steps as follows.
Step I Verify that 7 maps bounded sets to bounded sets in Bg = {# € C : |lu|l¢c < R}. Let
BR = {I/l € C(I;:w) : ||M||C =< R}r maxte]g:m |F(t> 0, 0)' = I<, SUp,ec |¢(l/l)| = M’ SUp,ec |¢(u)| =

N, and choose a constant

®1|a)0M —N| + @21(

R> — (4.1)
G20~ [O1L+ Ok + F220(T — wo)5)]
We note that |S(¢, u,0)| = |F(t, u(z), \I—’g]wu(t)) — F(£,0,0)| + |F(£,0,0)].
For each u € By, we obtain
| A@)]| = |wo(|d() = ¢(0)| + |¢(0)]) = (| () - ¥ (0)] + | (0)])]
T
(s — w)(s — o) dyg
X /n s —w)(s — wo) dg s
< (€llulle + lwoM - N|)(T - n)
5 ‘T2+ Ty +n* =3wo(T + 1 — wy) woq(T+n—2a)o) . 42)

P+q+1 l+q

Similarly,

T_
|Bw)| < (ellullc + |0)0M—N|)T;’|T+ n-wo(2—q-q°)| (4.3)
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In addition,

AT (F@)

fwTo (s — w)(s — o) dyg s

Fq(a)rq(ﬂ)

Page 14 of 17

n s x
x / / / (s = ) (s = 00 ()2 (¥ 04,0(2)) 22 [ S (2, 14,0) | dyg2 gk g8
wp J wy J wy

A2¢0 y+1
< A1+7(T—wo),—w)||u||c +1{|
|:( Fq(y +1) 1

{ (1 — wo)* (T - wy)?
Fy(@)y(B+1)

By(a, B + 1)}.
Similarly,

|A§(F(u))| = [(M + %(T—w@%)llu”c +K]
q

{ (77 _ w0)3(T— wo)oz+ﬁ+2
Lg()Ty(B +1)
|B;(F(w))| < [(M " %(T—wo)%) lulle +K}

q

{(77 - wo)* (T - wy)?
Fq(a)r‘q(ﬁ +1)
|B;(F(M))| < |:()n1 + %(T—wo);;}) lullc +K:|

a

{ (1 = o) (T — wo)*#+*
T (@), (B +1)

By(a, B+ 1)},

Bq(a’ﬁ + 1)};

By(o, B + 1)}.

From (4.2)-(4.7), we obtain

| A*(F,u)| < (€llullc + |woM — N|) A1y

A2¢o y+1
+ AL+ 7(7"—600),:0)”“”6 +I<]A12,
|:( Fq(y +1) 1

|B**(F,u)| < (Cllullc + |woM — N|) Az

A2¢o y+l
———— (T - ®0)gw K |[A )
+ |:()»1+ Fq(y+1)( wo)g, >||14||C+ <i|[ 22+ O]

where A11, A1z, Ao, Ay, and O are defined in (3.11)-(3.15), respectively.
From (4.8) and (4.9), we have

R A2¢o V+1>j|
Fu)t)| < —— |01+ M1+ ——————(T —wo)ga
I )(>|_q2w0[ 1 2(1 o)

+ [lwoM = N|©; + KO,],

q*wo

where ©; and ®; are defined in (3.8)-(3.10), respectively.
Therefore, || Full¢c < R. This implies that F is uniformly bounded.

(4.4)

(4.6)

(4.7)

(4.8)

(4.10)
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Step II. Show that F is continuous on Bg. From the continuity of F, we can conclude that
the operator F is continuous on Bg.

Step III. Examine that F is equicontinuous with Bg. For any ¢, € I, Zw with t; < £, we
have

[(Fu)(tz) - (Fu)(t)|

1 *k
Sa)oM + 'A
lh—w
1 1 ty J
X S— wS— T~ S—w S
‘(tz ) wo( ) (tl—w)/wo( 1%
B=|| 1 (- L g
Q (tz— )/ (S—CU)( Cl)())dqa)s m/ (s—a))(s—a)o)dq,ws
wo
* (5 = )(5 — 00 () (8 — 0g ()i
F — _qw qw —Ogw q,wdwdwdw
+ || F] PR /w()/wo " VT 102 AgwX dg,,s
X (o_ _ p-1 _ a-1
(s = 0)(s = 040 (%)) g0 (* = 04,0(2) g dozdy ey s
wy Jawy Jag Fq(a)I’q(ﬁ)
o
1_a)|t1—f2| + 9(17 ) dg,0s
' 5 wo)dq,ws
B-1 a-1
F - — w g0 X — 0] ree
|| I / / /‘ 5 —w)(S = 0y, (%)) g0 (¥ — 04,0(2))g doned,eds
o J wp q(a)rp(ﬂ)

When |t — t;] — 0, the right-hand side of the above inequality tends to be zero. There-
fore, F is relatively compact on Bg.

Thus, the set F(Bg) is an equicontinuous set. As a consequence of Steps I to III together
with the Arzeld-Ascoli theorem, F : C — C is completely continuous. By the Schauder
fixed point theorem mentioned above, we can conclude that problem (1.3) has at least
one solution. The proof is completed. 0

5 Example
In this section, we present a boundary value problem for fractional Hahn difference equa-
tion to illustrate our results as follows:

Cny Ccn? Eaiz 1

D’ p + =Dy, |ult

b2 The |:p12(t) ‘2] ©

e ul+1

T a2 1+costu

arctan(cos® wt) _2 67
+—L73 t), tel|—,10 ,
(£ + 100)3 %'2(<pu)() [16 ]%’2 (5.1)

67\ |ulsin®|mul
U\ — | =———-—>
16 (200e)®

19\ (19 S Cilu(t)| 1\
00010 =y (7 )7 ) = STy w=10(55) +2
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where o¢(t,s) = % and C; are given constants with (103 < Y5G <
__e
ooy 1 60 1
We let o = ,,B:S,y—— q=§ a)=2,a)0=ﬁ=2g,T—10 n = 10(55)° +
_ 5587 u| sin? |7 u _Noo Cilu)l e~ 10t Ju|+1
[3]* 2700’¢( )_ W’ - Zl 0 T+|u(t ,and (t (t) \I’ M(t)) - mtz " T+cosZu
—a”;";jﬁcgg)f”:ﬂ (¢10)(0).
We find that

|€2] = 0.644, Aq; =15,130.184, A1y =198,828.485, Aoy = 14,966.095,

Ay =78,845.778, and O =60.577.

Forall ¢ e [& 10]3710,2 and u,v € R, we have

29’

|u—v|+L|\W u-vy, |

F(t,u, W —F(tv,¥) = 8% 60\
\F(t,u, V) u) - F(t,v r,wv)|<e%%n(g_g)2 482 + 100"

Thus, (H;) holds with y; = 7.69 x 107!}, 35 = 7.236 x 107, and ¢ =
Forall u,v eC,

1
[ 200073 I

|p(u) - p(v)| = (200 ————Ju—vllc,

e
¥ () =y ()| = c§j|u(t> v(t>|_mnu—vnc.

So, (H>) holds with ¢; = 3.873 x 10717 and £, = 2.791 x 10710,
Hence, from Theorem 4.1, problem (5.1) has at least one solution. O
In addition, we find that

T_ rlw
L = max |(1)0£1 - Ez|,)\.1 + )\2(,00ﬂ =2.791 x 10710,
Ly +1)
T— 2
O1=wo + %(AH +(T - wo)A12) = 1.961 x 10°,
T— 2
@2 = (|TQ|)O)(A21 + (T— wo)[A22 + O]) +TO =7.891.

Therefore, (H3) holds with
0.055 = L[O; + O3] < g%wo = 1.034.

Hence, problem (5.1) has a unique solution by Theorem 3.1. g
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