
Hao et al. Boundary Value Problems  (2017) 2017:182 
DOI 10.1186/s13661-017-0915-5

R E S E A R C H Open Access

Positive solutions for a system of nonlinear
fractional nonlocal boundary value problems
with parameters and p-Laplacian operator
Xinan Hao1*, Huaqing Wang1, Lishan Liu1,2 and Yujun Cui3

*Correspondence:
haoxinan2004@163.com
1School of Mathematical Sciences,
Qufu Normal University, Qufu,
Shandong 273165, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we investigate the existence of positive solutions for a system of
nonlinear fractional differential equations nonlocal boundary value problems with
parameters and p-Laplacian operator. Under different combinations of superlinearity
and sublinearity of the nonlinearities, various existence results for positive solutions
are derived in terms of different values of parameters via the Guo-Krasnosel’skii fixed
point theorem.
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1 Introduction
In this paper, we investigate the following system of nonlinear fractional differential equa-
tions nonlocal boundary value problems with parameters and p-Laplacian operator:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα1
0+ (ϕp1 (Dβ1

0+ u(t))) = λf (t, u(t), v(t)), 0 < t < 1,

–Dα2
0+ (ϕp2 (Dβ2

0+ v(t))) = μg(t, u(t), v(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0, Dβ1
0+ u(0) = 0, Dβ1

0+ u(1) = b1Dβ1
0+ u(η1),

v(0) = v(1) = v′(0) = v′(1) = 0, Dβ2
0+ v(0) = 0, Dβ2

0+ v(1) = b2Dβ2
0+ v(η2),

(1.1)

where αi ∈ (1, 2],βi ∈ (3, 4], Dαi
0+ and Dβi

0+ are the standard Riemann-Liouville derivatives,

ϕpi (s) = |s|pi–2s, pi > 1,ϕ–1
pi

= ϕqi ,
1
pi

+ 1
qi

= 1,ηi ∈ (0, 1), bi ∈ (0,η
1–αi
pi–1
i ), i = 1, 2.f , g ∈ C([0, 1] ×

[0, +∞)2, [0, +∞)),λ and μ are positive parameters.
Fractional differential equation models are proved to be more adequate than integer

order models for some problems in science and engineering. Fractional differential equa-
tions play a very important role in various fields due to their deep real world background.
For an introduction of fractional calculus and fractional differential equations, we refer
the reader to [1–3] and the references therein.

Turbulent flow in a porous medium is a fundamental mechanics problem. For studying
this type of problem, Leibenson [4] introduced differential equations with p-Laplacian
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operator

(
ϕp

(
u′(t)

))′ = f
(
t, u(t)

)
. (1.2)

The study of differential equation with p-Laplacian operator is of significance theoreti-
cally and practically. It is quite natural to study fractional differential equation relative to
equation (1.2).

Recently, many scholars have paid more attention to the fractional order differential
equation boundary value problems with p-Laplacian operator, see [5–23]. In [15], Lu et al.
investigated a class of boundary value problems for fractional differential equations with
p-Laplacian

⎧
⎨

⎩

Dα
0+ (ϕp(Dβ

0+ u(t))) = f (t, u(t)), 0 < t < 1,

u(0) = u′(0) = u′(1) = 0, Dβ

0+ u(0) = Dβ

0+ u(1) = 0,

where α ∈ (1, 2], β ∈ (2, 3], Dα
0+ and Dβ

0+ are the standard Riemann-Liouville derivatives,
f ∈ C([0, 1]× [0, +∞), [0, +∞)). The existence and multiplicity results of positive solutions
were obtained by using the Guo-Krasnosel’skii fixed point theorem, the Leggett-Williams
fixed point theorem and the upper and lower solutions method. Xu and Dong [17] consid-
ered the following three point boundary value problem of fractional differential equation
with p-Laplacian operator:

⎧
⎨

⎩

–Dα
0+ (ϕp(Dβ

0+ u(t))) = f (t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0, Dβ

0+ u(0) = 0, Dβ

0+ u(1) = bDβ

0+ u(η),

where α ∈ (1, 2], β ∈ (3, 4], Dα
0+ and Dβ

0+ are the standard Riemann-Liouville derivatives,
η ∈ (0, 1), b ∈ (0,η

1–α
p–1 ), f ∈ C([0, 1] × [0, +∞), [0, +∞)). The existence and uniqueness

of positive solutions were obtained by using the upper and lower solutions method and
Schauder’s fixed point theorem, the iterative sequences for the unique solution were also
given.

In [18], Zhang et al. considered the eigenvalue problems of fractional differential equa-
tions with integral boundary conditions and p-Laplacian operator

⎧
⎨

⎩

–Dα
0+ (ϕp(Dβ

0+ u(t))) = λf (t, u(t), 0 < t < 1,

u(0) = 0, Dβ

0+ u(0) = 0, u(1) =
∫ 1

0 u(s) dA(s),
(1.3)

where α ∈ (0, 1],β ∈ (1, 2], Dα
0+ and Dβ

0+ are the standard Riemann-Liouville derivatives,
A is a function of bounded variation,

∫ 1
0 u(s) dA(s) is the Riemann-Stieltjes integral, f (t, u) :

(0, 1) × (0, +∞) → [0, +∞) is a continuous function that may be singular at t = 0, 1 and
u = 0. The existence of positive solutions of problem (1.3) was established by using the
upper and lower solutions method and Schauder’s fixed point theorem. Lv [20] discussed
an m-point boundary value problem of fractional differential equation with p-Laplacian
operator

⎧
⎨

⎩

Dα
0+ (ϕp(Dβ

0+ u(t))) + ϕp(λ)f (t, u(t)) = 0, 0 < t < 1,

u(0) = 0, Dγ

0+ u(1) =
∑m–2

i=1 ξiDγ

0+ u(ηi), Dβ

0+ u(0) = 0,
(1.4)
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where α,γ ∈ (0, 1],β ∈ (1, 2],β – α – 1 ≥ 0,β – γ – 1 ≥ 0,λ is a positive parameter, 0 <
ξi,ηi < 1,

∑m–2
i=1 ξiη

β–α–1
i < 1, f ∈ C([0, 1]× [0, +∞), [0, +∞)). The existence and multiplicity

of positive solutions for system (1.4) were established via the monotone iterative method
and the fixed point index theory.

The system of fractional differential equations boundary value problems with p-
Laplacian operator have also received much attention and have developed very rapidly,
see [24–32]. In [24], Li et al. studied the following fractional differential system involving
the p-Laplacian operator and nonlocal boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα1
0+ (ϕp1 (Dβ1

0+ u(t))) = f (t, v(t)), 0 < t < 1,

Dα2
0+ (ϕp2 (Dβ2

0+ v(t))) = g(t, u(t)), 0 < t < 1,

u(0) = Dβ1
0+ u(0) = 0, Dγ1

0+ u(1) =
∑m–2

j=1 a1jDγ1
0+ u(ηj),

v(0) = Dβ2
0+ v(0) = 0, Dγ2

0+ v(1) =
∑m–2

j=1 a2jDγ2
0+ v(ηj),

where αi,γi ∈ (0, 1],βi ∈ (1, 2], Dαi
0+ , Dβi

0+ and Dγi
0+ are the standard Riemann-Liouville

derivatives, i = 1, 2. The conditions for the existence of the maximal and minimal solu-
tions to the system were established.

Ren et al. [25] considered the following nonlocal fractional differential system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα1
0+ (ϕp1 (–Dβ1

0+ u(t))) = f (u(t), v(t)), 0 < t < 1,

–Dα2
0+ (ϕp2 (–Dβ2

0+ v(t))) = g(u(t), v(t)), 0 < t < 1,

u(0) = Dβ1
0+ u(0) = Dβ1

0+ u(1) = 0, u(1) =
∫ 1

0 u(s) dA(s),

v(0) = Dβ2
0+ v(0) = Dβ2

0+ v(1) = 0, v(1) =
∫ 1

0 v(s) dB(s),

where αi,βi ∈ (1, 2], Dαi
0+ and Dβi

0+ are the standard Riemann-Liouville derivatives. A and B
are functions of bounded variations,

∫ 1
0 u(s) dA(s) and

∫ 1
0 v(s) dB(s) are Riemann-Stieltjes

integrals. By introducing a new type of growth conditions and using the monotone iter-
ative technique, some new results about the existence of maximal and minimal solutions
were established, and the estimation of the lower and upper bounds of the maximum and
minimum solutions was also derived.

By means of the Avery-Henderson fixed point theorem and six functionals fixed point
theorem, Rao [26] investigated the existence of multiple positive solutions for a coupled
system of p-Laplacian fractional order two point boundary value problems

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα1
a+ (ϕp(Dβ1

a+ u(t))) = f (t, u(t), v(t)), a < t < b,

–Dα2
a+ (ϕp(Dβ2

a+ v(t))) = g(t, u(t), v(t)), a < t < b,

ξu(a) – ηu′(a) = 0, γ u(b) + δu′(b) = 0, Dβ1
a+ u(a) = 0,

ξv(a) – ηv′(a) = 0, γ v(b) + δv′(b) = 0, Dβ2
a+ v(a) = 0,

where αi ∈ (0, 1],βi ∈ (1, 2], Dαi
a+ and Dβi

a+ are the standard Riemann-Liouville derivatives.



Hao et al. Boundary Value Problems  (2017) 2017:182 Page 4 of 18

He and Song [29] discussed the following fractional order differential system with p-
Laplacian operator:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα1
0+ (ϕp1 (Dβ1

0+ u(t))) = λf (t, v(t)), 0 < t < 1,

Dα2
0+ (ϕp2 (Dβ2

0+ v(t))) = μg(t, u(t)), 0 < t < 1,

u(0) = 0, u(1) = a1u(ξ1), Dβ1
0+ u(0) = 0, Dβ1

0+ u(1) = b1Dβ1
0+ u(η1),

v(0) = 0, v(1) = a2v(ξ2), Dβ2
0+ v(0) = 0, Dβ2

0+ v(1) = b2Dβ2
0+ v(η2),

where αi,βi ∈ (1, 2], Dαi
0+ and Dβi

0+ are the standard Riemann-Liouville derivatives, ξi,ηi ∈
(0, 1), ai, bi ∈ [0, 1], i = 1, 2. λ and μ are positive parameters. The uniqueness of solution
was established by using the Banach contraction mapping principle. Khan et al. [31] con-
sidered the existence and uniqueness of solutions to a coupled system of fractional differ-
ential equations with p-Laplacian operator. The functions involved in the proposed cou-
pled system were continuous and satisfied certain growth conditions. By using topological
degree theory, some conditions were established which ensured the existence and unique-
ness of solution to the proposed problem.

Motivated by the papers mentioned above, in this paper, we study the existence of posi-
tive solutions for a system of nonlinear fractional differential equations nonlocal boundary
value problems with parameters and p-Laplacian operator. Under different combinations
of superlinearity and sublinearity of the functions f and g , various existence results for pos-
itive solutions are derived in terms of different values of λ and μ via the Guo-Krasnosel’skii
fixed point theorem. Moreover, in this paper it is possible to replace the four point bound-
ary conditions by multi-point boundary conditions or integral boundary conditions with
minor modifications.

2 Preliminaries and lemmas
We present here the definitions, some lemmas from the theory of fractional calculus and
some auxiliary results that will be used to prove our main theorems.

Definition 2.1 ([1–3]) The Riemann-Liouville fractional integral of order α > 0 of a func-
tion f : (0, +∞) → (–∞, +∞) is given by

Iα
0+ f (t) =

1

(α)

∫ t

0
(t – s)α–1f (s) ds

provided the right-hand side is pointwise defined on (0, +∞).

Definition 2.2 ([1–3]) The Riemann-Liouville fractional derivative of order α > 0 of a
continuous function f : (0, +∞) → (–∞, +∞) is given by

Dα
0+ f (t) =

1

(n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1f (s) ds,

where n is the smallest integer not less than α, provided the right-hand side is pointwise
defined on (0, +∞).
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Lemma 2.1 ([1–3]) Let α > 0. Then the following equality holds for u ∈ L(0, 1) and
Dα

0+ u(t) ∈ L(0, 1):

Iα
0+ Dα

0+ u(t) = u(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where c1, c2, . . . , cn ∈ (–∞, +∞), n – 1 < α ≤ n.

We transform problem (1.1) to its equivalent integral equations. Denote ϕp1 (Dβ1
0+ u(t)) =

z(t), then

z(0) = 0, z(1) = bp1–1
1 z(η1).

We now consider the following fractional differential equation:

⎧
⎨

⎩

–Dα1
0+ z(t) = y(t), 0 < t < 1,

z(0) = 0, z(1) = bp1–1
1 z(η1).

(2.1)

Lemma 2.2 ([17]) If y ∈ C[0, 1], then problem (2.1) has a unique solution

z(t) =
∫ 1

0
H1(t, s)y(s) ds,

where

H1(t, s) = h1(t, s) +
bp1–1

1 tα1–1

1 – bp1–1
1 η

α1–1
1

h1(η1, s),

h1(t, s) =
1


(α1)

⎧
⎨

⎩

[t(1 – s)]α1–1, 0 ≤ t ≤ s ≤ 1,

[t(1 – s)]α1–1 – (t – s)α1–1, 0 ≤ s ≤ t ≤ 1.

From the above analysis, the boundary value problem

⎧
⎨

⎩

–Dα1
0+ (ϕp1 (Dβ1

0+ u(t))) = y(t), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0, Dβ1
0+ u(0) = 0, Dβ1

0+ u(1) = b1Dβ1
0+ u(η1),

(2.2)

is equal to

⎧
⎨

⎩

Dβ1
0+ u(t) = ϕq1 (

∫ 1
0 H1(t, s)y(s) ds),

u(0) = u(1) = u′(0) = u′(1) = 0.

Lemma 2.3 ([17]) If y ∈ C[0, 1], then problem (2.2) has a unique solution

u(t) =
∫ 1

0
G1(t, s)ϕq1

(∫ 1

0
H1(s, τ )y(τ ) dτ

)

ds,
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where

G1(t, s) =
1


(β1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tβ1–2(1 – s)β1–2[(s – t) + (β1 – 2)(1 – t)s],

0 ≤ t ≤ s ≤ 1,

tβ1–2(1 – s)β1–2[(s – t) + (β1 – 2)(1 – t)s] + (t – s)β1–1,

0 ≤ s ≤ t ≤ 1.

(2.3)

Lemma 2.4 ([17, 33]) The function G1(t, s) defined by (2.3) is continuous on [0, 1] × [0, 1]
and has the following properties:

(a) G1(t, s) > 0 for all (t, s) ∈ (0, 1) × (0, 1);
(b) (β1 – 2)k1(t)l1(s) ≤ 
(β1)G1(t, s) ≤ M1l1(s), (t, s) ∈ (0, 1) × (0, 1);
(c) (β1 – 2)k1(t)l1(s) ≤ 
(β1)G1(t, s) ≤ M1k1(t), (t, s) ∈ (0, 1) × (0, 1);

where

k1(t) = tβ1–2(1 – t)2, l1(s) = s2(1 – s)β1–2,

M1 = max
{
β1 – 1, (β1 – 2)2}.

Similarly, we can obtain the following Lemmas 2.5 and 2.6 for the following boundary
value problem:

⎧
⎨

⎩

–Dα2
0+ (ϕp2 (Dβ2

0+ v(t))) = y(t), 0 < t < 1,

v(0) = v(1) = v′(0) = v′(1) = 0, Dβ2
0+ v(0) = 0, Dβ2

0+ v(1) = b2Dβ2
0+ u(η2).

(2.4)

Lemma 2.5 If y ∈ C[0, 1], then problem (2.4) has a unique solution

v(t) =
∫ 1

0
G2(t, s)ϕq2

(∫ 1

0
H2(s, τ )y(τ ) dτ

)

ds,

where

G2(t, s) =
1


(β2)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tβ2–2(1 – s)β2–2[(s – t) + (β2 – 2)(1 – t)s],

0 ≤ t ≤ s ≤ 1,

tβ2–2(1 – s)β2–2[(s – t) + (β2 – 2)(1 – t)s] + (t – s)β2–1,

0 ≤ s ≤ t ≤ 1,

(2.5)

H2(t, s) = h2(t, s) +
bp2–1

2 tα2–1

1 – bp2–1
2 η

α2–1
2

h1(η2, s),

h2(t, s) =
1


(α2)

⎧
⎨

⎩

[t(1 – s)]α2–1, 0 ≤ t ≤ s ≤ 1,

[t(1 – s)]α2–1 – (t – s)α2–1, 0 ≤ s ≤ t ≤ 1.

Lemma 2.6 The function G2(t, s) given by (2.5) has the properties:
(a) G2(t, s) > 0, (t, s) ∈ (0, 1) × (0, 1);
(b) (β2 – 2)k2(t)l2(s) ≤ 
(β2)G2(t, s) ≤ M2l2(s), (t, s) ∈ (0, 1) × (0, 1);
(c) (β2 – 2)k2(t)l2(s) ≤ 
(β2)G2(t, s) ≤ M2k2(t), (t, s) ∈ (0, 1) × (0, 1);
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where

k2(t) = tβ2–2(1 – t)2, l2(s) = s2(1 – s)β2–2, M2 = max
{
β2 – 1, (β2 – 2)2}.

Let X = C[0, 1], then X is a Banach space with the norm ‖u‖ = supt∈[0,1] |u(t)|. Let Y =
X × X, then Y is a Banach space with the norm ‖(u, v)‖Y = ‖u‖ + ‖v‖. For θ1, θ2 ∈ (0, 1) and
θ1 < θ2, denote

P =
{

(u, v) ∈ Y : u(t) ≥ 0, v(t) ≥ 0,∀t ∈ [0, 1], min
t∈[θ1,θ2]

(
u(t) + v(t)

) ≥ γ
∥
∥(u, v)

∥
∥

Y

}
,

where γ = min{γ1,γ2} and γi = (βi–2)
Mi

mint∈[θ1,θ2] ki(t), i = 1, 2, then P is a cone of Y . Define
operators T1, T2 : Y → X and Q : Y → Y as follows:

T1(u, v)(t) = ϕq1 (λ)
∫ 1

0
G1(t, s)ϕq1

(∫ 1

0
H1(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds, t ∈ [0, 1],

T2(u, v)(t) = ϕq2 (μ)
∫ 1

0
G2(t, s)ϕq2

(∫ 1

0
H2(s, τ )g

(
τ , u(τ ), v(τ )

)
dτ

)

ds, t ∈ [0, 1],

Q(u, v) =
(
T1(u, v), T2(u, v)

)
, (u, v) ∈ Y .

It is well known that if (u, v) is a fixed point of the operator Q in P, then (u, v) is a positive
solution of system (1.1).

Lemma 2.7 Q : P → P is a completely continuous operator.

Proof For (u, v) ∈ P and t ∈ [0, 1], obviously, T1(u, v)(t) ≥ 0, T2(u, v)(t) ≥ 0. It follows from
Lemmas 2.4 and 2.6 that

T1(u, v)(t) = ϕq1 (λ)
∫ 1

0
G1(t, s)ϕq1

(∫ 1

0
H1(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≤ ϕq1 (λ)
∫ 1

0

M1l1(s)

(β1)

ϕq1

(∫ 1

0
H1(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds,

then

∥
∥T1(u, v)

∥
∥ ≤ M1


(β1)
ϕq1 (λ)

∫ 1

0
l1(s)ϕq1

(∫ 1

0
H1(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds.

Similarly,

∥
∥T2(u, v)

∥
∥ ≤ M2


(β2)
ϕq2 (μ)

∫ 1

0
l2(s)ϕq2

(∫ 1

0
H2(s, τ )g

(
τ , u(τ ), v(τ )

)
dτ

)

ds.

Therefore

∥
∥Q(u, v)

∥
∥

Y ≤ M1


(β1)
ϕq1 (λ)

∫ 1

0
l1(s)ϕq1

(∫ 1

0
H1(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
M2


(β2)
ϕq2 (μ)

∫ 1

0
l2(s)ϕq2

(∫ 1

0
H2(s, τ )g

(
τ , u(τ ), v(τ )

)
dτ

)

ds.
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On the other hand, for any t ∈ [θ1, θ2], by Lemma 2.4, we have

T1(u, v)(t) ≥ ϕq1 (λ)
∫ 1

0

β1 – 2

(β1)

k1(t)l1(s)ϕq1

(∫ 1

0
H1(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

=
β1 – 2

(β1)

k1(t)ϕq1 (λ)
∫ 1

0
l1(s)ϕq1

(∫ 1

0
H1(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ β1 – 2
M1

k1(t)
∥
∥T1(u, v)

∥
∥,

then

min
t∈[θ1,θ2]

T1(u, v)(t) ≥ γ1
∥
∥T1(u, v)

∥
∥.

Similarly,

min
t∈[θ1,θ2]

T2(u, v)(t) ≥ γ2
∥
∥T2(u, v)

∥
∥.

Hence

min
t∈[θ1,θ2]

(
T1(u, v)(t) + T2(u, v)(t)

)

≥ min
t∈[θ1,θ2]

T1(u, v)(t) + min
t∈[θ1,θ2]

T2(u, v)(t)

≥ γ1
∥
∥T1(u, v)

∥
∥ + γ2

∥
∥T2(u, v)

∥
∥

≥ γ
(∥
∥T1(u, v)

∥
∥ +

∥
∥T2(u, v)

∥
∥
)

= γ
∥
∥Q(u, v)

∥
∥

Y ,

that is, Q(P) ⊂ P.
By the Ascoli-Arzela theorem and the continuity of f , g, Gi and Hi, we deduce that T1

and T2 are completely continuous operators, then Q is a completely continuous operator.
This completes the proof. �

Lemma 2.8 ([34]) Let P be a positive cone in a Banach space E, 
1 and 
2 are bounded
open sets in E, θ ∈ 
1, 
1 ⊂ 
2, A : P ∩ (
2\
1) → P is a completely continuous operator.
If the following conditions are satisfied:

(i) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂
1, ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂
2, or
(ii) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂
1, ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂
2, then A has at least one fixed

point in P ∩ (
2\
1).

3 Main results
Denote

f s
0 = lim sup

u+v→0
max
t∈[0,1]

f (t, u, v)
ϕp1 (u + v)

, gs
0 = lim sup

u+v→0
max
t∈[0,1]

g(t, u, v)
ϕp2 (u + v)

,

f i
0 = lim inf

u+v→0
min

t∈[θ1,θ2]

f (t, u, v)
ϕp1 (u + v)

, gi
0 = lim inf

u+v→0
min

t∈[θ1,θ2]

g(t, u, v)
ϕp2 (u + v)

,

f s
∞ = lim sup

u+v→∞
max
t∈[0,1]

f (t, u, v)
ϕp1 (u + v)

, gs
∞ = lim sup

u+v→∞
max
t∈[0,1]

g(t, u, v)
ϕp2 (u + v)

,
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f i
∞ = lim inf

u+v→∞ min
t∈[θ1,θ2]

f (t, u, v)
ϕp1 (u + v)

, gi
∞ = lim inf

u+v→∞ min
t∈[θ1,θ2]

g(t, u, v)
ϕp2 (u + v)

.

A =
∫ 1

0
l1(s)ϕq1

(∫ 1

0
H1(s, τ ) dτ

)

ds, B =
∫ 1

0
l2(s)ϕq2

(∫ 1

0
H2(s, τ ) dτ

)

ds,

C =
∫ θ2

θ1

l1(s)ϕq1

(∫ θ2

θ1

H1(s, τ ) dτ

)

ds, D =
∫ θ2

θ1

l2(s)ϕq2

(∫ θ2

θ1

H2(s, τ ) dτ

)

ds.

For f s
0 , gs

0, f i∞, gi∞ ∈ (0,∞), we define the symbols L1, L2, L3 and L4 as follows:

L1 = ϕp1

(

(β1)

2(β1 – 2)Cγ1γ

)
1

f i∞
, L2 = ϕp1

(

(β1)
2AM1

)
1
f s
0

,

L3 = ϕp2

(

(β2)

2(β2 – 2)Dγ2γ

)
1

gi∞
, L4 = ϕp2

(

(β2)
2BM2

)
1
gs

0
.

Theorem 3.1 (1) If f s
0 , gs

0, f i∞, gi∞ ∈ (0,∞), L1 < L2, L3 < L4, then for each λ ∈ (L1, L2) and
μ ∈ (L3, L4), system (1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(2) If f s
0 = 0, gs

0, f i∞, gi∞ ∈ (0,∞), L3 < L4, then for each λ ∈ (L1,∞) and μ ∈ (L3, L4), system
(1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(3) If gs
0 = 0, f s

0 , f i∞, gi∞ ∈ (0,∞), L1 < L2, then for each λ ∈ (L1, L2) and μ ∈ (L3,∞), system
(1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(4) If f s
0 = gs

0 = 0, f i∞, gi∞ ∈ (0,∞), then for each λ ∈ (L1,∞) and μ ∈ (L3,∞), system (1.1)
has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(5) If {f s
0 , gs

0 ∈ (0,∞), f i∞ = ∞} or {f s
0 , gs

0 ∈ (0,∞), gi∞ = ∞}, then for each λ ∈ (0, L2) and
μ ∈ (0, L4), system (1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(6) If {f s
0 = 0, gs

0 ∈ (0,∞), gi∞ = ∞} or {f s
0 = 0, gs

0 ∈ (0,∞), f i∞ = ∞}, then for each λ ∈ (0,∞)
and μ ∈ (0, L4), system (1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(7) If {f s
0 ∈ (0,∞), gs

0 = 0, gi∞ = ∞} or {f s
0 ∈ (0,∞), gs

0 = 0, f i∞ = ∞}, then for each λ ∈ (0, L2)
and μ ∈ (0,∞), system (1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(8) If {f s
0 = gs

0 = 0, gi∞ = ∞} or {f s
0 = gs

0 = 0, f i∞ = ∞}, then for each λ ∈ (0,∞) and μ ∈
(0,∞), system (1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

Proof Because the proofs of the above cases are similar, in what follows we will prove two
of them, namely cases (1) and (6).

(1) For any λ ∈ (L1, L2) and μ ∈ (L3, L4), there exists 0 < ε < min{f i∞, gi∞} such that

ϕp1

(

(β1)

2(β1 – 2)Cγ1γ

)
1

f i∞ – ε
≤ λ ≤ ϕp1

(

(β1)
2AM1

)
1

f s
0 + ε

,

ϕp2

(

(β2)

2(β2 – 2)Dγ2γ

)
1

gi∞ – ε
≤ μ ≤ ϕp2

(

(β2)
2BM2

)
1

gs
0 + ε

.

By the definitions of f s
0 and gs

0, there exists R1 > 0 such that

f (t, u, v) <
(
f s
0 + ε

)
ϕp1 (u + v), t ∈ [0, 1], 0 ≤ u + v ≤ R1,

g(t, u, v) <
(
gs

0 + ε
)
ϕp2 (u + v), t ∈ [0, 1], 0 ≤ u + v ≤ R1.
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Denote 
1 = {(u, v) ∈ Y : ‖(u, v)‖Y < R1}, for any (u, v) ∈ P ∩ ∂
1 and t ∈ [0, 1], we have
0 ≤ u(t) + v(t) ≤ ‖u‖ + ‖v‖ = ‖(u, v)‖Y = R1, then

T1(u, v)(t) = ϕq1 (λ)
∫ 1

0
G1(t, s)ϕq1

(∫ 1

0
H1(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≤ ϕq1 (λ)
∫ 1

0

M1


(β1)
l1(s)ϕq1

(∫ 1

0
H1(s, τ )

(
f s
0 + ε

)
ϕp1

(
u(τ ) + v(τ )

)
dτ

)

ds

≤ M1


(β1)
ϕq1 (λ)ϕq1

(
f s
0 + ε

)
∫ 1

0
l1(s)ϕq1

(∫ 1

0
H1(s, τ )ϕp1

(‖u‖ + ‖v‖)dτ

)

ds

=
M1


(β1)
ϕq1

(
λ
(
f s
0 + ε

))
A

∥
∥(u, v)

∥
∥

Y

≤ 1
2
∥
∥(u, v)

∥
∥

Y ,

so ‖T1(u, v)‖ ≤ 1
2‖(u, v)‖Y , (u, v) ∈ P ∩ ∂
1. In a similar manner, we deduce

T2(u, v)(t) = ϕq2 (μ)
∫ 1

0
G2(t, s)ϕq2

(∫ 1

0
H2(s, τ )g

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≤ ϕq2 (μ)
∫ 1

0

M2


(β2)
l2(s)ϕq2

(∫ 1

0
H2(s, τ )

(
gs

0 + ε
)
ϕp2

(
u(τ ) + v(τ )

)
dτ

)

ds

≤ M2


(β2)
ϕq2

(
μ

(
gs

0 + ε
))

∫ 1

0
l2(s)ϕq2

(∫ 1

0
H2(s, τ ) dτ

)

ds
∥
∥(u, v)

∥
∥

Y

=
M2


(β2)
ϕq2

(
μ

(
gs

0 + ε
))

B
∥
∥(u, v)

∥
∥

Y ≤ 1
2
∥
∥(u, v)

∥
∥

Y , (3.1)

then ‖T2(u, v)‖ ≤ 1
2‖(u, v)‖Y , (u, v) ∈ P ∩ ∂
1. Hence

∥
∥Q(u, v)

∥
∥

Y =
∥
∥T1(u, v)

∥
∥ +

∥
∥T2(u, v)

∥
∥ ≤ ∥

∥(u, v)
∥
∥

Y , (u, v) ∈ P ∩ ∂
1. (3.2)

On the other hand, by the definitions of f i∞ and gi∞, there exists R2 > 0 such that

f (t, u, v) ≥ (
f i
∞ – ε

)
ϕp1 (u + v), t ∈ [θ1, θ2], u, v ≥ 0, u + v ≥ R2,

g(t, u, v) ≥ (
gi
∞ – ε

)
ϕp2 (u + v), t ∈ [θ1, θ2], u, v ≥ 0, u + v ≥ R2.

Denote R2 = max{2R1, R2
γ

} and 
2 = {(u, v) ∈ Y : ‖(u, v)‖Y < R2}. For any (u, v) ∈ P ∩ ∂
2,
we have mint∈[θ1,θ2](u(t) + v(t)) ≥ γ ‖(u, v)‖Y = γ R2 ≥ R2, then

T1(u, v)(θ1)

= ϕq1 (λ)
∫ 1

0
G1(θ1, s)ϕq1

(∫ 1

0
H1(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ ϕq1 (λ)
∫ 1

0

β1 – 2

(β1)

γ1l1(s)ϕq1

(∫ θ2

θ1

H1(s, τ )f
(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ β1 – 2

(β1)

γ1ϕq1 (λ)
∫ θ2

θ1

l1(s)ϕq1

(∫ θ2

θ1

H1(s, τ )
(
f i
∞ – ε

)
ϕp1

(
u(τ ) + v(τ )

)
dτ

)

ds
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≥ β1 – 2

(β1)

γ1ϕq1

(
λ
(
f i
∞ – ε

))
∫ θ2

θ1

l1(s)ϕq1

(∫ θ2

θ1

H1(s, τ )ϕp1

(
γ
∥
∥(u, v)

∥
∥

Y

)
dτ

)

ds

=
β1 – 2

(β1)

γ1γ ϕq1

(
λ
(
f i
∞ – ε

))
C

∥
∥(u, v)

∥
∥

Y ≥ 1
2
∥
∥(u, v)

∥
∥

Y ,

and ‖T1(u, v)‖ ≥ 1
2‖(u, v)‖Y , (u, v) ∈ P ∩ ∂
2. Similarly, we have

T2(u, v)(θ2)

= ϕq2 (μ)
∫ 1

0
G2(θ2, s)ϕq2

(∫ 1

0
H2(s, τ )g

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ ϕq2 (μ)
∫ 1

0

β2 – 2

(β2)

γ2l2(s)ϕq2

(∫ θ2

θ1

H2(s, τ )g
(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ β2 – 2

(β2)

γ2ϕq2 (μ)
∫ 1

0
l2(s)ϕq2

(∫ θ2

θ1

H2(s, τ )
(
gi
∞ – ε

)
ϕp2

(
u(τ ) + v(τ )

)
dτ

)

ds

≥ β2 – 2

(β2)

γ2ϕq2 (μ)
∫ θ2

θ1

l2(s)ϕq2

(∫ θ2

θ1

H2(s, τ )
(
gi
∞ – ε

)
ϕp2

(
γ
∥
∥(u, v)

∥
∥

Y

)
dτ

)

ds

=
β2 – 2

(β2)

γ2γ ϕq2

(
μ

(
gi
∞ – ε

))
D

∥
∥(u, v)

∥
∥

Y ≥ 1
2
∥
∥(u, v)

∥
∥

Y ,

then ‖T2(u, v)‖ ≥ 1
2‖(u, v)‖Y , (u, v) ∈ P ∩ ∂
2. So,

∥
∥Q(u, v)

∥
∥

Y ≥ ∥
∥(u, v)

∥
∥

Y , (u, v) ∈ P ∩ ∂
2. (3.3)

Therefore, by (3.2), (3.3) and Lemma 2.8, we conclude that Q has at least one fixed point
(u, v) ∈ P ∩ (
2\
1) with R1 ≤ ‖(u, v)‖Y ≤ R2.

(6) Suppose f s
0 = 0, gs

0 ∈ (0,∞), gi∞ = ∞, then for any λ ∈ (0,∞) and μ ∈ (0, L4), there
exists ε > 0 such that

0 < λ < ϕp1

(

(β1)
2AM1

)
1
ε

, ϕp2

(

(β2)

(β2 – 2)Dγ2γ

)

ε < μ < ϕp2

(

(β2)
2BM2

)
1

gs
0 + ε

.

By the definitions of f s
0 and gs

0, there exists R3 > 0 such that

f (t, u, v) < εϕp1 (u + v), t ∈ [0, 1], 0 ≤ u + v ≤ R3,

g(t, u, v) <
(
gs

0 + ε
)
ϕp2 (u + v), t ∈ [0, 1], 0 ≤ u + v ≤ R3.

Denote 
3 = {(u, v) ∈ Y : ‖(u, v)‖Y < R3}. For any (u, v) ∈ P ∩ ∂
3 and t ∈ [0, 1], we have

T1(u, v)(t) ≤ ϕq1 (λ)
∫ 1

0

M1


(β1)
l1(s)ϕq1

(∫ 1

0
H1(s, τ )εϕp1

(
u(τ ) + v(τ )

)
dτ

)

ds

≤ M1


(β1)
ϕq1 (λε)

∫ 1

0
l1(s)ϕq1

(∫ 1

0
H1(s, τ ) dτ

)

ds
∥
∥(u, v)

∥
∥

Y

=
M1


(β1)
ϕq1 (λε)A

∥
∥(u, v)

∥
∥

Y <
1
2
∥
∥(u, v)

∥
∥

Y ,

then ‖T1(u, v)‖ ≤ 1
2‖(u, v)‖Y , (u, v) ∈ P ∩ ∂
3.
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Similar to (3.1) of (1), we get ‖T2(u, v)‖ ≤ 1
2‖(u, v)‖Y , (u, v) ∈ P ∩ ∂
3, then

∥
∥Q(u, v)

∥
∥

Y ≤ ∥
∥(u, v)

∥
∥

Y , (u, v) ∈ P ∩ ∂
3. (3.4)

On the other hand, by gi∞ = ∞, there exists R4 > 0 such that

g(t, u, v) ≥ 1
ε
ϕp2 (u + v), t ∈ [θ1, θ2], u, v ≥ 0, u + v ≥ R4.

Let R4 = max{2R3, R4
γ

} and 
4 = {(u, v) ∈ Y : ‖(u, v)‖Y < R4}. For any (u, v) ∈ P ∩ ∂
4, we
have mint∈[θ1,θ2](u(t) + v(t)) ≥ γ ‖(u, v)‖Y = γ R4 ≥ R4, then

T2(u, v)(θ2) = ϕq2 (μ)
∫ 1

0
G2(θ2, s)ϕq2

(∫ 1

0
H2(s, τ )g

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ ϕq2 (μ)
∫ 1

0

β2 – 2

(β2)

γ2l2(s)ϕq2

(∫ θ2

θ1

H2(s, τ )g
(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ β2 – 2

(β2)

γ2ϕq2 (μ)
∫ 1

0
l2(s)ϕq2

(∫ θ2

θ1

H2(s, τ )
1
ε
ϕp2

(
u(τ ) + v(τ )

)
dτ

)

ds

≥ β2 – 2

(β2)

γ2ϕq2 (μ)
∫ θ2

θ1

l2(s)ϕq2

(∫ θ2

θ1

H2(s, τ )
1
ε
ϕp2

(
γ
∥
∥(u, v)

∥
∥

Y

)
dτ

)

ds

=
β2 – 2

(β2)

γ2γ ϕq2

(
μ

ε

)

D
∥
∥(u, v)

∥
∥

Y >
∥
∥(u, v)

∥
∥

Y .

Therefore

∥
∥Q(u, v)

∥
∥

Y ≥ ∥
∥T2(u, v)

∥
∥ ≥ ∥

∥(u, v)
∥
∥

Y , (u, v) ∈ P ∩ ∂
4. (3.5)

By (3.4), (3.5) and Lemma 2.8, we conclude that Q has at least one fixed point (u, v) ∈
P ∩ (
4\
3) with R3 ≤ ‖(u, v)‖Y ≤ R4. This completes the proof. �

For f i
0 , gi

0, f s∞, gs∞ ∈ (0,∞), we define the symbols L̃1, L̃2, L̃3, L̃4 as follows:

L̃1 = ϕp1

(

(β1)

2(β1 – 2)Cγ1γ

)
1
f i
0

, L̃2 = ϕp1

(

(β1)
2AM1

)
1

f s∞
,

L̃3 = ϕp2

(

(β2)

2(β2 – 2)Dγ2γ

)
1
gi

0
, L̃4 = ϕp2

(

(β2)
2BM2

)
1

gs∞
.

Theorem 3.2 (1) If f s∞, gs∞, f i
0 , gi

0 ∈ (0,∞), and L̃1 < L̃2, L̃3 < L̃4, then for each λ ∈ (L̃1, L̃2)
and μ ∈ (L̃3, L̃4), system (1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(2) If f s∞, f i
0 , gi

0 ∈ (0,∞), gs∞ = 0, and L̃1 < L̃2, then for each λ ∈ (L̃1, L̃2) and μ ∈ (L̃3,∞),
system (1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(3) If gs∞, f i
0 , gi

0 ∈ (0,∞), f s∞ = 0, L̃3 < L̃4, then for each λ ∈ (L̃1,∞) and μ ∈ (L̃3, L̃4), system
(1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(4) If f i
0 , gi

0 ∈ (0,∞), f s∞ = gs∞ = 0, then for each λ ∈ (L̃1,∞) and μ ∈ (L̃3,∞), system (1.1)
has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(5) If {f s∞, gs∞ ∈ (0,∞), f i
0 = ∞} or {f s∞, gs∞ ∈ (0,∞), gi

0 = ∞}, then for each λ ∈ (0, L̃2) and
μ ∈ (0, L̃4), system (1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).
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(6) If {f i
0 = ∞, f s∞ ∈ (0,∞), gs∞ = 0} or {f s∞ ∈ (0,∞), gs∞ = 0, gi

0 = ∞}, then for each λ ∈
(0, L̃2) and μ ∈ (0,∞), system (1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(7) If {f i
0 = ∞, gs∞ ∈ (0,∞), f s∞ = 0} or {gs∞ ∈ (0,∞), gi

0 = ∞, f s∞ = 0}, then for each λ ∈
(0,∞) and μ ∈ (0, L̃4), system (1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

(8) If {f s∞ = gs∞ = 0, f i
0 = ∞} or {f s∞ = gs∞ = 0, gi

0 = ∞}, then for each λ ∈ (0,∞) and μ ∈
(0,∞), system (1.1) has at least one positive solution (u(t), v(t)), t ∈ (0, 1).

Proof Because the proofs of the above cases are similar, in what follows we will prove two
of them, namely cases (1) and (6).

(1) For any λ ∈ (L̃1, L̃2) and μ ∈ (L̃3, L̃4), there exists 0 < ε < min{f i
0 , gi

0} such that

ϕp1

(

(β1)

2(β1 – 2)Cγ1γ

)
1

f i
0 – ε

≤ λ ≤ ϕp1

(

(β1)
2AM1

)
1

f s∞ + ε
,

ϕp2

(

(β2)

2(β2 – 2)Dγ2γ

)
1

gi
0 – ε

≤ μ ≤ ϕp2

(

(β2)
2BM2

)
1

gs∞ + ε
.

By the definitions of f i
0 and gi

0, there exists R1 > 0 such that

f (t, u, v) ≥ (
f i
0 – ε

)
ϕp1 (u + v), t ∈ [θ1, θ2], u, v ≥ 0, u + v ≤ R1,

g(t, u, v) ≥ (
gi

0 – ε
)
ϕp2 (u + v), t ∈ [θ1, θ2], u, v ≥ 0, u + v ≤ R1.

Denote 
1 = {(u, v) ∈ Y : ‖(u, v)‖ < R1}, for any (u, v) ∈ P ∩ ∂
1, we have

T1(u, v)(θ1)

= ϕq1 (λ)
∫ 1

0
G1(θ1, s)ϕq1

(∫ 1

0
H1(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ ϕq1 (λ)
∫ θ2

θ1

β1 – 2

(β1)

γ1l1(s)ϕq1

(∫ θ2

θ1

H1(s, τ )f
(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ β1 – 2

(β1)

γ1ϕq1 (λ)
∫ θ2

θ1

l1(s)ϕq1

(∫ θ2

θ1

H1(s, τ )
(
f i
0 – ε

)
ϕp1

(
u(τ ) + v(τ )

)
dτ

)

ds

≥ β1 – 2

(β1)

γ1γ ϕq1

(
λ
(
f i
0 – ε

))
C

∥
∥(u, v)

∥
∥

Y ≥ 1
2
∥
∥(u, v)

∥
∥

Y ,

then ‖T1(u, v)‖ ≥ 1
2‖(u, v)‖Y , (u, v) ∈ P ∩ ∂
1. Similarly, we have

T2(u, v)(θ2)

= ϕq2 (μ)
∫ 1

0
G2(θ2, s)ϕq2

(∫ 1

0
H2(s, τ )g

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ ϕq2 (μ)
∫ θ2

θ1

β2 – 2

(β2)

γ2l2(s)ϕq2

(∫ θ2

θ1

H2(s, τ )g
(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ β2 – 2

(β2)

γ2ϕq2 (μ)
∫ θ2

θ1

l2(s)ϕq2

(∫ θ2

θ1

H2(s, τ )
(
gi

0 – ε
)
ϕp2

(
u(τ ) + v(τ )

)
dτ

)

ds

≥ β2 – 2

(β2)

γ2γ ϕq2

(
μ

(
gi

0 – ε
))

D
∥
∥(u, v)

∥
∥

Y ≥ 1
2
∥
∥(u, v)

∥
∥

Y ,
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then ‖T2(u, v)‖ ≥ 1
2‖(u, v)‖Y , (u, v) ∈ P ∩ ∂
1. Therefore

∥
∥Q(u, v)

∥
∥

Y ≥ ∥
∥(u, v)

∥
∥

Y , (u, v) ∈ P ∩ ∂
1. (3.6)

On the other hand, we define f ∗, g∗ : [0, 1] × [0, +∞) → [0, +∞) as follows:

f ∗(t, x) = max
0≤u+v≤x

f (t, u, v), g∗(t, x) = max
0≤u+v≤x

g(t, u, v),

then

f (t, u, v) ≤ f ∗(t, x), t ∈ [0, 1], u, v ≥ 0, u + v ≤ x,

g(t, u, v) ≤ g∗(t, x), t ∈ [0, 1], u, v ≥ 0, u + v ≤ x.

Clearly, f ∗(t, x) and g∗(t, x) are nondecreasing on x, by the proof of [35], we have

lim sup
x→+∞

max
t∈[0,1]

f ∗(t, x)
ϕp1 (x)

≤ f s
∞, lim sup

x→+∞
max
t∈[0,1]

g∗(t, x)
ϕp2 (x)

≤ gs
∞.

From the above inequalities, there exists R2 > 0 such that

f ∗(t, x)
ϕp1 (x)

≤ lim sup
x→+∞

max
t∈[0,1]

f ∗(t, x)
ϕp1 (x)

+ ε ≤ f s
∞ + ε, t ∈ [0, 1], x ≥ R2,

g∗(t, x)
ϕp2 (x)

≤ lim sup
x→+∞

max
t∈[0,1]

g∗(t, x)
ϕp2 (x)

+ ε ≤ gs
∞ + ε, t ∈ [0, 1], x ≥ R2.

Then f ∗(t, x) ≤ (f s∞ + ε)ϕp1 (x), g∗(t, x) ≤ (gs∞ + ε)ϕp2 (x), t ∈ [0, 1], x ≥ R2.
Denote R2 = max{2R1, R2}, 
2 = {(u, v) ∈ Y : ‖(u, v)‖Y < R2}. For any (u, v) ∈ P ∩ ∂
2, by

the definitions of f ∗ and g∗, we have

f
(
t, u(t), v(t)

) ≤ f ∗(t,
∥
∥(u, v)

∥
∥

Y

)
, g

(
t, u(t), v(t)

) ≤ g∗(t,
∥
∥(u, v)

∥
∥

Y

)
, t ∈ [0, 1],

so

T1(u, v)(t) ≤ ϕq1 (λ)
∫ 1

0

M1


(β1)
l1(s)ϕq1

(∫ 1

0
H1(s, τ )f ∗(τ ,

∥
∥(u, v)

∥
∥

Y

)
dτ

)

ds

≤ ϕq1 (λ)
M1


(β1)

∫ 1

0
l1(s)ϕq1

(∫ 1

0
H1(s, τ )

(
f s
∞ + ε

)
ϕp1

(∥
∥(u, v)

∥
∥

Y

)
dτ

)

ds

=
M1


(β1)
ϕq1

(
λ
(
f s
∞ + ε

))
A

∥
∥(u, v)

∥
∥

Y ≤ 1
2
∥
∥(u, v)

∥
∥

Y ,

and ‖T1(u, v)‖ ≤ 1
2‖(u, v)‖Y , (u, v) ∈ P ∩ ∂
2. Similarly, we have

T2(u, v)(t) ≤ ϕq2 (μ)
∫ 1

0

M2


(β2)
l2(s)ϕq2

(∫ 1

0
H2(s, τ )g∗(τ ,

∥
∥(u, v)

∥
∥

Y

)
dτ

)

ds

≤ ϕq2 (μ)
M2


(β2)

∫ 1

0
l2(s)ϕq2

(∫ 1

0
H2(s, τ )

(
gs
∞ + ε

)
ϕp2

(∥
∥(u, v)

∥
∥

Y

)
dτ

)

ds

=
M2


(β2)
ϕq2

(
μ

(
gs
∞ + ε

))
B
∥
∥(u, v)

∥
∥

Y ≤ 1
2
∥
∥(u, v)

∥
∥

Y ,
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so ‖T2(u, v)‖ ≤ 1
2‖(u, v)‖Y , (u, v) ∈ P ∩ ∂
2. Therefore

∥
∥Q(u, v)

∥
∥

Y =
∥
∥T1(u, v)

∥
∥ +

∥
∥T2(u, v)

∥
∥ ≤ ∥

∥(u, v)
∥
∥

Y , (u, v) ∈ P ∩ ∂
2. (3.7)

From (3.6), (3.7) and Lemma 2.8, we get that Q has at least one fixed point (u, v) ∈
P ∩ (
2\
1) with R1 ≤ ‖(u, v)‖Y ≤ R2.

(6) Suppose f i
0 = ∞, f s∞ ∈ (0,∞), gs∞ = 0, for any λ ∈ (0, L̃2) and μ ∈ (0,∞), there exists

ε > 0 such that

ϕp1

(

(β1)

(β1 – 2)Cγ1γ

)

ε < λ < ϕp1

(

(β1)
2AM1

)
1

f 0∞ + ε
, 0 < μ < ϕp2

(

(β2)
2BM2

)
1
ε

.

By f i
0 = ∞, there exists R3 > 0 such that

f (t, u, v) ≥ 1
ε
ϕp1 (u + v), t ∈ [θ1, θ2], u, v ≥ 0, 0 ≤ u + v ≤ R3.

Choose 
3 = {(u, v) ∈ Y : ‖(u, v)‖Y < R3}, then for any (u, v) ∈ P ∩ ∂
3, we have

T1(u, v)(θ1) ≥ ϕq1 (λ)
∫ θ2

θ1

β1 – 2

(β1)

γ1l1(s)ϕq1

(∫ θ2

θ1

H1(s, τ )f
(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ β1 – 2

(β1)

γ1ϕq1 (λ)
∫ θ2

θ1

l1(s)ϕq1

(∫ θ2

θ1

H1(s, τ )
1
ε
ϕp1

(
u(τ ) + v(τ )

)
dτ

)

ds

≥ β1 – 2

(β1)

γ1γ ϕq1

(
λ

ε

)∫ θ2

θ1

l1(s)ϕq1

(∫ θ2

θ1

H1(s, τ ) dτ

)

ds
∥
∥(u, v)

∥
∥

Y

=
β1 – 2

(β1)

γ1γ ϕq1

(
λ

ε

)

C
∥
∥(u, v)

∥
∥

Y ≥ ∥
∥(u, v)

∥
∥

Y .

Thus,

∥
∥Q(u, v)

∥
∥

Y ≥ ∥
∥T1(u, v)

∥
∥ ≥ ∥

∥(u, v)
∥
∥

Y , (u, v) ∈ P ∩ ∂
3. (3.8)

On the other hand, we define f ∗, g∗ : [0, 1] × [0, +∞) → [0, +∞) as follows:

f ∗(t, x) = max
0≤u+v≤x

f (t, u, v), g∗(t, x) = max
0≤u+v≤x

g(t, u, v).

By the proof of [35], we have

lim sup
x→+∞

max
t∈[0,1]

f ∗(t, x)
ϕp1 (x)

≤ f s
∞, lim

x→+∞ max
t∈[0,1]

g∗(t, x)
ϕp2 (x)

= 0.

For above ε > 0, there exists R4 > 0 such that, for any t ∈ [0, 1], x ≥ R4, we have

f ∗(t, x)
ϕp1 (x)

≤ lim sup
x→+∞

max
t∈[0,1]

f ∗(t, x)
ϕp1 (x)

+ ε ≤ f s
∞ + ε,

g∗(t, x)
ϕp2 (x)

≤ lim
x→+∞ max

t∈[0,1]

g∗(t, x)
ϕp2 (x)

+ ε = ε,

hence f ∗(t, x) ≤ (f s∞ + ε)ϕp1 (x), g∗(t, x) ≤ εϕp2 (x).
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Let R4 = max{2R3, R4} and 
4 = {(u, v) ∈ Y : ‖(u, v)‖Y < R4}. For any (u, v) ∈ P ∩ ∂
4 and
t ∈ [0, 1], we have

f
(
t, u(t), v(t)

) ≤ f ∗(t,
∥
∥(u, v)

∥
∥

Y

)
, g

(
t, u(t), v(t)

) ≤ g∗(t,
∥
∥(u, v)

∥
∥

Y

)
,

then

T1(u, v)(t) ≤ ϕq1 (λ)
∫ 1

0

M1


(β1)
l1(s)ϕq1

(∫ 1

0
H1(s, τ )f ∗(τ ,

∥
∥(u, v)

∥
∥

Y

)
dτ

)

ds

≤ ϕq1 (λ)
M1


(β1)

∫ 1

0
l1(s)ϕq1

(∫ 1

0
H1(s, τ )

(
f s
∞ + ε

)
ϕp1

(∥
∥(u, v)

∥
∥

Y

)
dτ

)

ds

=
M1


(β1)
ϕq1

(
λ
(
f s
∞ + ε

))
A

∥
∥(u, v)

∥
∥

Y ≤ 1
2
∥
∥(u, v)

∥
∥

Y ,

so ‖T1(u, v)‖ ≤ 1
2‖(u, v)‖Y , (u, v) ∈ P ∩ ∂
4. In a similar manner, we deduce

T2(u, v)(t) ≤ ϕq2 (μ)
∫ 1

0

M2


(β2)
l2(s)ϕq2

(∫ 1

0
H2(s, τ )g∗(τ ,

∥
∥(u, v)

∥
∥

Y

)
dτ

)

ds

≤ ϕq2 (μ)
M2


(β2)

∫ 1

0
l2(s)ϕq2

(∫ 1

0
H2(s, τ )εϕp2

(∥
∥(u, v)

∥
∥

Y

)
dτ

)

ds

=
M2


(β2)
ϕq2 (με)B

∥
∥(u, v)

∥
∥

Y ≤ 1
2
∥
∥(u, v)

∥
∥

Y ,

so ‖T2(u, v)‖ ≤ 1
2‖(u, v)‖Y , (u, v) ∈ P ∩ ∂
4. Therefore

∥
∥Q(u, v)

∥
∥

Y =
∥
∥T1(u, v)

∥
∥ +

∥
∥T2(u, v)

∥
∥ ≤ ∥

∥(u, v)
∥
∥

Y , (u, v) ∈ P ∩ ∂
4. (3.9)

From (3.8), (3.9) and Lemma 2.8, we conclude that Q has at least one fixed point (u, v) ∈
P ∩ (
4\
3) with R3 ≤ ‖(u, v)‖Y ≤ R4. This completes the proof. �

4 Conclusion
In this paper, we study the existence of positive solutions for a system of nonlinear frac-
tional differential equations nonlocal boundary value problems with parameters and p-
Laplacian operator. Under different combinations of superlinearity and sublinearity of the
functions f and g , various existence results for positive solutions are derived in terms of
different values of λ and μ via the Guo-Krasnosel’skii fixed point theorem.
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