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1 Introduction and main result
In this paper, we consider the existence of the solutions for the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su – μ u
|z|2s = |u|2∗s (α)–2u

|z|α + λf (x, u), in �,

u > 0, in �,

u = 0, in R
N\�,

(1)

where � is a smooth bounded domain in R
N = R

k × R
N–k with N ≥ 3 and 2 ≤ k < N ,

0 ≤ μ < ak,s := 22s�2( k+2s
4 )/�2( k–2s

4 ), s ∈ (0, 1), �(t) =
∫ +∞

0 τ t–1e–τ dτ . A point x ∈ R
N is

denoted as x = (z, w) ∈ R
N = R

k × R
N–k . λ > 0 is a real parameter, the number 2∗

s (α) =
2(N – α)/(N – 2s) is a critical Hardy-Sobolev exponent with s ∈ (0, 1) and α ∈ [0, 2s). The
nonlinearity term f is continuous function and satisfies suitable hypotheses. Here, (–�)s

is the fractional Laplace operator (see [1, 2]) defined, up to a normalization factor, by

(–�)su(x) :=
∫

RN

u(x) – u(y)
|x – y|N+2s dy, x ∈R

N .

In recent years, much attention has been focused on the study of the problems involv-
ing fractional operators. The fractional operators appear in several applications to some
models related to probability, mathematical, finances or fluid mechanics, soft thin films,
stratified materials, multiple scattering and minimal surfaces (see [3–6]). When μ = 0 and
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α = 0, problem (1) reduces to critical fractional equation. Abundant results have been ac-
cumulated (see [7–12]).

For a class of fractional elliptic problems with the Hardy potential

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su – μ u
|x|2s = g(x, u), in �,

u > 0, in �,

u = 0, in R
N\�,

(2)

Abdellaoui and Medina et al. in [13] gave the solvability of the problem (2) for the linear
case g(x, t) = g(x) and the nonlinear case g(x, t) = h(x)

tσ , respectively. For critical case, a pos-
itive solution was obtained in [14] with by the Lagrange multipliers technique. Moreover,
the authors in [15] have studied the solvability of problem (2) for the case g(x, t) involving
concave-convex nonlinearities.

Recently, Jiang and Tang in [16] had considered the problem (1) for the case s = 1, they
supposed the nonlinearity term f ∈ C(� ×R

+,R+) satisfies the following conditions:

(f1) f (x, t) = 0 for t ≤ 0 uniformly for x ∈ �. There exists a nonempty open subset �0 ⊂ �

with (0, w0) ∈ R
k × R

N–k ∈ �0, such that f (x, t) ≥ 0 for almost everywhere x ∈ � and
all t > 0; f (x, t) > 0 for almost x ∈ �0 and all t > 0.

(f2) limt→0+
f (x,t)

t = 0 and limt→+∞ f (x,t)
t2∗s (α)–1 = 0 uniformly for x ∈ �.

For λ > 0 large enough, they obtained the existence of positive solutions of problem (1)
for s = 1 by using variational methods. For the case s = 1 and λ = 1, Ding and Tang in [17]
obtained the existence of positive solutions for problem (1) by the variational methods
and some analysis techniques with f satisfying the (AR) condition. For related papers on
the semilinear elliptic equations with Hardy-Sobolev critical exponents of (1) for s = 1, we
just mention [18, 19] and the references therein.

To the best of our knowledge, there is no result in the literature on the fractional elliptic
problem with Hardy-Sobolev-Maz’ya potential and critical nonlinearities. Motivated by
the above papers, our aim is to study the existence of positive solutions for problem (1)
and our main result of this paper is as follows.

Theorem 1 Assume that conditions (f1) and (f2) hold. Then there exists λ∗ > 0 such that
λ ≥ λ∗, problem (1) admits a positive solution.

2 Functional setting and useful tools
We will denote by Hs(RN ) the usual fractional Sobolev space endowed with the natural
norm

‖u‖Hs(RN ) = ‖u‖L2(RN ) +
(∫∫

R2N

|u(x) – u(y)|2
|x – y|N+2s dx dy

) 1
2

.

We consider the function space

Xs
0 =

{
u ∈ Hs(

R
N)

: u = 0 a.e. in R
N\�}

,
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with the norm

‖u‖Xs
0

=
(∫

Q

|u(x) – u(y)|2
|x – y|N+2s dx dy – μ

∫

�

u2

|z|2s dx
) 1

2
,

which is equivalent to its general norm due to the Hardy inequality

ak,s

∫

RN

u2

|z|2s ≤
∫

Q

|u(x) – u(y)|2
|x – y|N+2s dx dy, (3)

where Q = R
2N \ (C� × C�) with C� = R

N \ �. We can introduce the best fractional
critical Hardy-Sobolev constant Sμ,α , given by

Sμ,α = inf
u∈Xs

0(RN \(0,w0)),u
=0

∫

Q
|u(x)–u(y)|2
|x–y|N+2s dx dy – μ

∫

�
u2

|z|2s dx

(
∫

Rn
|u(x)|2∗s (α)

|z|α dx)2/2∗
s (α)

. (4)

From [20], we know that Sμ,α is attained by functions

Uε(x) =
ε

(N–2s)
2

(ε2 + |x – x0|2)
(N–2s)

2
.

Let u+ = max{u, 0}, the energy functional Jλ : Xs
0 → R associated to the problem (1) is

defined as

Jλ(u) =
1
2

∫

Q

|u(x) – u(y)|2
|x – y|N+2s dx dy –

μ

2

∫

�

(u+)2

|z|2s dx

–
1

2∗
s (α)

∫

�

(u+)2∗
s (α)

|z|α dx – λ

∫

�

F
(
x, u+)

dx, (5)

for all u ∈ Xs
0, where F(x, t) is a primitive function of f (x, t) defined by F(x, t) =

∫ t
0 f (x, τ ) dτ .

Obviously, Jλ is a C1(Xs
0) functional, and it is well known that the solutions of problem (1)

are the critical points of the energy functional Jλ. In fact, if u is a weak solution of problem
(1), we have

〈
J ′
λ(u),ϕ

〉
=

∫

Q

(u(x) – u(y))(ϕ(x) – ϕ(y))
|x – y|N+2s dx dy – μ

∫

�

u+ϕ

|z|2s dx

–
∫

�

(u+)2∗
s (α)–1ϕ

|z|α dx – λ

∫

�

f
(
x, u+)

ϕ dx

= 0, (6)

for all ϕ ∈ Xs
0. Now, we will give some essential lemmas as follows.

Lemma 1 Let λ > 0 and f satisfies assumptions (f1) and (f2). We can deduce that:
(i) there exist ς ,ρ > 0 such that Jλ(u) ≥ ς > 0 for any u ∈ Xs

0, with ‖u‖Xs
0

= ρ ;
(ii) there exists e ∈ Xs

0, with e ≥ 0 in R
N such that Jλ(e) < 0 and ‖e‖Xs

0
> ρ .
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Proof of Lemma 1 (i) Fixing λ > 0, from (f2), for ε > 0, there exists C1 > 0, one has

∣
∣F(x, t)

∣
∣ ≤ ε|t|2 + C1|t|2∗

s (α), ∀(x, t) ∈ � ×R
+. (7)

It is evident that Xs
0 ↪→ Lq(�) for 1 ≤ q ≤ 2∗

s (α), then there exists C2 > 0 such that

∫

�

|u|q dx ≤ C2‖u‖q
Xs

0
. (8)

Take u ∈ Xs
0. Combining (4), (5), (7) and (8), we have

Jλ(u) =
1
2
‖u‖2

Xs
0

–
1

2∗(s)

∫

�

|u|2∗
s (α)

|z|α dx – λ

∫

�

F(x, u) dx

≥ 1
2
‖u‖2

Xs
0

–
1

2∗
s (α)

∫

�

|u|2∗
s (α)

|x|α dx – λ

∫

�

(
ε|u|2 + C1|u|2∗

s (α))dx

≥ 1
2
‖u‖2

Xs
0

–
C3

2∗
s (α)

‖u‖2∗
s (α)

Xs
0

– λεC4‖u‖2
Xs

0
– λC5‖u‖2∗

s (α)
Xs

0
,

where Ci, i = 3, 4, 5, are positive constants. For ε > 0 small and according to the fact 2 <
2∗(s), then there exists ρ > 0 small enough such that Jλ(u) ≥ ς > 0, for any ‖u‖Xs

0
= ρ .

(ii) Given λ > 0. Take v ∈ Xs
0, with v ≥ 0 in R

N and ‖v‖Xs
0

= 1. From (f1), we get

Jλ(tv) =
1
2
‖tv‖2

Xs
0

–
1

2∗
s (α)

∫

�

|tv|2∗
s (α)

|x|α dx – λ

∫

�

F(x, tv) dx

≤ t2

2
‖v‖2

Xs
0

–
t2∗

s (α)

2∗
s (α)

∫

�

|v|2∗
s (α)

|x|α dx,

then Jλ(tv) → –∞ as t → +∞. Choosing e = t∗v with t∗ > 0 large enough, we get ‖e‖Xs
0

> ρ

and Jλ(e) < 0. This completes the proof of the Lemma 1. �

We recall that a sequence {uj}j∈N ⊂ Xs
0 is a Palais-Smale sequence for the functional Jλ

at level cλ if

Jλ(uj) → cλ and J ′
λ(uj) → 0 in

(
Xs

0
)′,

as j → ∞. We say that Jλ satisfies the Palais-Smale condition if every Palais-Smale se-
quence of Jλ has a convergent subsequence in Xs

0. Now put

cλ = inf
g∈�

max
t∈[0,1]

Jλ
(
g(t)

)
,

where

� =
{

g ∈ C
(
[0, 1], Xs

0
)

: g(0) = 0, Jλ
(
g(1)

)
< 0

}
.

Obviously, cλ > 0 from Lemma 1. Next, we introduce an asymptotic condition for the
level cλ.

Lemma 2 Under the conditions of Lemma 1, limλ→∞ cλ = 0.
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Proof of Lemma 2 Fix λ > 0. Since the functional Jλ satisfies the Mountain pass geometry,
there exists tλ > 0 verifying Jλ(tλe) = maxt≥0 Jλ(te), where e ∈ Xs

0 is the function given in
Lemma 1. Hence, by (6), we have 〈J ′

λ(tλe), tλe〉 = 0, that is,

t2
λ‖e‖2

Xs
0

= t2∗
s (α)

λ

∫

�

(e+)2∗
s (α)

|z|α dx + λ

∫

�

f
(
x, tλe+)

tλe+ dx. (9)

From (f1), we have

t2
λ‖e‖2

Xs
0
≥ t2∗

s (α)
λ

∫

�

(e+)2∗
s (α)

|z|α dx,

which implies that {tλ} is bounded. Hence, there exist a number t0 ≥ 0 and a subsequence
of {λj}j∈N, which we still denote by {λj}j∈N, such that λj → +∞ and tλj → t0 as j → ∞. So
by (9) there exists D > 0 such that t2

λ‖e‖2
Xs

0
≤ D for any j ∈ N, then

λj

∫

�

f
(
x, tλj e

+)
tλj e

+ dx + t2∗
s (α)

λj

∫

�

(e+)2∗
s (α)

|z|α dx ≤ D. (10)

If t0 > 0, by (f1) and the Lebesgue dominated convergence theorem, we obtain

lim
j→∞

∫

�

f
(
x, tλj e

+)
tλj e

+ dx =
∫

�

f
(
x, t0e+)

t0e+ dx > 0.

Recalling that λj → ∞, we have

lim
j→∞

(

λj

∫

�

f
(
x, tλj e

+)
tλj e

+ dx + tp∗
s (α)

λj

∫

�

(e+)2∗
s (α)

|z|α dx
)

= ∞,

which contradicts (10). Thus t0 = 0 for λj → ∞. Now, let us consider the path g(t) = te, for
t ∈ [0, 1], which belongs to �. By Lemma 1 and (f1), we get

0 < cλ ≤ max
t∈[0,1]

Jλ
(
g(t)

) ≤ Jλ(tλe) ≤ t2
λ

2
‖e‖2

Xs
0
.

Notice that tλj → t0 = 0 as j → ∞, one has

lim
λ→+∞

t2
λ

2
‖e‖2

Xs
0

= 0,

which leads to limλ→∞ cλ = 0. This completes the proof of the Lemma 2. �

Lemma 3 Assume that conditions (f1) and (f2) hold. If {uj} ⊂ Xs
0 is a (PS)cλ condition of Jλ,

then {uj} is bounded in Xs
0.

Proof of Lemma 3 By (f2) and the boundedness of �, for any ε > 0, there exists T > 0, such
that

∣
∣F(x, t)

∣
∣ ≤ ε|t|2∗

s (α), x ∈ �, t ≥ T ;
∣
∣F(x, t)

∣
∣ ≤ C6(ε), t ∈ (0, T];

∣
∣f (x, t)t

∣
∣ ≤ ε|t|2∗

s (α), x ∈ �, t ≥ T ;
∣
∣f (x, t)t

∣
∣ ≤ C7(ε), t ∈ (0, T],



Cai et al. Boundary Value Problems  (2017) 2017:181 Page 6 of 11

for Ci(ε) > 0, i = 6, 7. Furthermore, for any (x, t) ∈ � ×R
+, we have

∣
∣F(x, t)

∣
∣ ≤ C6(ε) + ε|t|2∗

s (α),
∣
∣f (x, t)t

∣
∣ ≤ C7(ε) + ε|t|2∗

s (α).

Then, for ξ ∈ (2, 2∗
s (α)), one has

F(x, t) –
1
2

f (x, t)t ≤ F(x, t) –
1
ξ

f (x, t)t ≤ C8(ε) + ε|t|2∗
s (α), (11)

for C8(ε) > 0 and any (x, t) ∈ � × R
+. Set l(x, t) := |t|2∗s (α)–1

|z|α + λf (x, t), we claim that l(x, t)
satisfies the (AR) condition. By (11), one easily gets

ξL(x, t) – l(x, y)t =
(

ξ

2∗
s (α)

– 1
) |t|2∗

s (α)

|z|α + λ
(
ξF(x, t) – f (x, t)t

)

≤
(

ξ

2∗
s (α)

– 1
) |t|2∗

s (α)

|z|α + λξC8(ε) + λξε|t|2∗
s (α)

=
((

ξ

2∗
s (α)

– 1
)

|z|–α + λξε

)

|t|2∗
s (α) + λξC8(ε),

where L(x, t) =
∫ t

0 l(x, τ ) dτ . Thus, for a fixed λ > 0 and ε > 0 sufficiently small, there exists
T ′

λ > 0, such that

0 ≤ ξL(x, t) ≤ l(x, t)t, t ≥ T ′
λ.

Moreover, by (f2), we obtain

L(x, t) –
1
ξ

l(x, t)t ≤ max
x∈�,0≤t≤T ′

λ

(

F(x, t) –
1
ξ

f (x, t)t
)

:= Tλ,

for any 0 ≤ t ≤ T ′
λ. Notice that ξ < 2∗

s (α), we obtain Tλ > 0. It follows from the above
inequalities that

L(x, t) –
1
ξ

l(x, t)t ≤ Tλ, for all x ∈ �\{(0, w0)}, t ≥ 0. (12)

Combining (f2), (6) and (12), it follows that

cλ + 1 ≥ Jλ(uj) –
1
ξ

〈
J ′
λ(uj), uj

〉

≥
(

1
2

–
1
ξ

)

‖uj‖2
Xs

0
+

(
1
ξ

–
1

2∗
s (α)

)∫

�

(u+
j )2∗

s (α)

|z|α dx

– λ

∫

�

(

F
(
x, u+

j
)

–
1
ξ

f
(
x, u+

j
)
u+

j

)

dx

≥
(

1
2

–
1
ξ

)

‖uj‖2
Xs

0
–

∫

�

(

L
(
x, u+

j
)

–
1
ξ

l
(
x, u+

j
)
u+

j

)

dx

≥
(

1
2

–
1
ξ

)

‖uj‖2
Xs

0
– Tλ|�|.

Hence, we obtain {uj}j∈N is bounded in Xs
0. This completes the proof of Lemma 3. �
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Lemma 4 Assume that conditions (f1) and (f2) hold. Then Jλ satisfies the (PS)cλ condition

with cλ < 2s–α
2(N–α) S

N–α
2s–α
μ,α – Tλ|�|, where Tλ is a bounded constant given in Lemma 3.

Proof of Lemma 4 Let {uj}j∈N ⊂ Xs
0 be a (PS)cλ sequence of Jλ. From Lemma 3, we know that

{uj}j∈N is bounded. Thus there exist a subsequence (still denoted by {uj}j∈N) and uλ ∈ Xs
0

such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uj ⇀ uλ, weakly in Xs
0,

uj → uλ, strongly in Lp, 2 ≤ p < 2∗
s (α),

uj ⇀ uλ, weakly in L2∗
s (α)(�, |z|–α),

uj → uλ, a.e. in R
n.

(13)

Due to the continuity of embedding Xs
0 ↪→ Hs(�) ↪→ Lν(�) and the boundedness of

{uj}j∈N, there exists a constant Cν such that ‖u‖ν ≤ ‖u‖Xs
0

≤ Cν for all u ∈ Xs
0 and ν ∈

[2, 2∗
s (α)]. Now, according to (f2), for any ε > 0, there exists a a(ε) > 0 such that

∣
∣F(x, t)

∣
∣ ≤ 1

2Cν

ε|t|2∗
s (α) + a(ε) for (x, t) ∈ � ×R

+.

Set δ = ε
2a(ε) > 0. When E ⊂ �, meas E < δ, one gets

∣
∣
∣
∣

∫

E
F
(
x, u+

j
)

dx
∣
∣
∣
∣ ≤

∫

E
a(ε) dx +

1
2C

ε

∫

E

∣
∣u+

j
∣
∣2∗

s (α) dx

≤ a(ε) meas E +
1

2Cν

εCν ≤ ε.

Obviously, {∫
�

F(x, u+
j ) dx, j ∈ N} is equi-absolutely continuous. It follows from Vitali’s

convergence theorem that

∫

�

F
(
x, u+

j
)

dx →
∫

�

F
(
x, u+

λ

)
dx, as j → ∞. (14)

Similarly, we get

∫

�

f
(
x, u+

j
)
uj dx →

∫

�

f
(
x, u+

λ

)
uλ dx, as j → ∞. (15)

By (13) and (15) we obtain

lim
j→∞

〈
J ′
λ(uj), v

〉

=
∫

Q

(uλ(x) – uλ(y))(v(x) – v(y))
|x – y|N+2s dx dy – μ

∫

�

u+
λv

|z|2s dx

–
∫

�

(u+
λ)2∗

s (α)–1v
|z|α dx – λ

∫

�

f
(
x, u+

λ

)
v dx

= 0,
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for any v ∈ Xs
0. That is, 〈J ′

λ(uλ), v〉 = 0 for any v ∈ Xs
0. Then uλ is a critical point of Jλ, thus

uλ is a solution of problem (1). It follows from (6) and (12) that

Jλ(uλ) = Jλ(uλ) –
1
ξ

〈
J ′
λ(uλ), uλ

〉

≥
(

1
2

–
1
ξ

)

‖uλ‖2
Xs

0
+

(
1
ξ

–
1

2∗
s (α)

)∫

�

|uλ|2∗
s (α)

|z|α dx

– λ

∫

�

(

F(x, uλ) –
1
ξ

f (x, uλ)uλ

)

dx

≥
(

1
2

–
1
ξ

)

‖uλ‖2
Xs

0
–

∫

�

(

L(x, uλ) –
1
ξ

l(x, uλ)uλ

)

dx

≥
(

1
2

–
1
ξ

)

‖uλ‖2
Xs

0
– Tλ|�|

≥ –Tλ|�|,

for ξ ∈ (2, 2∗
s (α)). Now, let wj = uj – uλ, by the Brezis-Lieb lemma [21], we have

∫

Q

|uj(x) – uj(y)|2
|x – y|N+2s dx dy

=
∫

Q

|wj(x) – wj(y)|2
|x – y|N+2s dx dy +

∫

Q

|uλ(x) – uλ(y)|2
|x – y|N+2s dx dy + o(1), (16)

∫

�

u2
j

|z|2s dx =
∫

�

w2
j

|z|2s dx +
∫

�

u2
λ

|z|2s dx + o(1), (17)

∫

�

(u+
j )2∗

s (α)

|z|α dx =
∫

�

(w+
j )2∗

s (α)

|z|α dx +
∫

�

(u+
λ)2∗

s (α)

|z|α dx + o(1). (18)

Since Jλ(uj) = cλ + o(1), by (14) and (16)-(18), we obtain

Jλ(uj) = Jλ(uλ) +
1
2
‖wj‖2

Xs
0

–
1

2∗
s (α)

∫

�

(w+
j )2∗

s (α)

|z|α dx = cλ + o(1). (19)

According to 〈J ′
λ(uj), uj〉 = o(1), (15) and (16)-(18), we get

‖wj‖2
Xs

0
–

∫

�

(w+
j )2∗

s (α)

|z|2s dx = o(1). (20)

Assume that ‖wj‖Xs
0
→ l, it follows from (20) that

∫

�

(w+
j )2∗

s (α)

|z|2s dx → l2,

as j → ∞. From (4), one has

‖wj‖2
Xs

0
≥ Sμ,α

(∫

�

(w+
j )2∗

s (α)

|z|2s dx
) 2

2∗s (α)
.
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We get l ≥ S
N–α
2s–α
μ,α . It follows from (19) and (20) that

cλ + o(1) = Jλ(uλ) +
1
2
‖wj‖2

Xs
0

–
1

2∗
s (α)

∫

�

(w+
j )2∗

s (α)

|z|α dx + o(1)

≥ 2s – α

2(N – α)
S

N–α
2s–α
μ,α – Tλ|�| + o(1),

which contradicts cλ < 2s–α
2(N–α) S

N–α
2s–α
μ,α – Tλ|�|. Therefore, we have l = 0, which implies that

uj → uλ in Xs
0. This completes the proof of the Lemma 4. �

3 Proof of Theorem 1
Thanks to Lemmas 1, 2, 3 and Lemma 4, the functional Jλ satisfies all the assumptions of
the mountain pass theorem for any λ ≥ λ∗, with λ∗ > 0. This guarantees the existence of a
critical point uλ ∈ Xs

0 for Jλ at level cλ. Since Jλ(uλ) = cλ > 0 = Jλ(0) we have uλ 
≡ 0. By [22,
Lemma 8], we have u–

λ ∈ Xs
0 and we let ϕ = u–

λ in (6), we get

∫

RN

(uλ(x) – uλ(y))(u–
λ(x) – u–

λ(y))
|x – y|N+2s dy – μ

∫

�

(u–
λ)2

|z|2s dx

=
∫

�

(u–
λ)2∗(s)

|z|α dx + λ

∫

�

f (x, uλ)u–
λ dx.

Moreover, for a.e. x, y ∈R
N , one has

(
uλ(x) – uλ(y)

)(
u–

λ(x) – u–
λ(y)

)

= –u+
λ(x)u–

λ(y) – u–
λ(x)u+

λ(y) –
(
u–

λ(x) – u–
λ(y)

)2

≤ –
∣
∣u–

λ(x) – u–
λ(y)

∣
∣2. (21)

From (3) and (21), we have

∫

Q

(uλ(x) – uλ(y))(u–
λ(x) – u–

λ(y))
|x – y|N+2s dx dy – μ

∫

�

(u–
λ)2

|z|2s dx

≤
(

1 –
μ

ak,s

)∫

RN

–|u–
λ(x) – u–

λ(y)|2
|x – y|N+2s dy ≤ 0,

by the fact that μ < ak,s. Hence, according to (f1), f (x, uλ(x))u–
λ(x) = 0 for x ∈R

N , we obtain

∫

�

(u–
λ)2∗

s (α)

|z|α dx ≤ 0,

which implies that u–
λ ≡ 0. Hence, uλ ≥ 0. It implies (–�)suλ ≥ 0. Then, by the strong

maximum principle, we obtain uλ is a positive solution of problem (1). This completes the
proof of Theorem 1.

4 Conclusion
In this paper, we devoted our study to the existence of solutions for a fractional elliptic
problems with the Hardy-Sobolev-Maz’ya potential and critical nonlinearities. The ap-
proach of this paper is by the well-known mountain pass theorem. The nonlinear term
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f satisfies assumptions (f1), (f2) without the (AR) conditions. We established a new term
l(x, t), which satisfies the (AR) conditions combined with the critical term |t|2∗s (α)–1

|z|α by us-
ing some analysis techniques. Then we overcame the compactness and obtained a positive
solution of problem (1). Our results are new and the work established in this paper is of
quite a general nature.
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