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Abstract
Consider the anisotropic parabolic equation with the variable exponent

N
(02
U=y (@lug P uy),
i=1

with a;(x), pi(x) € C'(R2), ;i) > 1, ai(x) > 0.1f some of {g;(x)} are degenerate on the
boundary, a partial boundary value condition is imposed, the stability of weak
solutions can be proved based on the partial boundary value condition.
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1 Introduction

The equation
U, = div(a(x)lvmp(x)_ZVu), (x,t) € Qr, (1.1)
comes from the so-called electrorheological fluids theory (see [1, 2]), where @ C RN is a

bounded domain with smooth boundary 9€2, p(x) > 1 is a measurable function. If a(x) =1,

there are many related papers to study equation (1.1) with the usual initial-boundary value

conditions
u(x,0) =ug(x), x€€, (1.2)
ulx,t)=0, (xt)€dQ x(0,T), (1.3)

one can see [3-5] and the references therein.

If a(x) > 0 when x € Q but a(x)|,ese = 0, then the stability of weak solutions can be
proved without the boundary value condition (1.3), provided that the diffusion coefficient
a(x) satisfies some other restrictions. One can see our previous works [6—8].
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In this paper, we will consider an anisotropic parabolic equation of the type

N
=Y (@il u) o (x0) € Qr (1.4)
i=1
We denote that

pi =maxp;(x),  p; =minp;(x)
xeQ xe

for any i € {1,2,...,N} and denote that

po=min{p;,py,...Pn1Px) P>,

Pl = max{p{,p}---,l?&_pl’;v}-

If a;(x) = 1, the existence of a weak solution was proved in [9]. Also, one can refer to the
excellent papers [10-12].

Let I = {i1,iz,...,i} C{L,2,...,N}, J = {j1i,ja,..,ji} C{L,2,..., N}, k+I=N,IN] = @.
Not only we assume that a;(x) € C(Q), and when x € , a;(x) > 0, but we also assume that

a; (x) > ¢ >0, ai,(x) > ¢y >0, e a;(x)>ck>0, x¢ Q, 1.5)

a;, (x) = 0, a,(x) =0, e a;,(x) =0, xeIQ. (1.6)

Besides the initial value condition (1.2), instead of the usual boundary value condition
(1.3), by assumptions (1.5)-(1.6), only a partial boundary value condition

ulx,t)=0, (xt)e X x(0,T) 1.7)

should be imposed. To see that, let us give a simple example to show what ¥; is. Let N = 2,
p1(x) = pa(x) = p(x), the domain 2 be a square,

Q= {(xl,xz):0<x1 <1,0 <xy <1}.

Consider the equation

0 B 0 _
S (a1 () |2y P2 0y) + PP (ot P92 0s,)). (1.8)

Then we conjecture that
¥ = {(xl,xg) :0<w <1,y = 0} U {(xl,xg) :0<x; <1,xp = 1}. (1.9)

This conjecture was proved in [13] recently.

However, in general, it is difficult to depict out the geometric character of ¥;. We have
tried to depict out ¥; by the Fichera function in [14], but it seems not so successful. In this
short paper,

(T2, (%), 1P 710},

21 = {x €0 7 - 1
([ =1 ;) JPir@™
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we will study the well-posedness of the equation basing on the partial boundary value
condition (1.7). Also, we denote that

T, =00\ .

Definition 1.1 A function u(x, t) is said to be a weak solution of equation (1.4) with the
initial value condition (1.2) if

ueL®(Qr), % eL*(Qr),  ai(®)|uy, P e L*(0, T;LY(R)), (1.10)

and for any function ¢; € Cj(Qr), 92 € L*(Qr) and ¢, € L*(0, T; VVlt’fi(x)(Q)) such that

N
ou (%)=
J[ |50+ ¥t 2u (i, | dsde 0. (L1
or| 9t i=1
The initial value condition (1.2) is satisfied in the sense of
limf |u(x, t)— uo(x)} dx =0. (1.12)
t—0 Jo

Besides, if the partial boundary value condition (1.7) is satisfied in the sense of the trace,
then we say that there is a weak solution of the initial-boundary value problem (1.4)-(1.2)-
(1.7).

In this paper, we first study the existence of the weak solution.
Theorem 1.2 If py > 1, a;(x) satisfies conditions (1.5), (1.6),

uo € L%(Q), Uoy; € LP9(Q), (1.13)

then there is a solution of equation (1.4) with the initial value (1.2). Moreover, if for every
~1/(p;. (x)—
1<r<l, fQ ajyl i ) 1)(x) dx < 00, then the initial-boundary value problem (1.4)-(1.2)-

(1.7) has a solution.

Here, 17{*¥)(Q) is the variable exponent space, its definition is given in Section 2.
Secondly, we will study the stability of weak solutions to the initial-boundary value prob-
lem (1.4)-(1.2)-(1.7).

Theorem 1.3 Ifu and v are two solutions of equation (1.4) with the same partial boundary
value condition (1.7) and with the initial values uy(x), vo(x), respectively, if | > 1 and for

I
e+
s=1 X;

Jr

everyl <r<]|,

n(/mszn @, (%)

then

A

<c (1.14)

3
3
g
QU
X
S~———
St

/|u(x, t) — v(x, t)|dx < / |u0(x)—vo(x)|dx. (1.15)
Q Q

Here, Q,,={xe Q: ]_[i=1 a;,(x) > %}.
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If / =1 in Theorem 1.3, without loss of generality, we may assume that
aix) =0, xe€0, (1.16)
while a;(x) > 0 for i > 1. Then we have the following.
Theorem 1.4 If (1.16) is true and a;(x) > 0 for i > 1, u and v are two solutions of equation

(1.4) with the same partial boundary value condition (1.7) and with the initial values ug(x),

vo(x), respectively, if for every i > 2

e
n( / sy ()7 dx) " <e (L17)
Qn
and
i
p)  \ 21
n( f a1 (x) |y, ()| dx) <c (1.18)
\Q,
then the stability of weak solutions (1.15) is true. Here, aiy, (x) = %(1"), a1y, (%) = dgl_x(lx) as

usual, 2, = {x € Q:ai(x) > %}.

At the end of the introduction, we would like to suggest that there are many papers
devoted to the anisotropic elliptic equations, for examples, one can see [15-25] and the
references therein. For example, Fu and Shan studied the problem of removable isolated
singularities for elliptic equations with variable exponents in [23]. They gave a sufficient
condition for removability of the isolated singular point for the equations in W?® ().
Cencelj and Repovs studied the perturbation by a critical term and a superlinear subcrit-
ical nonlinearity of a quasilinear elliptic equation containing a singular potential in [24].
By means of variational arguments and a version of the concentration-compactness prin-
ciple in the singular case, they proved the existence of solutions for positive values of the
parameter under the principal eigenvalue of the associated singular eigenvalue problem.
Konaté and Ouaro studied nonlinear anisotropic problems with bounded Radon diffuse
measure and variable exponent in [25]. They proved the existence and uniqueness of an
entropy solution. By the way, the definition of weak solutions and the method used in [13]
are different from the ones in this paper. Moreover, only the case when the domain is the
n-dimensional unit cube is considered in [13], and the diffusion coefficient a;(x) = a;(x;) is

restricted only dependent on the single variable x;.
2 The existence

We firstly give some basic concepts about the exponent variable spaces.
1. LPW(Q) space.

IP9(Q) = {u : u is a measurable real-valued function,

/ |u(x)|p(x)dx< oo}.
Q
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The space L7¥(RQ) is equipped with the following Luxemburg norm:

u(x) p(x)

|M|Lp<x>(§2)=inf{k>0:/ dxfl}.
Q

The space (L™ (Q),] - | 7@ () is a separable, uniformly convex Banach space.
2. W@(Q) space.

W(Q) = {u e LFY(Q) : | Vu| € L9 (Q)},
endowed with the following norm:

|l o) = |4l ooy gy + | Vtbl iy Yt € WHPI(Q).
We use Wé'p(x>(9) to denote the closure of C3°(€2) in Wwlr@,

Lemma 2.1 ([26-28]) The spaces (L’™(Q),] - | o) () (WLP@(Q),| - lwirt ) and

Wg’p “\(Q) are reflexive Banach spaces.

1

Lemma 2.2 ((13]) If, for any given i € {1,2,...,N}, [, al._p"(x)_l (x) dx < oo, then

/ |y, | dx < c. (2.1)
Q

By this lemma, one can see that if a;(x) satisfies (1.5), (1.6) and if for every 1 <r </,
fQ aj_rl/(p"(x) _1)(x) dx < 00, then (2.1) is satisfied. Thus, we can define the trace of u on the
boundary 9%2.

Proof of Theorem 1.2 Consider the partially regularized equation

N
U, = Z(“i(x””xi |p,-(x)—2uxl_)xi +eAu, (xt)€Qr (2.2)

i=1

with the initial boundary conditions

u(x,0) = up:(x), x€g, (2.3)

ulx,t)=0, (xt)e€dQx(0,T). (2.4)
Here, we let 1o, (x) € C3°(2) and strongly convergent to u(x) in Wé”’ O(Q).

Since a;(x) satisfies (1.5) and (1.6), similar to the proof of the usual evolutionary p-

Laplacian equation, we can prove that there is a solution u, € L2(0, T; Wé’p °(Q)) of the

initial-boundary value problem (2.2)-(2.4), which satisfies

luelloQry < ¢ leell2(Qp) < c- (2.5)
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Multiplying (2.1) by u, and integrating it over Qr, we have

/u dx+2// X) s, |”lx)dxdt+8// |V, | dx dt
Qr

1
= E/Qu(z)(x)dx, (2.6)

then

8/[ |Vu:?dx <c (2.7)
Qr

and
N
Z/f a; (%) | Uex, 1Pi® dx dt < c. (2.8)
i=1 Qr

9
Hence, by (2.5), (2.7), (2.8), there exists a function # and an n-dimensional vector ¢ =

(&1,- .., ¢n) satisfying that _Z =&, Cn)

i(x)
ue L(Qr), %eLZ(QT) ¢ e L0, Ts LA (),

and u, — u a.e. € Qr,

u, —~ u, weakly star in L(Qr),
Ug —> u, in L’ (Or T; Lroc(Q))’

ou, R ou
ot ot

eVu, — 0, inL*(Qr),

in L*(Qr),

pl(x)
() |thex, P P, — ¢ in LY(0, T; LP91(Q)).

NPO
N-p°

Now, similar to the general evolutionary p-Laplacian equation, we are able to prove that
(the details are omitted here)

Here, r <

}iilg)/sz|u(x,t) - uo(x)|dx =0

and

Z// (%) |24, |pi@)- uxlgoxl dxdt = Z/ Ci(x) ey, dx dt (2.9)

for any function ¢ € C3(Qr). By a process of the limit [8], we can show that (2 9) is also
true for any ¢ = @192, where ¢ € Ch(Qr), 2 € L™ and Pox; € L*(0, T; \/Vllpl (2)). Then
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u satisfies equation (1.4) with the initial value (1.2) in the sense of Definition 1.1. At last,
according to Lemma 2.2, the partial boundary value condition (1.7) is satisfied in the sense
of trace. Theorem 1.2 is proved. O

3 The stability
Lemma 3.1 ([26-28])
(i) p(x)-Holder’s inequality. Let q1(x) and q,(x) be real functions with ﬁ + % =1
and qi(x) > 1. Then the conjugate space of L1'W(Q) is L12W(Q). And, for any

u € L19(Q) and v e L2W(Q), we have

/ uvdx
Q

|u|l}7(x)(g):17 then/|u|p(x)dx:1,
Q

=< 2|u|Lq1 @(Q) |V|L42(x)(9) .

- +
[u] ;v (2) > 1,  then Iullzpm < /S; lulP® dx < Iulip(x),

. _
|l p (2) <1, then |Mllzp(x) = /Q |ulP™ dx < Iullzp(x).

Now, we will prove Theorem 1.3. For any given positive integer 7, let g,(s) be an odd
function, and

1

( ) 1, s> w
s) =
& ns2el S 0 <s< %
Clearly,
lil%gn(s) =sign(s), s € (—00,+00). (3.1)

Proof of Theorem 1.3 Let u and v be two weak solutions of equation (1.4) with the initial
values u(x,0), v(x, 0), respectively.
Let Q,={xeQ: ]_[lr=1 a;,(x) > %}, and

1, ifx e Q,,
A (3.2)
nll.a,x), ifxeQ\Q,

Obviously, ¢, = n(]_[i=1 aj,(x))x; when x € 2\ ©,, in other places, it is identical to zero.
We can choose ¢1 = X[r,qPn> 02 = 8u(U = V), ¢ = X[1,519ngn (14 — V) as the test function, then

§ o(u—-v)
/Tfﬂqbngn(u—v) o7 dxdt

N s
S B T e L A L
=1 VT IR

ks
£y / / i, () (Jth, 177 P10, = (v PO 720, ) g = V), dxdlt
r=1 97T Q2
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Lo ps
+ Z /t /s; aj, (%) (|t [Pr 2w, = vy, 197D v, ) g = V), dacdt
r=l

=0.

In the first place, as usual, we have
/ a,»(x)(|uxi |pi(")’2uxi — vy |pi(")’2vxi)(uxi - vxi)g;,(u —V)pu(x)dx >0,
Q

and since u; € L2(Qr), using the Lebesgue dominated theorem, we have

lim / S [ 6.0t~ 0 e

:/ |u—v|(x,s)dx—/ lu —v|(x, T) dx.
Q Q

Page 8 of 14

(3.3)

(3.4)

(3.5)

In the second place, we deal with the third term on the left-hand side of (3.3). For sim-

plicity, in what follows, we denote ]_[lr:1 a;, (%) as ]_[]l,:1 a;(x),

/ a1, 0) (0, P72, — (v, P70, Vgt = V),
Q

/ i, @) (|t 17710, = (v, PO 720, ) g = V)P, dx
Q\Qy

dx

= / ai, (x)(|ux,r [Pir @1y |Vx,~, [Pir (x)—l) |gn (u— V)¢nx,vr
AQ,

Pip(x)~L
P iy (x)

)
< / na;, (x) n“i(x) (|”xir |Pir(x)—1 + |inr |Pir (x)—l)
Q\Qy j=1

1
PRC)) !
n?ir® [Hj=l a/’(x)]xi,
Pip(x)~L

[]_[/lr=1 a;(x)] Pir)

: n
) ) Tiy
< ( / n [ ai)ai, () (I, 177 + v, P7) dx)
2\

j=1

) (/ na;, (x) |gn(u -v)
Q\Q,

1
a
= C(/ iy (x)(|”xfr [P |Va, [P (x)) dx) "
Q\Qy,
1

! . a1
) i)y plr(x) I
. (n/ |gn (s —v) Pir ) (011 405D, | dx)p
\Qy,

([T, a1t
Here, p}r = p;, or p; according to (ii) of Lemma 3.1. g;, (x) =
If we denote that

() P

gn(u—v)

1

l i (x) 1
o0 [T Tje @), 1P T
pip ) I\ Ljm1 4%, dx) v

[T, aj(x))irm

Djy (%)
pjy(x)-1" 1ir

Q= {x € Q\ Q, :dist(x, 3y) > dist(x, 21)},

(3.6)

g} has a similar sense.
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Q0 = {x e Q\Q,: dist(x, o) < dist(x, 21)},

then

o [T (@), 1P
}’l/ |gn(u -v) 2ir ) l_[ll - r 1
Q\Q (I ]y aj(x)]Pire

]
<n / |gn(u —v)
Q1

X

I .
i 0 (T2 @), 1P
I —
[l_[j:1 ﬂj(x)]p”(x) !

/ )
iy (%) |(1_[]'=1 “j(x))x,'r |Pir )

+n /an |gu(u —v) [1_[11&1 ()P
Since
u=v=0, xex,
by the definition of the trace, we have

l .
o ([T @), [P

lim n/ |gn(u—v) Pir (%) 1_[;[1 i\X))x;,
T (1, aj() !

l .
|(1_L':1 aj(x))x,'r [Pir (%)

- i _ ds =
/z 1 sign(u — v) [Hl‘:l PR 0

J

Moreover, since

! .
|(l_[j:1 ﬂj(x))x,'r [Pir (%)

([T}, a1

lim n/ |g,,(u—v)
noo Jo [1_[11'=1 aj(x)]pi,(x)—l

! .
ai(x))y iy (%)
/ (AT
Q2 [njzlﬂj(x)]plr(x)
I .
ai(x))y Piy (%)
:/ |(1_[][—1 ]( )) lr| : dE :0
Py [Hj:lﬂj(x)]plr(x)_

=0, erz,

< lim n

By (3.6)-(3.9), we conclude that

rlllir(l)‘/ a;, (x)(lux,', |Pir (x)_2uxir - |Vx,-, |Pir (x)—Zinr )gn(u - V)¢nx,-, dx
Q

In the third place, we deal with the last term on the left-hand side of (3.3)

‘/Q aj, (x)(mxj, (Pir -2 Uy, — |Vx}', [Pir (x)izvxjr )gn (u~— V)¢nx,-r dx

l )
g L s, 9

f aj, (%) (|, [Pr 2w, = v, 1Pr D0, ) g (1 = V), dc
Q\Qy

Page 9 of 14

(3.7)

(3.8)

(3.10)
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l

< / 0, (1) [t 77+ g, [Pr 7T (l‘[a;(x)) 8nlu —v)| dx
Q\Q, »

J=1 Jr
1

T
Gy

< c( [ ), ()|, 1P + vy Pr dx)
Q\Q,

I jr (%) pL‘r
Jr
X 1 / @, (%) l_[aj(x) dx . (3.11)
2\82 j=1 x
jr (%) +
Here, g;,(x) = pf:’(x;il, q;, = max,.g g, (x).
By assumption (1.14)
i pjy ) p%
n / @, (%) l—[aj(x) dx|” <c
A =t Xy
Then
Jlim ’ /Q @, () (|t 1P P, — (v 12y, Vg (1t = V)b, dlt| = 0. (3.12)
Now, let # — o0 in (3.3). Then
/ |u(x,s) —v(x, s)f dx < / }u(x, 7) —v(x, ‘C)’ dx, (3.13)
Q Q
by the arbitrariness of t, we have
/|u(x,s)—v(x,s)fdx§ / }uo(x)—vo(x)|dx. 0
Q Q

4 Thecaseof/=1

Proof of Theorem 1.3 Let u and v be two weak solutions of equation (1.4) with the initial
values u(x, 0), v(x, 0), respectively. Since a; (x) satisfies (1.16) and for i > 2, ;(x) > 0, x € Q,

we canlet 2, = {x € Q:a;(x) > %} and

1, ifx € Q,,
¢n(x) = (4.1)
nay(x), ifxeQ\Q,.

Obviously, ¢y, = na,, when x € Q\ @, in other places, it is identical to zero.

We can choose x[r,q®ng.(u — v) as the test function, then

s o(u—-v)
/T /Q tnne—) " et

N S
S B T e L A e L
=1 /T I8

S
. / / 15) (l, P9 103y — v P9 ) gt = V) ho, e dlt
T Q
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N

s
> / / () (|t 17 Pty = Vi PO 0 g = V) by, At
T JQ

i=2

=0.
Certainly, we have
/ ai(x)(h'txi |pi(x)—2uxi - IVx,‘ |pi(x)_2vxi)(uxi - in )g;, (M - V)¢n (.?C) dx > 0
Q

and

$ Au—-v)
m /{ L ¢n (x)¢ngn(u - V) dxdt

li
=0 at
=/ |u—v|(x,s)dx—/ lu —v|(x, T)dx.
Q Q

Now, we deal with the third term on the left-hand side of (4.2).

/ al(x)(le |p1(x)_2ux1 - |Vx1 |p1(x)_2Vx1 )gn(u - V)(pnxl dx
Q

/ a1 (%) (|4, 1P 210, — Vi PY9 720, ) g3 (st — V)P, dx
Q\Qy

< / 1 6) (ly P9 4 13y 129) g0 = V) |
Q\Q,

<n / 01 6) ([t P19+ [y 1191) g0 = ), ()]
Q\Qn

<cn ( / a1 (%) (|t 1) + v, [P1) dx) "
Q\Q,

1

x ( / a1 ()| (1t =) |, () dx) "
Q\Qy

=

-1 _1

<cn P14 (’l/ a1 () (|t 171 + v, (P2 dx)q
\Q,

x (/ |gin (s — v)|p1(x)|zzx1(x)|p1(x) dx)p .
2\Q

n

=4

A

If we denote that

d,= sup dist(x,0)
*€Q\Qp

and

Q=[x e Q\Q,:distx, £5) >y}, Q= (Q\Q,)\ 2,

Page 11 of 14

(4.4)

(4.5)

(4.6)
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then

n< /Q L alla—y
< n</Ql a;, (%) |gn (1 = v)

+ n(/;z a;, (x)|ga(u - v)

5cn</in |gn(u =)
I

+ n(/ﬂn2 a;, (%) Q—l[u,’(x))x.

Ir
By the definition of the trace, we have

Diy (%)

Diy (%) If
dx

1

Piy(x) pT
dx
Piy (x)

dx)

1
()
j=1 iy
!
()
j=1 Kip

!
()
j=1 %

Piy (x) P
dx .

Diy (%)

™
-

Diy (%)

¥y

Ei

Diy (%) dx> I

-

Pir dx = 0.

lim n/Q !gn(u—v)

n—00

Moreover, since a;(x) € C}(R2) and [ > 1, by (1.6), we always have

!
j=1 Xiye
Thus, by the fact that a;(x) € C'(R2), we get
!
lim # / a;, (x) a;(x)
e < S l (!_1[ ' X,

]
(1)
j=1 %

ir

=0.

aQ

1

Piy 53
ir
dx

ir

< cmax =0.

XEXo

By (4.6)-(4.10), we conclude that

lim ‘ / a;, (x)(Wxi, | i'(x)_zuxir L (x)‘zvxir ) 80 (th = V)P, Ax
Q

n—0

In the third place, we deal with the last term on the left-hand side of (4.2)

’/Q aj, (x)(mxj, |Pir (-2 Uy, — |Vx/~, [Pir (x)—Zijr )gn (u— V)(pnx,-r dx

f aj, (%) (|, [Pr 2w, = v, 1Pr D0, ) g (1 = V), dc
Q\Qy

Page 12 of 14

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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I
< [ @, v, ) [0 ) vl
A\ il

Xjr
%
< c( [ a5, @) (|14, 177 + vy, [P7) dx) 4
A\ "
l p]r L‘r
X 1 / @, (%) l_[aj(x) . (4.12)
\2, i
j=
(%)
Here, gj, (x) = ppz(x e q]r max, g gj, (%).
By assumption (1.14),
l jy (%) ,%
Jr
n / a;, (%) Haj(x) dx <c.
A J=1 Xy
Then
lim ’ / a, (x)(|”xj, |pfr(x)—2l,{x/.r — Vs, |Pjr(x)—21/x/r )g,,(u ~V)uy, dx| = 0. (4.13)
n—00 Q
Now, let # — 00 in (4.2). Then
/ ‘u(x,s) —v(x, s)! dx < / }u(x, ) — vix, l')’ dx, (4.14)
Q Q
by the arbitrariness of 7, we have
/‘u(x,s)—v(x,sﬂdxf / }uo(x)—vo(x)|dx. O
Q Q

5 Conclusion

The anisotropic parabolic equation is considered in this paper. If in some directions the
diffusion coefficients are degenerate on the boundary, while in other directions they are
not degenerate, how to give a suitable partial boundary value condition to match the equa-
tion was studied by the author in [13]. If a partial boundary value condition is imposed,
only when the domain is an N-dimensional cube, the stability of weak solutions is proved
[13]. This short paper solves the problem when the domain is a usual bounded domain,
gives a complete supplement of the paper [13].
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