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Abstract
We consider an axisymmetric inverse problem for the heat equation inside the
cylinder a ≤ r ≤ b. We wish to determine the surface temperature on the interior
surface {r = a} from the Cauchy data on the exterior surface {r = b}. This problem is
ill-posed. Using the Laplace transform, we solve the direct problem. Then the inverse
problem is reduced to a Volterra integral equation of the first kind. A standard
Tikhonov regularization method is applied to the approximation of this integral
equation when the data is not exact. Some numerical examples are given to illustrate
the stability of the proposed method.
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1 Introduction
The inverse heat conduction problems (IHCPs) have many applications in different
branches of science and technology. It consists in determining the temperature and heat
flux on both sides of the boundary when one side is inaccessible to measurements.

The mathematical model of our problem can be described by the axisymmetric heat
equation

∂u
∂t

(r, t) =
∂u
∂r (r, t) +


r
∂u
∂r

(r, t), r ∈ (a, b), t > , ()

with the boundary conditions

u(b, t) = g(t),
∂u
∂r

(b, t) = h(t), t ≥ , ()

and the initial condition

u(r, ) = , r ∈ (a, b), ()

where r is the radial coordinate, and  < a < b.
Our purpose is to determine the boundary condition

u(a, t) = f (t), t ≥ . ()
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from the measured Cauchy data (g, h). It is known that this problem is severely ill-posed
in the sense that if the solution exists, then it does not depend continuously on the data g .
Indeed, a small perturbation in the data may cause dramatically a large error in the solution
u(·, t). Hence, a regularization method is needed.

The standard problem of the heat conduction in Cartesian coordinates ut = uxx, x ∈
[, ], t > , with the data u(, t) = f (t) and ux(, t) =  is well studied by various methods.
The Fourier method was used in [–]. The mollification method and projection regular-
ization based on the Laplace and Fourier transforms are applied respectively in [] and
[]. For axisymmetric problems, we should mention recent articles. In [, ], the authors
consider an axisymmetric IHCP of determining the surface temperature from a fixed lo-
cation inside a cylinder. In [, ], the authors investigated the case of identifying a source
from the final data. Xiong [] studied the problem of identifying a boundary condition
by the method of quasi-reversibility. A modified Tikhonov regularization method was ap-
plied for an axisymmetric backward heat equation in []. Lesnic et al. [] applied the
method of fundamental solutions (MFS) (with a Tikhonov regularization) to the radially
symmetric inverse heat conduction problem (IHCP) analogous to our problem. Inverse
problems for fractional diffusion equations are studied by many authors; for example, we
mention the recent article [].

In this paper, we formulate problem ()-() as an integral equation of the first-kind of
Volterra type. Then we use the Tikhonov regularization method to approximate this equa-
tion. To the author’s knowledge, there are no papers devoted to IHCP with radial axisym-
metry using the Laplace transform. Our contribution can therefore be considered as a
generalization of the paper [] to the axisymmetric case.

This paper is organized as follows. In Section , we give a representation of the solution
of the direct problem using the Laplace transform. Then finite difference method (FDM) is
applied to give numerical approximation. In Section , our inverse problem is reduced to
the integral equation of Volterra type; then we apply the Tikhonov regularization method
to compute the boundary temperature u(a, t) = f (t) from the Cauchy data u(b, t) = g(t),
ur(b, t) =  and give some numerical results. Finally, in Section , we present a conclusion.

2 Direct problem
Problem ()-() can be reduced to an integral equation. For this, we assume that u(a, t) =
f (t) is known and (for simplicity) h(t) = . We consider the following direct problem:
given f , find u(x, t) such that

∂u
∂t

(r, t) =
∂u
∂r (r, t) +


r
∂u
∂r

(r, t), r ∈ (a, b), t > ,

u(a, t) = f (t),
∂u
∂r

(b, t) = , t ≥ ,

u(r, ) = , r ∈ (a, b).

()

We have the following uniqueness theorem.

Theorem  Problem () has at most one solution in the space

H = C([, +∞[, H(]a, b[
)) ∩ C(], +∞[, L(]a, b[

))
.
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Proof Let u(r, t) be a solution of the homogeneous problem () (with f = ). Multiplying
PDE by ru and integrating by parts over the interval (a, b), we obtain the identity

∫ b

a

∂u
∂t

ur dr +
∫ b

a

(
∂u
∂r

)

r dr = .

We set E(t) =
∫ b

a ur dr, t ≥ , which leads to

dE
dt

= 
∫ b

a
utur dr = –

∫ b

a
(ur)r dr ≤ ,

and therefore E(t) = E() =  for all t ≥ , and u(r, t) = , r ∈ (a, b), t ≥ . �

2.1 Reconstruction of the solution
We use the Laplace transform (with respect to the variable t) for the representation of the
solution.

Let f (t), t ≥ , be a continuous function of slow growth, which means that there exist
two constants C ≥  and σ ≥  such that |f (t)| ≤ Ceσ t for t > .

The Laplace transform F(s) = Lf (s) of f (t) is defined by

F(s) =
∫ +∞


e–stf (t) dt, �(s) > σ ,

which is an analytic function in the half-plane �(s) > σ , and the inverse Laplace transform
is given by the complex integral []

f (t) = L–(F)(t) =


π i

∫ σ+i∞

σ–i∞
estF(s) ds, t > .

Let U(r, s) = Lu(r, ·) and F(s) = Lf (s). Problem () can be formulated as follows:

U ′′ +

r

U ′ – sU = , r ∈ (a, b),

U(a, s) = F(s), U ′(b, s) = ,
()

where U ′ = ∂U
∂r .

The first equation in () is the modified Bessel differential equation with the general
solution

U(r, s) = CI(r
√

s) + CK(r
√

s).

Then the solution of problem () is given by

U(r, s) = F(s)
W (r, s)
W (a, s)

()

with

W (r, s) = I(b
√

s)K(r
√

s) + K(b
√

s)I(r
√

s), ()
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where Iν and Kν are the modified Bessel functions of the first and second kind, respectively
[].

Applying the inverse Laplace transform and the convolution theorem [], we obtain:

u(r, t) =
∫ t


f (τ )k(r, t – τ ) dτ ()

with the kernel

k(r, t) =


π i

∫ +i∞

–i∞
W (r, s)
W (a, s)

est ds, t > . ()

Lemma  The heat kernel k(r, t) satisfies the properties
(i)

k(r, t) =
∞∑

n=

βn
W (r, sn)
W ′(a, sn)

esnt for r > a, t > , ()

with

W (r, sn) = J

(
r
a
βn

)
Y(λβn) – J(λβn)Y

(
r
a
βn

)
, λ =

b
a

,

W ′(a, sn) = J(βn)Y(λβn) – J(λβn)Y(βn)

+ λ
[
J(λβn)Y(βn) – J(βn)Y(λβn)

]
,

()

where Jν and Yν denote the Bessel functions of the first and second kind, respectively,
and sn = –β

n , n = , , . . . , is the sequence of the zeros of W (a, s).
(ii) for all n ∈ N and a < r ≤ b,

∂nk
∂tn (r, ) = . ()

Proof (i) Considering the contour CR = [–iR, iR] ∪{Reiθ , θ ∈ [ π
 , π

 ]} and using the asymp-
totic formula | W (r,s)

W (a,s) est| = O(e–μ|s|/ ) as |s| → ∞ (see Appendix ), we can express the pre-
vious integral for t >  and a < r ≤ b as follows:

k(r, t) =


π i
lim

R→∞

∫

CR

W (r, s)
W (a, s)

est ds. ()

The function W (a, s) is analytic with respect to the variable p =
√

s and possesses a
sequence of simple roots pn located on the imaginary axis such that pn = –iβn where
βn � (n – 

 ) aπ
b–a , n = , , . . . (see Appendix ). Formula () follows from the Cauchy the-

orem.
(ii) Deriving the integral () with respect to t, for all n ∈ N, we obtain

∂nk
∂tn (r, ) =


π i

∫ +i∞

–i∞
sn W (r, s)

W (a, s)
ds, r > a. ()

The function Gn(r, s) = sn W (r,s)
W (a,s) is analytic in the half-plane �(s) ≥  except at the origin,

where lims→ G(r, s) =  and lims→ Gn(r, s) =  for n ≥ , and has the behavior |Gn(r, s)| =
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O(ρn exp[–(r – a)ρ/ cos θ
 ]) as ρ = |s| → +∞ uniformly for θ ∈ [– π

 , π
 ]. Then we can use

the Cauchy theorem with an adequate contour to have

∂nk
∂tn (r, ) =  for r ∈ ]a, b]. ()

�

As a consequence, the integral () is written as the formal series

u(r, t) =
∞∑

n=

βn
W (r, sn)
W ′(a, sn)

esnt
∫ t


f (τ )e–snτ dτ , r > a, t > . ()

Theorem  Assume that f (t) ∈ C([, +∞[) is such that f () =  and f (t) =  for t ≥ T .
Then series () converges in L(]a, b[) for all t ≥  and defines a solution of problem ()
belonging to H.

Proof Integrating by parts in (), we can write u in the form

u(r, t) = –
∞∑

n=


βn

W (r, sn)
W ′(a, sn)

esnt
∫ t


f ′(τ )e–snτ dτ + f (t)

∞∑

n=


βn

W (r, sn)
W ′(a, sn)

. ()

Using the asymptotic behavior (see Appendix )

W (r, sn)
W ′(a, sn)

=
(–)n√a√

r( – λ)
cos

(
b – r

a
n
)

+ O
(


n

)
(n → ∞) ()

and the estimate
∣∣∣
∣

∫ t


f (τ )esn(t–τ ) dτ

∣∣∣
∣ ≤ M/β

n , M = sup
∣∣f (t)

∣∣,

we see that the first series in () is uniformly convergent and the second term is of the
same nature as the series

∑
αn√

r cos(n(λ – r
a )), αn = (–)n

βn
. Let us show that last series con-

verges in L(]a, b[, r dr). Indeed, the partial sum SN (r) =
∑N

n=
αn√

r cos( (b–r)n
a ) is a Cauchy

sequence, that is, for all q ≥ ,

∫ b

a
|SN+q – SN |r dr

=
∫ b

a

∣
∣∣∣
∣

N+q–∑

n=N

αn cos

(
n
(

λ –
r
a

))∣
∣∣∣
∣



dr =
∫ λ–



∣
∣∣∣
∣
a

N+q–∑

n=N

αn cos(nz)

∣
∣∣∣
∣



dz

≤ l
∫ π



∣
∣∣
∣∣

N+q–∑

n=N

αn cos(nz)

∣
∣∣
∣∣



dz =
lπ


N+q–∑

n=N

|αn| →  (as N → ∞).

In the last step, we used the orthogonality of the system {cos(nz)} in L(],π [), and l is an
integer chosen such that λ –  ≤ lπ . Furthermore,

∂u
∂t

(r, t) =
∞∑

n=

βn
W (r, sn)
W ′(a, sn)

∫ t


f ′(τ )esn(t–τ ) dτ , ()
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which converges as the series
∑

αn cos (b–r)n
a with |αn| ≤ M′/βn, M′ = sup |f ′(t)|. Therefore

∂u
∂t ∈ L(]a, b[). Now we show that u is a weak solution of the PDE in problem (). For this,
let us consider the sequence

uN (r, t) =
∫ t


f (τ )kN (r, t – τ ) dτ , N ∈ N, ()

with

kN (r, t) =
N∑

n=

βn
W (r, sn)
W ′(a, sn)

esnt . ()

Defining the differential operator Pv := ∂v
∂t – ∂v

∂r – 
r

∂v
∂r , we have

PuN (r, t) = f (t)kN (r, ) +
∫ t


f (τ )PkN (r, t – τ ) dτ .

However, PkN (r, t) = , and then PuN (r, t) = f (t)kN (r, ). From Lemma  it follows that

lim
N→∞ kN (r, ) = k(r, ) = .

On the other hand, P : D′(Q) → D′(Q), Q = ]a, b[× ], +∞[, is a continuous operator.
Then Pu = limN→∞ PuN = . We now show that u ∈ H. Since ∂

∂r (rur) = rurr + ur = rut

in D′(]a, b[) at fixed t, we have ur ∈ H(]a, b[) and u(·, t) ∈ H(]a, b[). Finally, it is easy to
verify that t → u(·, t) is C from ], T[ to L(]a, b[). �

Remark 
• If f ∈ L(R+) (not smooth), then the differentiation of series () with respect to the

variable r or t presents some difficulties. We can only say from the previous proof that
u is a weak solution in L(]a, b[). However, if we know that u is differentiable with
respect to t, then u is regular in both variables (r, t).

• For the numerical computation, the integral gn(t) =
∫ t

 f (τ )esn(t–τ ) dτ is approximated
by the trapezoidal rule. More precisely, if {ti = ih, i = , M + } is a subdivision of [, T]
and f h(t) =

∑M+
i= fiϕ(t – ti) is an interpolation of f , where

ϕ(t) =

⎧
⎨

⎩
 + t

h , – ≤ t ≤ ,

 – t
h ,  < t ≤ ,

is a basic function, and fi = f (ti), then gn is approximated by

gh
n (t) =

M+∑

i=

gn,iϕ(t – ti), gn,i =
∑

j<i

cij(sn)fj

with cij(s) = 
hs e(i–j)hs[cosh(sh) – ].
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2.2 Approximation by finite difference method (FDM)
Problem () can be discretized by replacing the derivatives by difference quotients as fol-
lows. Consider a uniform grid points in the (r, t) plane:

⎧
⎨

⎩
ri = a + (i – )h, i = , N + , h = (b – a)/N ,

tn = nτ , n = , M + , τ = T/M.

Letting un
i = u(ri, tn), system () is discretized by the following finite difference scheme:

⎧
⎪⎪⎨

⎪⎪⎩

un+
i –un

i
τ

= 
h (un

i+ – un
i + un

i–) + 
rih

(un
i+ – un

i–), i = , . . . , N , n = , . . . , M,

u
i = , i = , . . . , N ,

un
 = fn, un

N+ = un
N , n = , . . . , M.

()

Scheme () is explicit, and the solution un+
i is easily found:

un+
i = R

(
 +

h
ri

)
un

i+ + ( – R)un
i + R

(
 –

h
ri

)
un

i– with R =
τ

h . ()

We can prove the following result concerning the stability of scheme ().

Theorem 
() The finite difference scheme () is consistent of order O(τ + h).
() If

R =
τ

h ≤ 


(with h < ),

then scheme () is L∞-stable.

Proof () Assuming that the solution is fairly regular (C), we use the Taylor expansion.
() This can be proved in a similar way as in the lecture []. If R = τ

h ≤ 
 , then we see

from () that un+
i is a convex combination of un

i–, un
i , un

i+. Letting Mn = maxi=,...,N (un
i ),

we have

un+
i ≤ R

(
 –

h
ri

)
Mn + ( – R)Mn + R

(
 +

h
ri

)
Mn,

from which it follows that un+
i ≤ Mn. Taking the maximum, we deduce that Mn+ ≤ Mn.

In the same way, we set mn = mini=,...,N (un
i ). Then

un+
i ≥ R

(
 –

h
ri

)
mn + ( – R)mn + R

(
 +

h
ri

)
mn

and un+
i ≥ mn. Taking the minimum, we obtain mn+ ≥ mn. Hence

max
i=,...,N

(
un+

i
) ≤ max

i=,...,N

(
u

i
)

and min
i=,...,N

(
un+

i
) ≥ min

i=,...,N

(
u

i
)
,

which establishes the stability. �
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Figure 1 Comparison of exact solution gex and
numerical solution gap of the direct problem;
(a) Test 1; (b) Test 2.

2.3 Numerical examples
Put a = , b = , T = .

We consider the following examples.

Test  Data: u(a, t) = f (t) = χ[,] (χI denotes the characteristic function of an interval I).

Test 

f (t) =

⎧
⎪⎪⎨

⎪⎪⎩

(t – ),  < t < .,

( – t), . < t < ,

 otherwise.

In the following figures, we show the response g(t) = u(b, t) to the source f (t).
In Figure , we call gex the solution given by the truncated series () (with a rank N ≥

) and gap the approximate solution computed by FDM with parameters N =  and
M = ,.

3 Resolution of the inverse problem
3.1 Integral equation
As the function u(b, t) = g(t) can be known, the resolution of the inverse problem ()-()
can be reduced to the resolution of the Volterra integral equation of the first-kind

Af (t) :=
∫ t


k(t – τ )f (τ ) dτ = g(t) ()

with the kernel

k(t) =
∞∑

n=

βn
W (b, sn)
W ′(a, sn)

esnt .

The function k(t) is continuous on [, +∞[ satisfying f () = , |k(t)| ≤ Ce–Ct , where C,
C two constants, for t ≥  and k ∈ C∞(], +∞[). Then A ∈ L(H), H = L([, T]). The
range R(A) of A is nonclosed in H (A is compact and nondegenerate). This means that
equation () is ill-posed. The problem is, moreover, severely ill-posed since all derivatives
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of the kernel k(t) vanish to zero according to Lemma (ii) (see also []). Therefore, some
kind of regularization procedure will be necessary to solve the problem in the case of a
perturbed data gδ .

For the numerical resolution of equation (), we approximate the kernel k by the trun-
cated series

kN (t) =
N∑

n=

βn
W (b, sn)
W ′(a, sn)

esnt . ()

Remark  The truncation error (the rest RN = k – kN of the series) is estimated by

∣
∣RN (t)

∣
∣ ≤ C

∑

n≥N

ne–Cnt

≤ C
∑

n≥N

ne–Cnε

≤ CNe–CεN

( – e–Cε) for Nt ≥ ε ()

with C = ( π
λ– ). This means that, for t close to , we need more terms in the series. For

computation, we choose N =  for h < t ≤ ., N =  for . ≤ t ≤ , and N =  for
t ≥ . For  ≤ t ≤ h, we can take k(t) = , since we know from () that k(b, t) is close to
zero as t →  (see Figure ). The parameter h = T

M is the step time (we assume that h ≥ ε
N ).

We denote by AN the operator with kernel kN .

Proposition  AN converge to A in the Banach space L(X), X = C[, T] equipped with the
norm ‖ · ‖∞.

Proof Using the asymptotic formula () with r = b, we can write

RN (t) =
∑

n≥N

(
(–)n βn√

λ( – λ)
+ γn

)
e–β

n t

Figure 2 The heat kernel kN(b, t) with N = 40.
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with γn bounded. Then

∣∣RN (t)
∣∣ ≤ CβN e–β

N t + C
∑

n≥N

e–β
n t , C = sup |γn|.

Using () with ε = , it follows that

∫ T



∣∣RN (t)
∣∣dt =

∫ /N



∣∣RN (t)
∣∣dt +

∫ T

/N

∣∣RN (t)
∣∣dt

≤ C

∫ /N


βN e–β

N t dt + O
(
Ne–CN)

= O(/βN ),

which leads to

∀t ∈ [, T],
∣∣(A – AN )f (t)

∣∣ ≤ ‖f ‖∞
∫ T



∣∣RN (t)
∣∣dt,

and ‖A – AN‖L(X) = O(/N). �

3.2 Tikhonov regularization
The approximate equation AN f = g is solved by the Tikhonov regularization method. Re-
call the principle of the method.

Suppose that A ∈L(H) is a compact operator in Hilbert space, injective and with dense
range. The equation Af = g is ill posed, that is, A– : R(A) → H is not bounded (a small
error in data g generates an important perturbation on the computed solution f ). The
Tikhonov regularization method consists in solving the normal equation

(
A�A + αI

)
f α = A�g, ()

where α >  is a regularization parameter, and I is the identity operator. Equivalently, f α

is the unique minimum of the Tikhonov functional

Jα[f ] = ‖Af – g‖
H + α‖f ‖

H .

The solution f α can be written as follows:

f α =
(
A�A + αI

)–A�g,

which can be expressed in terms of the singular system (μj, uj, vj)j∈N∗ as

f α := Rαg =
∑

j

μj

μ
j + α

(g, vj)uj.

Now let g ∈ R(A), and let gδ ∈ H be a measured data with ‖g – gδ‖H ≤ δ. We define
f α,δ = Rαgδ . A posteriori discrepancy principle gives a selection of α (a solution of the
equation ‖Af α,δ – gδ‖H = δ). Standard Tikhonov regularization theory (see [, Theorem
.]) shows the convergence f α,δ → f in H as δ →  with the strategy α = α(δ). For other
methods, we indicate the papers [, ], which give a survey of regularization methods
for first-kind Volterra equations.
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3.3 Numerical experiment
We consider the following examples.

Test  As a first example, we consider the couple {f , g}, where

u(a, t) = f (t) = χ[,],

and g(t) = u(b, t) is computed by finite difference scheme (see Section .).

Test  We consider the example given by

f (t) =

⎧
⎪⎪⎨

⎪⎪⎩

(t – ),  < t < .,

( – t), . < t < ,

 otherwise.

To check the efficiency of the proposed algorithm, we choose in numerical experiments
the parameters a = , b = , T =  or T =  as required, and the rank of truncation  ≤
N ≤ .

For an exact data function g(t) = u(b, t), we use a finite difference scheme with N = 
points in the interval [, ] and M = , points in [, T]. The discrete noisy version
is gδ = g + δ randn(size(g)), the command ‘randn(·)’ generates arrays of random numbers
whose elements are normally distributed with mean , variance σ  = , and standard de-
viation σ = . For the singular decomposition and Tikhonov-Morozov algorithms, we used
the Matlab package developed by Hansen [].

3.4 Results and discussion
Figures  and  show the numerical results that confirm the stability of the method with
respect to the noise level δ ≤ .. However, the rank in kN must be large enough (here
N ≥ ) to ensure the convergence of the Tikhonov algorithm. Figure (a) shows that,
for δ = ., the oscillations increase, which requires a new regularization. Indeed, if we
use the mollification method [], then the oscillations are damped (see Figure (b)). The
operation consists in taking the convolution gν = ρν ∗ g with ρν(t) = 

ν
√

π
exp (– t

ν ), where
ν →  is the radius of mollification. If g vanishes near the ends of the interval [, T], then gν

is a smooth function and is a good approximation of g ; this fact is realized if the observation
time T is large enough (in practice, we take T = T if suppf ⊂ [, T]). In the presence of
the noise, according to the analysis in [], we choose ν = c

√
δ with c =  estimated by test.

4 Conclusion
In this paper, we considered the inverse boundary-value problem of heat conduction with
radial variable (in the cylindrical domain). The problem is solved by the approach based
on the direct and inverse Laplace transforms. This leads to the Volterra equation of the
first-kind with a special kernel. The Tikhonov method is applied to solve numerically this
equation for perturbed data. The numerical results show that the method is efficient when
the noise level δ = .. If δ = ., then the mollification procedure is applied (before the
regularization) to the data gδ , but with time observation T large enough.



Djerrar et al. Boundary Value Problems  (2017) 2017:159 Page 12 of 14

Figure 3 Test 1. Exact and approximate solution of
the inverse problem (IP); (a) with (δ = 0, N = 40 and
T = 3); (b) with (δ = 0.001, N = 40, T = 3).

Figure 4 Test 2. Exact and approximate solution of
IP; (a) with (δ = 0, N = 40, T = 3); (b) with (δ = 0.001,
N = 50, T = 3).

Figure 5 Test 2. Exact and approximate solution of
IP with parameters (δ = 0.01, N = 30, T = 5);
(a) without mollification; (b) with mollification
ν = 0.1.

Appendix 1: Asymptotic expansions
For fixed ν and |z| → ∞, we have []

Jν(z) ∼
√


πz

cos

(
z –

π


–

νπ



)
, Yν(z) ∼

√

πz

sin

(
z –

π


–

νπ



)
, ()

Iν(z) ∼ ez
√

πz
, Kν(z) ∼

√
π

z
e–z. ()
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We consider the rapport G(r, s) = W (r,s)
W (a,s) with W (r, s) = I(b

√
s)K(r

√
s) + K(b

√
s)I(r

√
s).

Due to (), we have, for r ∈ ]a, b] and |s| → +∞,

∣∣G(r, s)
∣∣ =

√
a
r

exp

(
–(r – a)ρ/

∣
∣∣
∣cos

θ



∣
∣∣
∣

)
+ O

(

ρ

)
,

where ρ = |s| and θ = arg(s) ∈ [– π
 , π

 ]. Then there exist positive constants C and μ such
that, for |s| large enough, say |s| ≥ ρ,

∣
∣G(r, s)est∣∣ ≤ C exp

[
–(r – a)ρ/

∣∣
∣∣cos

θ



∣∣
∣∣ + tρ cos θ

]

≤ C exp

[
–m

√
ρ

(∣∣
∣∣cos

θ



∣∣
∣∣ + | cos θ |

)] (
m = min(r – a, t)

)

≤ C exp(–μ
√

ρ)
(

uniformly for θ ∈
[

π


,

π



])
. ()

Appendix 2: Zeros of cross-product
We want to seek the roots sn of the following function (cross-product):

W (s) = I(b
√

s)K(a
√

s) + K(b
√

s)I(a
√

s).

We show that sn = –β
n with βn → +∞ as n → +∞. For this, we consider the self-adjoint

operator defined in H = L((a, b); r dr) by

AU = –

r

d
dr

(
r

dU
dr

)
, D(A) =

{
U ∈ H(]a, b[

)
; U() = U ′() = 

}
.

If AU = λU , then (AU , U) = ‖U ′‖ = λ‖U‖. Since A– is compact, A has a sequence of pos-
itive eigenvalues λn → +∞. On the other hand λn = –sn coincides with the roots of W (s).
Indeed, this can be seen by solving the Sturm-Liouville problem (system () in Section )
with λ = –s and F = .

Now we give the behavior of sn. Using the relations between the Bessel functions

In(z) = i–nJn(iz) and Kn(z) =
π


in+[Jn(iz) + iYn(iz)

]
for n ∈ N,

we obtain, for s = –β,

W
(
–β) =

iπ


[
J(aβ)Y(bβ) – J(bβ)Y(aβ)

]
. ()

Using the asymptotic expansions () for large β , we get

W
(
–β) ∼ i√

abβ
cos

[(
b
a

– 
)

β

]
,

and hence the zeros of W (s) are a sequence sn = –β
n , n = , , . . . , such that

βn ∼
(

n –



)
aπ

b – a
as n → +∞.
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