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Abstract
The authors of this paper prove the existence and regularity results for the
homogeneous Dirichlet boundary value problem to the equation
–div(|∇u|p–2∇u) = f (x)

uα(x)
with f ∈ Lm(�) (m ≥ 1) and α(x) > 0. Due to the nonlinearity

of a p-Laplace operator and the anisotropic variable exponent α(x), some classical
methods may not directly be applied to our problem. In this paper, we construct a
suitable test function and apply the Leray-Schauder fixed point theorem to prove the
existence of positive solutions with necessary a priori estimate and compact
argument. Furthermore, we also discuss the relationship among the regularity of
solutions, the summability of f and the value of α(x).
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regularity; variable exponent

1 Introduction
In this paper, we study the existence of solutions for the following quasilinear elliptic prob-
lem with nonlinear singular terms and variable exponent:

⎧
⎨

⎩

– div(|∇u|p–∇u) = f (x)
uα(x) , x ∈ �,

u = , x ∈ ∂�,
(.)

where � is a bounded domain in RN (N ≥ p) with smooth boundary ∂�, p > , α(x) is a
continuous function on �, α(x) > , α+ = supx∈� α(x), α– = infx∈� α(x), f is a nonnegative
function belonging to the Lebesgue space Lm(�) for some suitable m ≥ .

Problem (.) has been widely applied in many areas such as the contexts of chemical
heterogeneous catalysts, non-Newtonian fluids and also the theory of heat conduction in
electrically conducting materials, see [–] for detailed discussion.

For constant-exponent cases, Lazer and Mckenna in [] discussed the case when p = 
and f is a positive regular function in �. They proved that the solution was in H

(�) if
and only if α < , while it was not in C(�) if α > .

Lair and Shaker in [] improved the results of []. More specially speaking, they proved
that this problem with  < α <  has a unique weak positive solution in H

(�) if f (x) is a
nonnegative nontrivial function in L(�).
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In , the results of Lair and Shaker were generalized by Zhang and Cheng (see [])
to the following problem:

⎧
⎨

⎩

–�u = f (x)g(u), x ∈ �,

u = , x ∈ ∂�,
(.)

where g(s) is singular near s = . They proved the existence and uniqueness of classical
solutions under the assumption that f (x) ∈ Cα(�).

Recently, Boccardo and Orsina in [] studied the existence, regularity and nonexistence
of solutions for the following problem:

⎧
⎨

⎩

– div(M(x)∇u) = f (x)
uα , x ∈ �,

u = , x ∈ ∂�.
(.)

They discussed how the summability of f and the value of α affected the existence and
regularities of solutions to the above problems. For other results of the related problems,
the interested readers may refer to [, ] and the references therein. Problem (.) was dis-
cussed and extended to the more general problem of which the right-hand side is f (x)/uα(x)

in []. For more related questions, refer to [–].
In this paper, we generalize the results in [] to the case when the left-hand side is a

p-Laplace operator. Due to the nonlinearity of a p-Laplace operator and the anisotropic
variable exponent α(x), some classical methods may not directly be applied to our prob-
lem. We apply the method of regularization and the Schauder fixed point theorem, con-
struct a suitable test function as well as a necessary compactness argument to overcome
the difficulties arising from a variable exponent and a nonlinear differential operator and
give an almost complete classification of coefficient m and variable exponent α(x), then
we prove the existence and regularity of solutions.

2 Preliminaries
Firstly, we give the definition of weak solutions to problem (.).

Definition . A function u ∈ W ,p
 (�) is called a weak solution of problem (.) if the

following identity holds:

∫

�

|∇u|p–∇u∇ϕ dx =
∫

�

f
uα(x) ϕ dx, ∀ϕ ∈ C∞

 (�). (.)

In order to prove our results, we will consider the following approximation problem:

⎧
⎨

⎩

– div(|∇un|p–∇un) = fn
(un+ 

n )α(x) , x ∈ �,

un = , x ∈ ∂�,
(.)

where fn(x) = min{f (x), n}, n ∈ N .

Lemma . Problem (.) has a nonnegative solution un in W ,p
 (�)

⋂
L∞(�).
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Proof Let n ∈ N be fixed, and ω be a function in Lp(�). It is not difficult to prove that the
following problem has a unique solution v ∈ W ,p

 (�)
⋂

L∞(�) (see [, ]):

⎧
⎨

⎩

– div(|∇v|p–∇v) = fn
(|ω|+ 

n )α(x) , x ∈ �,

v = , x ∈ ∂�.
(.)

So, for any ω ∈ Lp(�), we define the mapping � : Lp(�) → Lp(�) as �(ω) = v. Taking v as
a test function for (.), we have

∫

�

|∇v|p dx =
∫

�

fn

(|ω| + 
n )α(x)

v dx ≤
∫

�

n
( 

n )α+ v dx ≤ nα++
∫

�

|v|dx.

By the Poincaré inequality (on the left-hand side) and the Sobolev embedding theorem on
the right-hand side (W ,p(�) ↪→ L(�)), we get that

‖v‖p
W ,p ≤ Cnα++‖v‖W ,p ,

this implies that

‖v‖W ,p ≤ Cn
α++
p– .

Since the embedding W ,p(�) ↪→ Lp(�) is compact, we obtain that � is a compact op-
erator. Moreover, if u = λ�u for some  < λ ≤ , then �u = u

λ
and hence ‖u‖Lp(�) ≤

‖u‖W ,p(�) ≤ C for a constant C independent of λ. Then, by Schauder’s fixed point the-
orem, we know that there exists un ∈ W ,p

 (�) such that un = �(un), i.e., problem (.)
has a solution. Since fn

(un+ 
n )α(x) ≥ , the maximum principle in [, ] shows that un ≥ ,

un ∈ L∞(�). �

Lemma . The sequence {un} is increasing with respect to n, un >  in �, and for every
�′ ⊂⊂ �, there exists C�′ >  (independent of n) such that

un(x) ≥ C�′ >  for every x ∈ �′, for every n ∈ N . (.)

Proof Due to  ≤ fn ≤ fn+ and α(x) > , we have that

– div
(|∇un|p–∇un

)
=

fn

(un + 
n )α(x)

≤ fn+

(un + 
n+ )α(x)

,

– div
(|∇un+|p–∇un+

)
=

fn+

(un+ + 
n+ )α(x)

,

so that

– div
(|∇un|p–∇un – |∇un+|p–un+

)
= fn+

(un+ + 
n+ )α(x) – (un + 

n+ )α(x)

(un + 
n+ )α(x)(un+ + 

n+ )α(x)
.

Choosing (un – un+)+ = max{un – un+, } as a test function and observing that

(|∇un|p–∇un – |∇un+|p–∇un+
)∇(un – un+)+ ≥ ,
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((

un+ +


n + 

)α(x)

–
(

un +


n + 

)α(x))

(un – un+)+ ≤ ,

we get that

 ≤
∫

�

(|∇un|p–∇un – |∇un+|p–∇un+
)∇(un – un+)+ dx ≤ ,

which implies that (un – un+)+ =  a.e. in �, that is, un ≤ un+ for every n ∈ N . Since the
sequence {un} is increasing with respect to n, we only need to prove that (.) holds for
u. Using Lemma ., we know that u ∈ L∞(�), i.e., there exists a constant C (depending
only on � and N ) such that

‖u‖L∞(�) ≤ C‖f‖L∞(�) ≤ C,

then

– div
(|∇u|p–∇u

)
=

f

(u + )α(x) ≥ f

(C + )α(x) .

Since f
(C+)α(x) ≥ , f

(C+)α(x) �≡ , the strong maximum principle implies that u >  in � and
(.) holds for u. Because of the monotonicity of un, (.) holds for un. �

Remark . If un and vn are two solutions of (.), following the lines of the proof of the
first part in Lemma ., we may show that un ≤ vn. By symmetry, this implies that the
solution of (.) is unique.

Lemma . The solution u to problem (.) with n =  satisfies

∫

�

u–r
 dx < ∞, ∀r < . (.)

Proof By min{f (x),}
(u+)α(x) ≤  and Lemma . in [], we know that there exists  < β <  such

that u ∈ C,β (�) and ‖u‖C,β ≤ C, which implies that the gradient of u exists everywhere,
then the Hopf lemma in [] shows that ∂u(x)

∂ν
>  in �, where ν is the outward unit normal

vector of ∂� at x. Moreover, following the lines of the proof of lemma in [], we get that

∫

�

ur
 dx < ∞ if and only if r > –. �

We know clearly that the estimates on un depend on f and α(x), we will discuss this in
different cases.

3 The case 0 < α– ≤ α(x) ≤ α+ < 1
In this case, we obtain a priori estimates on un in H

(�) only if f is more regular than
L(�). We have the following results.

Lemma . ([]) Let un be the solution of (.) with  < α– ≤ α(x) ≤ α+ < , and suppose
that f ∈ Lm(�) with m = Np

Np–N+p+(N–p)α– = ( p∗
–α– )′. Then the sequence {un} is bounded in

W ,p
 (�).
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Once we have the boundedness of un, we can prove an existence result for (.).

Theorem . ([]) Suppose that f is a nonnegative function in Lm(�) (f �≡ ), with m =
Np

Np–N+p+(N–p)α– = ( p∗
–α– )′, f �≡ , and let  < α– ≤ α(x) ≤ α+ < . Then problem (.) has a

solution u ∈ W ,p
 (�) satisfying (.).

The summability of u depends on the summability of f , which is proved in the next
lemma.

Lemma . Suppose that f ∈ Lm(�), m ≥ Np
Np–N+p+(N–p)α– , and let  < α– ≤ α(x) ≤ α+ < .

Then the solution u of (.) given by Theorem . is such that:
(i) if m > N

p , then u ∈ L∞(�);
(ii) if Np

Np–N+p+(N–p)α– ≤ m < N
p , then u ∈ Ls(�), s = Nm(α–+p–)

N–pm .

Proof To prove (i), let k >  and define Gk(s) = (s – k)+. Taking Gk(un) as a test function in
(.), we obtain

∫

�

∣
∣∇Gk(un)

∣
∣p dx ≤

∫

�

(∣
∣∇Gk(un)

∣
∣p–∇Gk(un)

) · ∇Gk(un) dx =
∫

�

fnGk(un)
(un + 

n )α(x)
dx.

Since Gk(un) �= , it implies that
∫

�

∣
∣∇Gk(un)

∣
∣p dx ≤

∫

�

fGk(un) dx. (.)

Starting from inequality (.), Theorem . in [] shows that there exists a constant C
(independent of n) such that

‖un‖L∞(�) ≤ C‖f ‖Lm(�),

which implies that u belongs to L∞(�).
To prove (ii), noting that if m = Np

Np–N+p+(N–p)α– , s = Np
N–p = p∗, since u ∈ W ,p

 (�), the result
when m = Np

Np–N+p+(N–p)α– is true by the Sobolev embedding theorem. If Np
Np–N+p+(N–p)α– <

m < N
p , letting δ >  and choosing upδ–p+

n as a test function in (.), using Hölder’s inequal-
ity, we get that

(pδ – p + )
∫

�

|∇un|pupδ–p
n dx

≤
∫

{x∈�,un≥}
fupδ–p+

n

uα–
n

dx +
∫

{x∈�,un<}
fupδ–p+

n

uα+
n

dx

= ‖f ‖Lm(�)

((∫

�

u(pδ–p+–α–)m′
n dx

) 
m′

+ |�| α+–α–
(pδ–p+–α–)m′

(∫

�

u(pδ–p+–α–)m′
n dx

) pδ–p+–α+
(pδ–p+–α–)m′ )

. (.)

By the Sobolev inequality (on the left-hand side), we have that

∫

�

|∇un|pupδ–p
n dx =


δp

∫

�

∣
∣∇uδ

n
∣
∣p dx ≥ S

δp

(∫

�

up∗δ
n dx

) p
p∗

, (.)
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where S is the constant of the Sobolev embedding theorem. Combining with (.) and
(.), we have that

S(pδ – p + )
δp

(∫

�

up∗δ
n dx

) p
p∗

≤ ‖f ‖Lm(�)

((∫

�

u(pδ–p+–α–)m′
n dx

) 
m′

+ |�| α+–α–
(pδ–p+–α–)m′

(∫

�

u(pδ–p+–α–)m′
n dx

) pδ–p+–α+
(pδ–p+–α–)m′ )

. (.)

We choose δ in such a way that p∗δ = (pδ – p +  – α–)m′, i.e.,

δ =
(α– + p – )m(N – p)

p(N – mp)
,

which yields that δ >  if and only if Np
Np–N+p+(N–p)α– < m < N

p , and that p∗δ = Nm(α–+p–)
N–pm = s.

Therefore, (.) becomes

(∫

�

us
n dx

) p
p∗

≤ δp

S(pδ – p + )
‖f ‖Lm(�)

((∫

�

us
n dx

) 
m′

+ |�| α+–α–
(pδ–p+–α–)m′

(∫

�

us
n dx

) pδ–p+–α+
(pδ–p+–α–)m′ )

,

which implies that

(∫

�

us
n dx

) p–+α+
p∗δ ≤ δp

S(pδ – p + )
‖f ‖Lm(�)

((∫

�

us
n dx

) α+–α–
p∗δ

+ |�| α+–α–
p∗δ

)

. (.)

Using Young’s inequality on the right-hand side in (.), we have that

(∫

�

us
n dx

) p–+α+
p∗δ ≤ δp

S(pδ – p + )
‖f ‖Lm(�)

(

ε

(∫

�

us
n dx

) p–+α+
p∗δ

+ε
– α+–α–

p–+α– + |�| α+–α–
p∗δ

)

,

where ε = S(pδ–p+)
δp‖f ‖Lm(�)

. Thus, we get that

(∫

�

us
n dx

) p–+α+
p∗δ ≤ δp‖f ‖Lm(�)

S(pδ – p + )

((
δp‖f ‖Lm(�)

S(pδ – p + )

) α+–α–
p–+α–

+ |�| α+–α–
p∗δ

)

. (.)

Therefore, we know that un is bounded in Ls(�), so is u ∈ Ls(�). �

Theorem . Suppose that f ∈ Lm(�), (p–+α+)N
(α–+p–)(N–p)+p(p–+α+) ≤ m < Np

Np–N+p+(N–p)α– , and

 < α– ≤ α(x) ≤ α+ < . Then problem (.) has a solution u in W ,q
 (�), q = Nm(α–+p–)

N–m(–α–) .

Proof The lines of our proof are that if we can prove that un is bounded in W ,q
 (�) (with

q as in the statement), the existence of a solution u in W ,q
 (�) of (.) will be proved by

passing to the limit in (.) as in the proof of Theorem .. To prove that un is bounded



Chu et al. Boundary Value Problems  (2017) 2017:155 Page 7 of 15

in W ,q
 (�), we begin by proving that it is bounded in Ls(�), with s = Nm(α–+p–)

N–pm . To attain
this goal, we choose upδ–p+

n as a test function in (.) as in the statement of Lemma .,
where p–+α+

p ≤ δ < ; however, ∇upδ–p+
n will be singular at un = . Therefore, we choose

(un + ε)pδ–p+ – εpδ–p+ as a test function in (.), where ε < 
n for n fixed. We have that

(pδ – p + )
∫

�

|∇un|p(un + ε)pδ–p dx ≤
∫

�

fn(un + ε)pδ–p+

(un + ε)α(x) dx.

Since fn ≤ f , we have that

(pδ – p + )
∫

�

|∇un|p(un + ε)pδ–p dx

≤
∫

�

f (un + ε)pδ–p+–α–
dx +

∫

�

f (un + ε)pδ–p+–α+
dx. (.)

By the Sobolev embedding theorem (W ,p
 (�) ↪→ Lp∗ (�)) on the left-hand side, it follows

that

∫

�

|∇un|p(un + ε)pδ–p dx =
∫

�

|∇((un + ε)δ – εδ)|p
δp dx

≥ S
δp

(∫

�

(
(un + ε)δ – εδ

)p∗
dx

) p
p∗

, (.)

where S is the best constant of the Sobolev embedding theorem. Combining (.) with
(.), we have that

S(pδ – p + )
δp

(∫

�

(
(un + ε)δ – εδ

)p∗
dx

) p
p∗

≤
∫

�

f (un + ε)pδ–p+–α–
dx +

∫

�

f (un + ε)pδ–p+–α+
dx. (.)

Using Hölder’s inequality on the right-hand side, we get

S(pδ – p + )
δp

(∫

�

(
(un + ε)δ – εδ

)p∗
dx

) p
p∗

≤ ‖f ‖Lm(�)

(∫

�

(un + ε)(pδ–p+–α–)m′ dx
) 

m′

+ |�| α+–α–
(pδ–p+–α–)m′ ‖f ‖Lm(�)

(∫

�

(un + ε)(pδ–p+–α–)m′
dx

) pδ–p+–α+
(pδ–p+–α–)m′

.

Letting ε → , we get (.), i.e.,

(∫

�

up∗δ
n dx

) p
p∗

≤ δp

S(pδ – p + )
‖f ‖Lm(�)

((∫

�

u(pδ–p+–α–)m′
n dx

) 
m′

+ |�| α+–α–
(pδ–p+–α–)m′

(∫

�

u(pδ–p+–α–)m′
n dx

) pδ–p+–α+
(pδ–p+–α–)m′ )

,
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where δ is chosen in such a way that p∗δ = (pδ – p +  – α–)m′, i.e.,

δ =
(α– + p – )(N – p)m

p(N – mp)
.

If m = (p–+α+)N
(α–+p–)(N–p)+p(p–+α+) , we choose δ = p–+α+

p in (.), and letting ε → , we have
that

(∫

�

up∗δ
n dx

) p
p∗

≤ δp

S(pδ – p + )

(∫

�

fupδ–p+–α–
n dx +

∫

�

f dx
)

.

Using Hölder’s inequality and Young’s inequality, we get that

(∫

�

up∗δ
n dx

) p
p∗

≤ δp‖f ‖Lm(�)

S(pδ – p + )

(

ε

(∫

�

up∗δ
n dx

) p
p∗

+ ε
– p∗

pm′–p∗ + |�| 
m′

)

,

where ε = S(pδ–p+)
δp‖f ‖Lm(�)

. Thus we have that

(∫

�

up∗δ
n dx

) p
p∗

≤ δp‖f ‖Lm(�)

S(pδ – p + )

((
δp‖f ‖Lm(�)

S(pδ – p + )

) p∗
pm′–p∗

+ |�| 
m′

)

.

Therefore we obtain that un is bounded in L
N(p–+α+)

N–p (�), where N(p–+α+)
N–p is the value of s

for m = (p–+α+)N
(α–+p–)(N–p)+p(p–+α+) .

If (p–+α+)N
(α–+p–)(N–p)+p(p–+α+) < m < Np

Np–N+p+(N–p)α– , it is clear that the inequality on m holds
true if and only if p–+α+

p < δ < , starting from (.) and arguing as in the proof of
Lemma ., we also get that un is bounded in Ls(�) with s = Nm(α–+p–)

N–pm .
The right-hand side of (.) is bounded with respect to n (and ε, which we take smaller

than ) by using the estimate on un in Ls(�) and the choice of δ.
Since δ < ,

∫

�

|∇un|p
(un + ε)p–pδ

dx =
∫

�

|∇un|p(un + ε)pδ–p dx ≤ C.

If q = Nm(α–+p–)
N–m(–α–) < p, by Hölder’s inequality, we have that

∫

�

|∇un|q dx =
∫

�

|∇un|q
(un + ε)(–δ)q (un + ε)(–δ)q dx

≤
(∫

�

|∇un|p
(un + ε)p(–δ) dx

) q
p
(∫

�

(un + ε)
pq(–δ)

p–q dx
)– q

p

≤ C
(∫

�

(un + ε)
pq(–δ)

p–q dx
)– q

p
. (.)

The choice of δ and the value of q are such that pq(–δ)
p–q = s, so that the right-hand side of

(.) is bounded with respect to n and ε. Hence, un is bounded in W ,q
 (�). �
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Theorem . Suppose that f ∈ Lm(�), 
–p–α++pδ

< m < (p–+α+)N
(α–+p–)(N–p)+p(p–+α+) ( p–+α–

p < δ <
p–+α+

p ), and  < α– ≤ α(x) ≤ α+ < . Then problem (.) has a solution u in W ,q
 (�), q =

Nm(α–+p–)
N–m(–α–) .

Proof The lines of our proof are similar to those in the proof of Theorem .. We also
begin by proving that un is bounded in Ls(�), with s = Nm(α–+p–)

N–pm . To this aim, we also
choose (un + ε)pδ–p+ – εpδ–p+ as a test function in (.), where p–+α–

p < δ < p–+α+

p , ε < 
n

for n fixed. Since fn ≤ f , using the Sobolev embedding theorem (W ,p
 (�) ↪→ Lp∗ (�)) on

the left-hand side again, we have that

S(pδ – p + )
δp

(∫

�

(
(un + ε)δ – εδ

)p∗
dx

) p
p∗

≤
∫

�

f (un + ε)pδ–p+–α– dx +
∫

�

f (un + ε)pδ–p+–α+ dx,

where S is the best constant of the Sobolev embedding theorem.
Using Hölder’s inequality and Lemma . on the right-hand side, we get that

S(pδ – p + )
δp

(∫

�

(
(un + ε)δ – εδ

)p∗
dx

) p
p∗

≤
∫

�

f (un + ε)pδ–p+–α–
dx +

∫

�

f
up–+α+–pδ



dx

≤ ‖f ‖Lm(�)

(∫

�

(un + ε)(pδ–p+–α–)m′
dx

) 
m′

+ C‖f ‖Lm(�).

Letting ε → , we have that

(∫

�

up∗δ
n dx

) p
p∗

≤ δp

S(pδ – p + )
‖f ‖Lm(�)

((∫

�

u(pδ–p+–α–)m′
n dx

) 
m′

+ C
)

, (.)

where δ is chosen in such a way that p∗δ = (pδ – p +  – α–)m′, i.e.,

δ =
(α– + p – )(N – p)m

p(N – mp)
.

If  < m < (p–+α+)N
(α–+p–)(N–p)+p(p–+α+) , it is clear that the inequality on m holds true if and only

if p–+α–

p < δ < p–+α+

p , and arguing as to the case m = (p–+α+)N
(α–+p–)(N–p)+p(p–+α+) in the proof of

Theorem ., we also obtain that un is bounded in Ls(�), with s = Nm(α–+p–)
N–pm .

Since δ < ,
∫

�

|∇un|p
(un + ε)p–pδ

dx =
∫

�

|∇un|p(un + ε)pδ–p dx ≤ C.

If q = Nm(α–+p–)
N–m(–α–) < p, similarly to the proof of Theorem ., we have by Hölder’s inequality

that

∫

�

|∇un|q dx ≤ C
(∫

�

(un + ε)
pq(–δ)

p–q dx
)– q

p
.
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Due to the choice of δ and the value of q, the right-hand side of the above inequality is
bounded with respect to n and ε. Hence, un is bounded in W ,q

 (�). �

4 The case 1 < α– ≤ α(x) ≤ α+

The case  < α– ≤ α(x) ≤ α+ has many analogies with the case  < α– < α+ < . In this case,
we can also prove that un is bounded in W ,p

 (�) only if f is more regular than L(�) and
α+ and α– is close to . Hence we obtain the existence of problem (.).

Lemma . Suppose that f ∈ Lm(�) (m > ), let un be the solution of (.) with  < α– <
α+ <  – 

m . Then un is bounded in W ,p
 (�).

Proof Taking un as a test function in (.), we obtain that

∫

�

|∇un|p dx ≤
∫

�

f
uα(x)–

n
dx.

Using Lemma . and Lemma ., we know that un ≥ u and there exists a constant M > 
s.t. u ≤ M. Hence ( M

u
)α(x)– ≤ ( M

u
)α+–, and we have that

∫

�

|∇un|p dx ≤
∫

�

f
uα(x)–


dx ≤ (

 + Mα+–α–)
∫

�

f
uα+–


dx.

Using Hölder’s inequality on the right-hand side and Lemma ., we obtain

∫

�

|∇un|p dx ≤ C
(
 + Mα+–α–)‖f ‖Lm(�).

Therefore, un is bounded in W ,p
 (�). �

Once we have the boundedness of un, we can prove the following existence theorem
along the lines of Theorem ..

Theorem . Suppose that f ∈ Lm(�) (m > ), f �≡  and  < α– < α+ < – 
m . Then problem

(.) has a solution u in W ,p
 (�).

The summability of u can be proved along the lines of Lemma . with small changes.

Lemma . Suppose that f ∈ Lm(�) (m > ) and  < α– < α+ <  – 
m . Then the solution u

of (.) given by Theorem . is such that:
(i) if m > N

p , then u ∈ L∞(�);
(ii) if (p–+α+)N

(α–+p–)(N–p)+p(p–+α+) ≤ m < N
p , then u ∈ Ls(�), s = Nm(α–+p–)

N–pm .

Proof The proof of (i) is similar to the proof of Lemma .(i), we omit the details here.
To prove (ii), we choose upδ–p+

n as a test function with δ ≥ p–+α+

p in (.). Similarly to
the proof of Lemma ., we obtain that

S(pδ – p + )
δp

(∫

�

up∗δ
n dx

) p
p∗

≤
∫

�

fupδ–p+–α–
n dx +

∫

�

fupδ–p+–α+
n dx. (.)
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If m = (p–+α+)N
(α–+p–)(N–p)+p(p–+α+) , choosing δ = p–+α+

p in (.), by Hölder’s inequality, we get
that

S(pδ – p + )
δp

(∫

�

up∗δ
n dx

) p
p∗

≤ ‖f ‖Lm(�)

(∫

�

u(pδ–p+–α–)m′
n dx

) 
m′

+ |�|– 
m ‖f ‖Lm(�).

We choose δ in such a way that p∗δ = (pδ – p +  – α–)m′, i.e., δ = (α–+p–)m(N–p)
p(N–mp) . Since

m = (p–+α+)N
(α–+p–)(N–p)+p(p–+α+) , we get that p

p∗ > 
m′ . Because s = p∗δ, we have the boundedness

of un in L
N(p–+α+)

N–p (�), which is the value of s for m = N(p–+α+)
(α–+p–)(N–p)+p(p–+α+) .

If (p–+α+)N
(α–+p–)(N–p)+p(p–+α+) < m < N

p , starting from inequality (.), using Hölder’s inequality,
we get that

S(pδ – p + )
δp

(∫

�

up∗δ
n dx

) p
p∗

≤ ‖f ‖Lm(�)

((∫

�

u(pδ–p+–α–)m′
n dx

) 
m′

+ |�| α+–α–
(pδ–p+–α–)m′

(∫

�

u(pδ–p+–α–)m′
n dx

) pδ–p+–α+
(pδ–p+–α–)m′ )

.

We also choose δ in such a way that p∗δ = (pδ – p +  –α–)m′, which yields that δ > p–+α+

p

if and only if m > (p–+α+)N
(α–+p–)(N–p)+p(p–+α+) , and that p∗δ = s. So, since p

p∗ > 
m′ being m < N

p , we
have the boundedness of un in Ls(�), so does u ∈ Ls(�). �

Moreover, we can prove that a positive power of un is bounded in W ,p
 (�) only if f is

more regular than L(�) and α+ is close to α–, and we only have the boundedness of un in
W ,p

loc (�).

Lemma . Suppose that f ∈ Lm(�) (m > ), let un be the solution of (.) with  < α– ≤
α(x) ≤ α+ and α+ – α– <  – 

m . Then u
p–+α–

p
n is bounded in W ,p

 (�), and un is bounded in
W ,p

loc (�) and in Ls(�), with s = N(α–+p–)
N–p .

Proof Taking uα–
n as a test function in (.), since uα–

n
(un+ 

n )α– ≤  and fn ≤ f , by Hölder’s
inequality and Lemma ., we get that

α–
∫

�

|∇un|puα––
n dx ≤

∫

�

fuα–
n

(un + 
n )α– dx +

∫

�

fuα–
n

uα+
n

dx

≤
∫

�

f dx +
∫

�

f
uα+–α–

n
dx ≤ |�|– 

m ‖f ‖Lm(�) + C‖f ‖Lm(�).

Since
∫

�

|∇un|puα––
n dx =

pp

(α– + p – )p

∫

�

∣
∣∇u

α–+p–
p

n
∣
∣p dx,

we have that

ppα–

(α– + p – )p

∫

�

∣
∣∇u

α–+p–
p

n
∣
∣p dx ≤ (

C + |�|– 
m
)‖f ‖Lm(�).

Thus, we have that u
α–+p–

p
n is bounded in W ,p

 (�).
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Applying the Sobolev embedding theorem to u
α–+p–

p
n (W ,p

 (�) ↪→ Lp∗ (�)), we get that

S
(∫

�

∣
∣u

α–+p–
p

n
∣
∣p∗

dx
) p

p∗
≤

∫

�

∣
∣∇u

α–+p–
p

n
∣
∣p dx,

where S is the best constant of the Sobolev embedding theorem. Since the boundedness

of u
α–+p–

p
n in W ,p

 (�), we thus have the boundedness of un in Ls(�).
To prove the boundedness of un in W ,p

loc (�), we choose unϕ
p as a test function in (.),

where ϕ ∈ C∞
 (�), �′ = {x ∈ �,ϕ �= }. By (.), we have that

∫

�

|∇un|pϕp dx + p
∫

�

(|∇un|p–∇un
) · ∇ϕunϕ

p– dx

≤
∫

�

fnϕ
p

uα(x)–
n

dx ≤
∫

�

fnϕ
p

Cα(x)–
�′

dx ≤ 
min{Cα+–

�′ , Cα––
�′ }

∫

�

fnϕ
p dx.

By Young’s inequality, we have that

p
∫

�

(|∇un|p–∇un
) · ∇ϕunϕ

p– dx

≤ p 
(p–)

p
p–

∫

�

∣
∣|∇un|p–∇un

∣
∣

p
p– ϕp dx +

p((p – ))p–

p

∫

�

|∇ϕ|pup
n dx

≤ 


∫

�

|∇un|pϕp dx +
(
(p – )

)p–
∫

�

|∇ϕ|pup
n dx.

Since un is bounded in Ls(�) (where s ≥ p), by Hölder’s inequality, we obtain that




∫

�

|∇un|pϕp dx

≤ 
min{Cα+–

�′ , Cα––
�′ }

∫

�

fnϕ
p dx +

(
(p – )

)p–
∫

�

|∇ϕ|pup
n dx

≤ ‖ϕ‖p
L∞(�)

min{Cα+–
�′ , Cα––

�′ }
∫

�

f dx +
(
(p – )

)p–‖∇ϕ‖p
L∞(�)

∫

�

up
n dx

≤ |�|– 
m ‖ϕ‖p

L∞(�)‖f ‖Lm(�)

min{Cα+–
�′ , Cα––

�′ } +
(
(p – )

)p–|�|– p
s ‖∇ϕ‖p

L∞(�)

(∫

�

us
n dx

) p
s
,

and hence un is bounded in W ,p
loc (�). �

Once we have the boundedness of un, we can prove the following existence theorem
along the lines of Theorem ..

Theorem . Suppose that f is a nonnegative function in Lm(�) (m > ), (f �≡ ),  < α– ≤
α(x) ≤ α+ and α+ –α– < – 

m . Then problem (.) has a solution u in W ,p
loc (�). Furthermore,

u
α–+p–

p belongs to W ,p
 (�).

The summability of u can be proved as the following lemma, the proof is similar to the
proof of Lemma .
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Lemma . Suppose that f ∈ Lm(�),  < α– ≤ α(x) ≤ α+ and α+ – α– <  – 
m . Then the

solution u of (.) given by Theorem . is such that:
(i) if m > N

p , then u ∈ L∞(�);
(ii) if N(p–+α+)

(α–+p–)(N–p)+p(p–+α+) ≤ m < N
p , then u ∈ Ls(�), s = Nm(α–+p–)

N–mp .

5 The case 0 < α– < 1 < α+

If  < α– <  < α+, the boundedness of un in W ,p
 (�) can also be obtained only if f is more

regular than L(�). Furthermore, the existence of problem (.) is obtained, the proof has
many analogies with the case  < α– < α+ < . We have the following results.

Lemma . Suppose that f ∈ Lm(�), with m = Np
Np–N+p+(N–p)α– , and let un be the solution of

(.) with  < α– <  < α+ <  – 
m . Then the sequence {un} is bounded in W ,p

 (�).

Proof We choose un as a test function in (.), by Hölder’s inequality and Lemma ., since
fn ≤ f , we have that

∫

�

|∇un|p dx ≤
∫

�

fu–α–
n dx +

∫

�

f
uα+–


dx

≤ ‖f ‖Lm(�)

(∫

�

u(–α–)m′
n dx

) 
m′

+ C‖f ‖Lm(�). (.)

Applying the Sobolev embedding theorem on the left-hand side, we get

S
(∫

�

up∗
n dx

) p
p∗

≤
∫

�

|∇un|p dx. (.)

Combining (.) with (.) implies that

S
(∫

�

up∗
n dx

) p
p∗

≤ ‖f ‖Lm(�)

(∫

�

u(–α–)m′
n dx

) 
m′

+ C‖f ‖Lm(�).

Let p∗ = ( – α–)m′, it follows that

S
(∫

�

up∗
n dx

) p
p∗

≤ ‖f ‖Lm(�)

(∫

�

up∗
n dx

) 
m′

+ C‖f ‖Lm(�).

By Young’s inequality, we get that

S
(∫

�

up∗
n dx

) p
p∗

≤ ‖f ‖Lm(�)

(

ε

(∫

�

up∗
n dx

) p
p∗

+ ε
– p∗

pm′–p∗
)

+ C‖f ‖Lm(�).

Thus, we have that

(∫

�

up∗
n dx

) p
p∗

≤ ‖f ‖Lm(�)

S – ε‖f ‖Lm(�)

(
ε

– p∗
pm′–p∗ + C

)
.
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We choose ε = S
‖f ‖Lm(�)

to get

(∫

�

up∗
n dx

) p
p∗

=
‖f ‖Lm(�)

S

((
‖f ‖Lm(�)

S

) p∗
pm′–p∗

+ C
)

.

So the boundedness of un in Lp∗ (�) is obtained. Using the estimate and (.) again, we
have the estimate of un in W ,p

 (�). �

Once the boundedness of un in W ,p
 (�) is obtained, we can prove the following existence

theorem.

Theorem . Suppose that f ∈ Lm(�) with m = Np
Np–N+p+(N–p)α– , f �≡ , and  < α– <  <

α+ <  – 
m . Then problem (.) has a solution u in W ,p

 (�).

Lemma . Suppose that f ∈ Lm(�) with m ≥ Np
Np–N+p+(N–p)α– , and  < α– <  < α+ <  – 

m .
Then the solution u of (.) given by Theorem . is such that:

(i) if m > N
p , then u ∈ L∞(�);

(ii) if Np
Np–N+p+(N–p)α– ≤ m < N

p , then u ∈ Ls(�), s = Nm(α–+p–)
N–mp .

Proof The proof of (i) is similar to that for Lemma .(i), we omit the details here.
To prove (ii), if N(p–+α+)

(α–+p–)(N–p)+p(p–+α+) ≤ m < N
p , the proof is identical to that for Lem-

ma ., we also omit it here.
If m = Np

Np–N+p+(N–p)α– , we can prove the results by the Sobolev embedding theorem.
If Np

Np–N+p+(N–p)α– < m < N(p–+α+)
(α–+p–)(N–p)+p(p–+α+) , we choose  < δ < p–+α+

p , and use once

again upδ–p+
n as a test function in (.). Using δ >  > p–+α–

p , as well as Hölder’s inequality,
the Sobolev embedding theorem, Lemma ., we get that

S(pδ – p + )
δp

(∫

�

up∗δ
n dx

) p
p∗

≤
∫

�

fupδ–p+–α–
n dx +

∫

�

f
up–+α+–pδ



dx

≤ ‖f ‖Lm(�)

(∫

�

u(pδ–p+–α–)m′
n dx

) 
m′

+ C‖f ‖Lm(�).

The choice of δ in such a way that p∗δ = (pδ – p +  – α–)m′ yields that  < δ < p–+α+

p

if and only if Np
Np–N+p+(N–p)α– < m < N(p–+α+)

(α–+p–)(N–p)+p(p–+α+) , and that p∗δ = s. The choice of
m < N

p implies that p
p∗ > 

m′ . Thus we have the boundedness of un in Ls(�), and so does the
limit u in Ls(�). �

6 Conclusions
In this paper, we study the existence and regularity of solutions to the quasilinear elliptic
problem with nonlinear singular terms and variable exponent. Due to the nonlinearity of
a p-Laplace operator and the anisotropic variable exponent α(x), some classical methods
may not directly be applied to our problem. We construct a suitable test function and
apply the Leray-Schauder fixed point theorem to prove the existence of positive solutions
with necessary a priori estimate and compact argument. Furthermore, we prove that the
existence and regularity of solutions depend on the summability of f and the value of α(x).
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