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Abstract
In this paper we study the Schrödinger-Poisson system

{
–�u + V(x)u + K (x)φu = a(x)|u|m–2u + λb(x)|u|q–2u, in R

3

–�φ = K (x)u2, lim|x|→∞ φ(x) = 0, in R
3,

(.)

where the potential V(x) and the weighted functions a(x),b(x) are positive and
bounded inR

3, K (x) ∈ L2(R3)∪ L∞(R3) and K (x) ≥ 0 inR3. We prove the existence of a
positive solution (u,φ) ∈W1,2(R3)×D1,2(R3) for 4 < q <m < 2∗ = 6 and λ ∈R.

MSC: 35J50; 35J75; 35J92
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1 Introduction and main results
In this paper, we study the existence of positive solutions for the Schrödinger-Poisson
system

⎧⎨
⎩–�u + V (x)u + K(x)φu = a(x)|u|m–u + λb(x)|u|q–u, in R



–�φ = K(x)u, lim|x|→∞ φ(x) = , in R


(.)

where V (x), a(x) and b(x) are positive and bounded in R
, K(x) ∈ L(R) ∪ L∞(R) and

K(x) ≥  in R
. We will prove the existence of a positive solution (u,φ) ∈ W ,(R) ×

D,(R) for λ ∈ R and  < q < m < ∗, where ∗ =  is the critical exponent for the Sobolev
embedding in dimension . The assumption ‘ < q < m < ’ implies that the nonlinear term
f (x, u) = a(x)|u|m–u + λb(x)|u|q–u in (.) is superlinear, which is similar to those in [].

Such a system, also known as the Schrödinger-Maxwell system, arises in many fields of
physics. For example, the Schrödinger-Poisson system can describe the interaction of a
charged particle with its own electrostatic field in quantum mechanics. The unknowns
u and φ represent the wave functions associated with the particle and electric potential,
and the functions V and K are, respectively, an external potential and nonnegative density
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charge. We refer to Benci and Fortunato [] for more details on the physical aspects. This
model can also appear in semiconductor theory to describe solitary waves [].

In recent years, the Schrödinger-Poisson system⎧⎨
⎩–�u + V (x)u + K(x)φu = f (x, u), in R



–�φ = K(x)u, lim|x|→∞ φ(x) = , in R


(.)

has been widely studied under various assumptions on V , K , and f via variational methods,
and existence, nonexistence and multiplicity results have been obtained in many papers,
see [–].

Very recently, Cerami and Vaira [] considered problem (.) with K(x) ∈ L(R). They
proved that (.) with V (x) =  and f (x, u) = a(x)|u|p–u ( < p < ) possesses a positive
ground state solution by minimization on the Nehari manifold when a(x), K(x) : R → R

are nonnegative functions such that

lim|x|→∞ a(x) = a∞ > , lim|x|→∞ K(x) = . (.)

Similar results for V (x) = λ >  can be found in [, , ].
Liu et al. [] also considered the existence of a solution for problem (.) with the

potential V (x) ∈ C(R) satisfying infx∈R V (x) > –∞ and for every M > , meas({x ∈
R

|V (x) ≤ M}) < ∞. It is well known that this assumption guarantees that the embedding
W ,(R) ↪→ Lp(R) is compact for each  ≤ p < . For problem (.), the function f (x, u)
verifies uf (x, u) ≥ F(x, u) with F(x, u) =

∫ u
 f (x, t)dt. Similar assumptions can be found in

[–].
However, to the best of our knowledge, there are few results on problem (.) when the

potential V (x) and the weighted functions a(x), b(x) are bounded in R
N . In this paper, we

are interested in the existence of a solution to problem (.) with V (x) satisfying

(H) The function V (x) ∈ C(R) and  < α := infx∈R V (x) < supx∈R V (x) =: α < ∞;
(H) lim|x|→∞ V (x) = α.

Clearly, V (x) is not necessarily radial and coercive. For these assumptions, the embed-
ding W ,(R) ↪→ Lp(R) is not compact. Furthermore, for problem (.), the function
f (x, u) fails to satisfy the assumption uf (x, u) ≥ F(x, u). So the variational technique for
problem (.) becomes more delicate. Arguing as in [, ], to preserve this compact-
ness in some extent for our problem, we split a minimizing sequence {un} into two parts:
un = u′

n + u′′
n (n ∈ N) such that u′

n → u, u′′
n →  in Lm(R, a) ∩ Lq(R, b). We will obtain a

positive solution by using the Nehari manifold method.
In order to state our main results, we introduce some Sobolev spaces and norms. For

p ≥ , let Lp(R) be a usual Lebesgue space with the norm ‖ · ‖p. Denote

E =
{

u ∈ W ,(
R

) :
∫
R

(|∇u| + V (x)|u|)dx < +∞
}

endowed with the norm

‖u‖E =
(∫

R

(|∇u| + V (x)|u|)dx
)/

.

This norm is equivalent to the standard norm on W ,(R) under assumption (H).
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In general, let ‖u‖p,ρ = (
∫
R ρ|u|p dx)/p with p ≥  and ρ = ρ(x) ≥ , =  a.e. in R

. In par-
ticular, denote ‖u‖p = (

∫
R |u|p dx)/p or ‖u‖Lp(�) = (

∫
�

|u|p dx)/p with the domain � ⊂R
.

Let D,(R) be the completion of C∞
 (R) with respect to the norm

‖u‖
D = ‖u‖

D, =
∫
R

|∇u| dx.

The following Sobolev inequality [] is well known. There is a constant S >  such that
for every u ∈D,(R),

‖u‖ ≤ S‖∇u‖
 = S‖u‖

D . (.)

Hence, inequality (.) holds in W ,(RN ) and E. Furthermore, there exists Sp >  such that
for  ≤ p ≤ ,

‖u‖p ≤ Sp‖u‖E , ∀u ∈ E. (.)

It is well known that problem (.) can be reduced to a single equation with a nonlocal
term, see [, ]. In fact, for every u ∈ E, we define the linear functional Lu by

Lu(v) =
∫
R

K(x)uv dx, ∀v ∈D,(
R

). (.)

If K(x) ∈ L∞(R), by the Hölder inequality and the Sobolev inequalities (.) and (.), we
get

∣∣Lu(v)
∣∣ ≤ ‖K‖∞‖u‖

/‖v‖ ≤ S‖K‖∞‖u‖
/‖v‖D , ∀v ∈D,(R). (.)

Similarly, if K ∈ L(R), we have

∣∣Lu(v)
∣∣ ≤ ‖K‖‖u‖

‖v‖ ≤ S‖K‖‖u‖
‖v‖D . (.)

Hence, by the Lax-Milgram theorem, there exists a unique φu ∈D,(R) (see [, ]) such
that

–�φu = K(x)u, in R
. (.)

Moreover, φu has the following integral expression:

φu(x) =


π

∫
R

K(y)u(y)
|x – y| dy, in R

 (.)

and φu(x) >  in R
 if u =  and K(x) ≥ . Therefore, we have from (.) that


π

∫
R

∫
R

K(x)K(y)
|x – y| u(x)u(y) dx dy =

∫
R

K(x)φu(x)u(x) dx. (.)
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If K ∈ L∞(R), it follows (.)-(.) that

‖∇φu‖
 =

∫
R

K(x)φuu dx ≤ d

∫
R

φuu dx

≤ d‖φu‖‖u‖



≤ dS‖∇φu‖‖u‖
E , (.)

and if K ∈ L(R), we have

‖∇φu‖
 =

∫
R

K(x)φuu dx ≤ ‖K‖‖φu‖‖u‖
 ≤ S‖K‖‖∇φu‖‖u‖

E , (.)

where and in the sequel, d = ‖K‖∞. So, it follows from (.) and (.) that there exists
a constant c >  such that

‖φu‖
D ≤ c‖u‖

E , ∀u ∈ E, if K ∈ L∞(
R

) ∪ L(
R

). (.)

Furthermore, inserting φu into the first equation in (.), we obtain

–�u + V (x)u + K(x)φuu = a(x)|u|m–u + λb(x)|u|q–u, in R
. (.)

Let J(u) : E →R be the energy functional associated to (.) defined by

J(u) =


‖u‖

E +



F(u) –

m

∫
R

a(x)|u|m dx –
λ

q

∫
R

b(x)|u|q dx, u ∈ E, (.)

where

F(u) =
∫
R

K(x)φu(x)u(x) dx. (.)

The following assumptions will be used in this paper.

(H) The parameters q, m and λ satisfy  < q < m <  and λ ∈R.
(H) The function K(x) ∈ L∞(R) ∪ L(R) and K(x) ≥  in R

.
(H) The functions a(x), b(x) ∈ C(R) satisfy a ≤ a(x), b(x) ≤ a in R

 for some constants
a, a > .

Under assumptions (H)-(H), it is easy to verify J ∈ C(E,R), and for any v ∈ E, there
holds

J ′(u)v =
∫
R

(∇u∇v + V (x)uv
)

dx +
∫
R

K(x)uφuv dx

–
∫
R

(
a(x)|u|m– + λb(x)|u|q–)uv dx. (.)

Hence, if u ∈ E is a critical point of J , that is, J ′(u)v =  for ∀v ∈ E, then the pair (u,φu)
is a solution of problem (.)(see [, ]). For the sake of simplicity in many cases, we just
say that u ∈ E, instead of (u,φu) ∈ E ×D,(R), is a weak solution of problem (.).

Our main result in this paper is as follows.
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Theorem . Assume that (H)-(H) hold. Then problem (.) admits at least a positive
solution u ∈ E.

Open problem For K(x) ∈ L∞
loc(R), does equation (.) admit a positive solution u ∈ E?

Denis and Carlo in [] considered this problem with unbounded and vanishing potentials
V (x). As far as we know, there is no result on the existence of positive solutions for (.) in
the case K(x) ∈ L∞

loc(R) and V (x), a(x), b(x) satisfy (H), (H), (H), (H). Hence, this case
should be also an interesting topic for future research.

This paper is organized as follows. In Section , we set up the variational framework and
establish some lemmas, which will be used in the proof of Theorem .. In Section , we
prove Theorem ..

2 Preliminaries
In this section, we are going to establish a series of lemmas to prove Theorem ., in which
we tacitly assume that the conditions in Theorem . are satisfied. We first set up the vari-
ational framework for problem (.).

Let J(u) : E →R be the energy functional associated with problem (.) defined by (.),
and its Gateaux derivative is given by (.).

Since the functional J is not bounded from below on E, a good candidate of an appro-
priate subset to study J is the so-called Nehari manifold for problem (.):

N =
{

u ∈ E \ {} : J ′(u)u = 
}

=
{

u ∈ E \ {} : ‖u‖
E + F(u) = ‖u‖m

m,a + λ‖u‖q
q,b

}
. (.)

Notice that, if u ∈N , then

J(u) =
(




–

m

)
‖u‖

E +
(




–

m

)
F(u) +

(

m

–

q

)
λ‖u‖q

q,b

=
(




–

q

)
‖u‖

E +
(




–

q

)
F(u) +

(

q

–

m

)
‖u‖m

m,a

=


‖u‖

E +
(




–

m

)
‖u‖m

m,a +
(




–

q

)
λ‖u‖q

q,b. (.)

Lemma . The Nehari manifold N = ∅.

Proof Let u ∈ E, u ≡  in R
. We consider the function

h(t) = J ′(tu)tu = t‖u‖
E + tF(u) – tm‖u‖m

m,a – λtq‖u‖q
q,b, t > . (.)

Since  < q < m, it follows that h(t) >  for small t >  and h(t) → –∞ as t → ∞. Then
there exists t >  such that h(t) = . Obviously, tu ≡ . Thus, we conclude that tu ∈ N
and N = ∅. �

Lemma . The functional J is coercive and bounded from below on N . Moreover,

d = inf
u∈N

J(u) > . (.)
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Proof Let u ∈N . Then, from (.) and (.), it follows that

‖u‖
E ≤ ‖u‖

E + F(u) = ‖u‖m
m,a + λ‖u‖q

q,b ≤ c
(‖u‖m

E + ‖u‖q
E
)

(.)

and

 ≤ c
(‖u‖m–

E + ‖u‖q–
E

)
(.)

with some c > . If ‖u‖E ≤ , inequality (.) implies  ≤ c‖u‖q–
E . Hence,

‖u‖E ≥ (c)


–q . (.)

If ‖u‖E ≥ , inequality (.) gives  ≤ c‖u‖m–
E and

‖u‖E ≥ max
{

, (c)


–m
}

. (.)

Hence, if u ∈N , it follows from (.) and (.) that there exists c >  such that

‖u‖E ≥ c, ∀u ∈N . (.)

Moreover, it follows from (.) that

J(u) =
(




–

q

)
‖u‖

E +
(




–

q

)
F(u) +

(

q

–

m

)
‖u‖m

m,a

≥
(




–

q

)
‖u‖

E ≥
(




–

q

)
c

 ≡ c.

This shows that the functional J is coercive and bounded from below on N and
d ≥ c > . Then the proof of Lemma . is completed. �

Let {un} be a minimizing sequence for d in N , that is, J(un) → d as n → ∞ and

‖un‖
E + F(un) = ‖un‖m

m,a + λ‖un‖q
q,b, ∀n ∈N. (.)

Furthermore, it follows from (.) that

J(un) ≥
(




–

q

)
‖un‖

E , ∀n ∈N. (.)

This shows that {un} is bounded in E and, from (.), {un} is bounded in Lm(R, a) and
Lq(R, b). Therefore, up to a subsequence, there exists u ∈ E such that as n → ∞,

⎧⎪⎪⎨
⎪⎪⎩

un ⇀ u weakly in E, Lm(R, a), Lq(R, b);

un → u strongly in Lp
loc(R),  ≤ p < ,

un(x) → u(x) a.e. in R
; ‖un‖E ,‖un‖p ≤ M, ∀n ≥ ,  ≤ p ≤ ,

(.)
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with some M > . Since J(un) = J(|un|), we assume un(x) ≥  a.e. in R
 for every n ≥  and

thus u(x) ≥  a.e. in R
. By the weak lower semi-continuity of the norm, we get

‖u‖m
m,a ≤ β := lim inf

n→∞ ‖un‖m
m,a. (.)

By extracting a further subsequence, if necessary, we assume

β = lim
n→∞‖un‖m

m,a. (.)

Denote

θ = ‖u‖m
m,a =

∫
R

a(x)|u|m dx, σ = ‖u‖q
q,b =

∫
R

b(x)|u|q dx. (.)

By weak convergence, it is obvious that θ ∈ [,β]. First, we have the following.

Lemma . There results β > .

Proof Obviously, β ≥ . If β = , we have limn→∞ ‖un‖m
m,a = . Let t ∈ (, ) be such that

q = t + ( – t)m. Then, by the Hölder inequality and (H), we derive

‖un‖q
q,b ≤ b‖un‖t

 ‖un‖m(–t)
m,a , ∀n ∈ N (.)

with the constant b = at–
 a. Since {un} is bounded in E, so it is bounded in Lp(R) ( ≤

p ≤ ), and it follows from (.) that limn→∞ ‖un‖q
q,b = . Then (.) implies that un → 

in E and F(un) →  as n → ∞ and so d = . By Lemma ., it is impossible. The proof of
Lemma . is completed. �

Lemma . If β = θ , then u ∈N and J(u) = d.

Proof If β = θ , then limn→∞ ‖un‖m
m,a = ‖u‖m

m,a. Since un ⇀ u in Lm(R), it follows from the
Brezis-Lieb lemma that un → u in Lm(R, a). Similar to (.), we have

‖un – u‖q
q,b ≤ b‖un – u‖t

 ‖un – u‖m(–t)
m,a , ∀n ≥ , (.)

and un → u in Lq(R, b). Hence, by the weak lower semi-continuity of the norm, we obtain

J(u) =


‖u‖

E +



F(u) –

m

‖u‖m
m,a –

λ

q
‖u‖q

q,b

≤ 


lim inf
n→∞ ‖un‖

E +



lim inf
n→∞ F(un) –


m

lim
n→∞‖un‖m

m,a –
λ

q
lim

n→∞‖un‖q
q,b

≤ lim inf
n→∞

(


‖un|E +




F(un) –

m

‖un‖m
m,a –

λ

q
‖un‖q

q,b

)

= lim inf
n→∞ J(un) = d. (.)

Furthermore, we have from (.) that

‖u‖
E + F(u) ≤ ‖u‖m

m,a + λ‖u‖q
q,b. (.)

If the equality in (.) holds, then u ∈N and the lemma is proved.
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We now assume that the equality in (.) fails to hold. Let

h(t) = J ′(tu)(tu) = t‖u‖
E + tF(u) – tm‖u‖m

m,a – λtq‖u‖q
q,b, t ≥ . (.)

Clearly, h(t) >  for small t >  and h() < . Then there exists t ∈ (, ) such that h(t) = ,
and then tu ∈N and

d ≤ J(tu) = pt‖u‖
E + ptF(u) + ptm‖u‖m

m,a

< p‖u‖
E + pF(u) + p‖u‖m

m,a ≤ lim inf
n→∞ J(un) = d. (.)

Here and in the sequel,

p = – – q– > , p = – – q– > , p = q– – m– > . (.)

Relation (.) is a contradiction, and thus the proof of Lemma . is completed. �

We now turn to study the value of θ . First we introduce the Sobolev space

Y =
{

u ∈ W ,(
R

) : ‖∇u‖
 + α‖u‖

 < ∞}
(.)

endowed with the norm

‖u‖Y :=
(‖∇u‖

 + α‖u‖

)/ =

(∫
R

(|∇u| + α|u|)dx
)/

, (.)

where α is the positive number defined in (H). Consider the Schrödinger-Poisson system

⎧⎨
⎩–�u + αu + K(x)φu = a(x)|u|m–u + λb(x)|u|q–u, in R

,

–�φ = K(x)u, lim|x|→∞ φ(x) = , in R
.

(.)

The functional associated with problem (.) is

Jα(u) =


‖u‖

Y +



F(u) –

m

‖u‖m
m,a –

λ

q
‖u‖q

q,b, (.)

and the associated Nehari manifold is

Nα =
{

u ∈ Y \{} : J ′
α(u)u = 

}
=

{
u ∈ Y \{} : ‖u‖p

Y +F(u) = ‖u‖m
m,a +λ‖u‖q

q,b
}

. (.)

Notice that u ∈Nα ,

Jα(u) =
(




–

m

)
‖u‖

Y +
(




–

m

)
F(u) +

(

m

–

q

)
λ‖u‖q

q,b

=
(




–

q

)
‖u‖

Y +
(




–

q

)
F(u) +

(

q

–

m

)
‖u‖m

m,a

=


‖u‖

Y +
(




–

m

)
‖u‖m

m,a +
(




–

q

)
λ‖u‖q

q,b. (.)
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Finally, we define

dα = inf
u∈Nα

Jα(u). (.)

Lemma . There results d < dα , that is, infu∈N J(u) < infu∈Nα Jα(u).

Proof Similar to the proofs of Lemmas . and ., we can obtain that Nα = ∅ and dα > .
Arguing in Lemma .. in [], we see that there exists the nonnegative function u ∈Nα

such that Jα(u) = dα . On the other hand, from (H)-(H), we infer

∫
R

V (x)|u| dx < α

∫
R

|u| dx, (.)

which implies that

∫
R

(|∇u| + V (x)|u|
)

dx <
∫
R

(|∇u| + α|u|
)

dx, or ‖u‖
E < ‖u‖

Y . (.)

Then we have

J ′(u)u = ‖u‖
E + F(u) – ‖u‖m

m,a – λ‖u‖q
q,b

< ‖u‖
Y + F(u) – ‖u‖m

m,a – λ‖u‖q
q,b = J ′

α(u)u = . (.)

As the argument of Lemma ., there exists t ∈ (, ) such that tu ∈N , so that

d ≤ J(tu) = pt‖u‖
E + ptF(u) + ptm‖u‖m

m,a < p‖u‖
E + pF(u) + p‖u‖m

m,a

< p‖u‖
Y + pF(u) + p‖u‖m

m,a = Jα(u) = dα , (.)

where pi is given by (.). Then (.) finishes the proof of Lemma .. �

Lemma . There results θ > .

Proof If θ = , then u = , which implies in particular that un →  in Lp
loc(R) ( ≤ p < ).

We first prove the following claim:

lim
n→∞

∫
R

(
α – V (x)

)|un| dx = . (.)

By (H), for any ε > , there exists Rε >  such that  < α – V (x) ≤ ε,∀|x| ≥ Rε . Then

∫
R

(
α – V (x)

)|un| dx =
∫

|x|≤Rε

(
α – V (x)

)|un| dx +
∫

|x|≥Rε

(
α – V (x)

)|un| dx

≤ ε

∫
|x|≥Rε

|un| dx + C

∫
|x|≤Rε

|un| dx

≤ Mε + C

∫
|x|≤Rε

|un| dx, (.)
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where

C = max
x∈R

∣∣α – V (x)
∣∣, M = sup

n≥
‖un‖

 < ∞. (.)

Noticing that

lim
n→∞

∫
|x|≤Rε

|un| dx = ,

we have from (.) that

lim sup
n→∞

∫
R

(
α – V (x)

)|un| dx ≤ Mε. (.)

Since ε is arbitrarily small, (.) implies that (.), and then

‖un‖
Y = ‖un‖

E + εn, (.)

where εn →  as n → ∞.
On the other hand, the fact un ∈N shows that

‖un‖m
m,a + λ‖un‖q

q,b = ‖un‖
E + F(un) ≤ ‖un‖

Y + F(un). (.)

Denote

γn(t) = J ′
α(tun)tun = t‖un‖

Y + tF(un) – tm‖un‖m
m,a – λtq‖un‖q

q,b, t > . (.)

Since  < q < m and (.), it follows that γn() ≥  and γn(t) → –∞ as t → ∞. Then there
exists tn ≥  such that γn(tn) = , and then tnun ∈Nα , that is,

t
n‖un‖

Y + t
nF(un) = tm

n ‖un‖m
m,a + λtq

n‖un‖q
q,b. (.)

Using the facts that ‖un‖Y and ‖un‖q,b are bounded and limn→∞ ‖un‖m
m,a = β , we deduce

from (.) that the sequence {tn} is bounded. If necessary, up to a subsequence, we can
assume tn → t ≥ . Then it follows from (.), (.) and (.) that

(
t
n – tq

n
)‖un‖

E + εnt
n +

(
t
n – tq

n
)
F(un) =

(
tm
n – tq

n
)‖un‖m

m,a. (.)

Since t
n ≤ tq

n and F(un) ≥ , we have

(
tm
n – tq

n
)‖un‖m

m,a – εnt
n ≤ (

t
n – tq

n
)‖un‖

E , ∀n ≥ . (.)

Letting n → ∞ in (.) yields

(
tm
 – tq


)
β ≤ (

t
 – tq


)
ν, (.)
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where ν = lim supn→∞ ‖un‖
E >  and β = limn→∞ ‖un‖m

m,a. Since t ≥  and  < q < m, we
have t = . That is, tn →  as n → ∞. Therefore, it follows from (.) and (.) that

dα ≤ Jα(tnun) = pt
n‖u‖

Y + pt
nF(un) + ptm

n ‖un‖m
m,a

= t
n
[
p‖un‖

E + pF(un) + p‖un‖m
m,a

]
+ γn = t

nJ(un) + γn, (.)

where γn = pεnt
n + p(t

n – t
n)F(un) + p(tm

n – t
n)‖un‖m

m,a. Since tn → , we get γn → .
Moreover, the facts J(un) → d and tn →  in (.) imply that dα ≤ d. This contradicts the
result in Lemma .. Therefore, we have θ >  and complete the proof of Lemma .. �

In the following, we consider the case θ ∈ (,β). As in [, ], we let θ ∈ (,β) and take
{un} as a minimizing sequence for d on N , which satisfies (.) and

∫
Brn

a(x)|un|m dx = θ + on(),
∫

�n

a(x)|un|m dx = on(),

∫
Brn

b(x)|u|q dx = σ + on(),
∫

�n

b(x)|u|q dx = on(),

∫
Bc

rn

|un| dx = on(),
∫

�n

|∇un| dx = on(),

∫
Bc

rn

∣∣un(x)
∣∣ dx = on(), ‖un‖E ,‖un‖p ≤ M, ∀n ≥ ,  ≤ p ≤ ,

(.)

where and in the sequel, Br = {x ∈ R
 : |x| < r}, Bc

r = {x ∈ R
 : |x| ≥ r}, �n = {x ∈ R

 : rn ≤
|x| < rn+} with rn ↑ ∞ and on() is a quantity which goes to zero as n → ∞.

Since J(un) = J(|un|) in E, we assume un ≥  in R
. Furthermore, we also consider, for

every n ∈N, a function ϕn ∈ C∞
 (R) such that

()  ≤ ϕn(x) ≤ , ∀x ∈R
,

() ϕn(x) =  if |x| ≤ rn, ϕn(x) =  if |x| ≥ rn+,
() |∇ϕn(x)| ≤ C, ∀x ∈R

 and ∀n ≥ ,
where C is some positive number independent of n. Furthermore, we set

u′
n(x) = ϕn(x)un(x), u′′

n(x) =
(
 – ϕn(x)

)
un(x), x ∈R

. (.)

Then u′
n, u′′

n ≥  and un = u′
n + u′′

n in R
 for every n ≥ .

Lemma . The following properties for un, u′
n, u′′

n hold:

(P) u′
n ⇀ u weakly in E = W ,(R), u′

n → u strongly in Lm(R, a) ∩ Lq(R, b).
(P)

∫
R a(x)|un|m dx =

∫
R a(x)|u′

n|m dx +
∫
R a(x)|u′′

n|m dx + on().
(P)

∫
R b(x)|un|q dx =

∫
R b(x)|u′

n|q dx +
∫
R b(x)|u′′

n|q dx + on().
(P) ‖un‖

E ≥ ‖u′
n‖

E + ‖u′′
n‖

E + on().
(P) F(un) ≥ F(u′

n) + F(u′′
n), ∀n ≥ .

(P) F(un) ≤ F(u′
n) + F(u′′

n) +
∑

j= Aj
n, ∀n ≥ , in which

A
n ≡

∫
�n

K(x)φun (x)u
n(x) dx = on(),

A
n ≡

∫
�n

K(x)φu′
n (x)u

n(x) dx = on(),
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A
n ≡

∫
�n

K(x)φu′′
n (x)u

n(x) dx = on(), (.)

A
n ≡

∫
Bc

rn+

K(x)φu′
n (x)u

n(x) dx = on(),

A
n ≡

∫
Brn

K(x)φu′′
n (x)u

n(x) dx = on(), n = , , . . . ,

where φu is defined by (.).

Proof The proof of properties (P)-(P) is similar to that in [, ] and is omitted. Here,
we prove (P) and (P). Note that u′

n(x) = un(x), u′′
n(x) =  if x ∈ Brn and u′′

n(x) = un(x),
u′

n(x) =  if x ∈ Bc
rn+ . So,

∣∣u′
n(x)

∣∣ +
∣∣u′′

n(x)
∣∣ =

∣∣un(x)
∣∣, x ∈ Brn ∪ Bc

rn+ . (.)

Moreover, if x ∈ �n, we have  ≤ ϕn(x) ≤  and
∣∣u′

n(x)
∣∣ +

∣∣u′′
n(x)

∣∣ =
∣∣un(x)

∣∣(∣∣ϕn(x)
∣∣ +

∣∣ – ϕn(x)
∣∣) ≤ ∣∣un(x)

∣∣. (.)

Thus, one sees that
∣∣un(x)

∣∣ ≥ ∣∣u′
n(x)

∣∣ +
∣∣u′′

n(x)
∣∣, ∀x ∈R

. (.)

Clearly,

φun (x) =


π

∫
R

K(y)u
n(y)

|x – y| dy

=


π

∫
Brn

K(y)(u′
n(y))

|x – y| dy +


π

∫
Bc

rn+

K(y)(u′′
n(y))

|x – y| dy

+


π

∫
�n

K(y)(un(y))

|x – y| dy

=


π

∫
�n

K(y)
|x – y|

[(
un(y)

) –
(
u′

n(y)
) –

(
u′′

n(y)
)]dy + φu′

n (x) + φu′′
n (x)

≥ φu′
n (x) + φu′′

n (x), ∀x ∈R
. (.)

So, we have

F(un) =
∫
R

K(x)φun (x)u
n(x) dx

≥
∫
R

K(x)φu′
n (x)u

n(x) dx +
∫
R

K(x)φu′′
n (x)u

n(x) dx

= F
(
u′

n
)

+ F
(
u′′

n
)

+
∫

�n

K(x)φu′
n

[
u

n –
(
u′

n
)]dx +

∫
�n

K(x)φu′′
n

[
u

n –
(
u′′

n
)]dx

+
∫

Brn

K(x)φu′′
n

(
u′

n
) dx +

∫
Bc

rn+

K(x)φu′
n

(
u′′

n
) dx

≥ F
(
u′

n
)

+ F
(
u′′

n
)
, ∀n ≥ , (.)

which proves (P).
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On the other hand, it follows from (.) that

φun (x) ≤ φu′
n (x) + φu′′

n (x) +


π

∫
�n

K(y)u
n(y)

|x – y| dy. (.)

Noticing that


π

∫
R

(∫
�n

K(y)u
n(y)

|x – y| dy
)

K(x)u
n(x) dx

=


π

∫
�n

(∫
R

K(x)u
n(x)

|x – y| dx
)

K(y)u
n(y) dy

=
∫

�n

K(x)φun (x)u
n(x) dx, (.)

we have from (.) and (.) that
∫
R

K(x)φun (x)u
n(x) dx ≤

∫
R

K(x)u
n(x)

(
φu′

n (x) + φu′′
n (x)

)
dx +

∫
�n

K(x)φun (x)u
n(x) dx

≤ F
(
u′

n
)

+ F
(
u′′

n
)

+
∑

j=

Aj
n. (.)

If K ∈ L∞(R) and K ≥ , we have from (.) that

A
n =

∫
�n

Kφun u
n dx ≤ d‖φun‖L(�n)‖un‖

L

 (�n)

≤ c‖un‖
E‖un‖

L

 (�n)

≤ cM
‖un‖

L

 (�n)

. (.)

From (.), we have ‖un‖

L

 (�n)

= on() and so A
n = on().

If K ∈ L(R) and K ≥ , we derive from the Hölder inequality and the Sobolev inequal-
ity that

A
n ≤ ‖φun‖L(�n)‖K‖L(�n)‖un‖

L(�n)

≤ c‖un‖
E‖un‖

L(�n)‖K‖L(�n) ≤ cM
‖K‖L(�n). (.)

Similarly, the assumption K ∈ L(R) implies that ‖K‖L(�n) = on() and A
n = on().

Furthermore, since un(x) ≥ u′
n(x), u′′

n(x), we have φun (x) ≥ φu′
n (x),φu′′

n (x), and then  ≤
A

n, A
n ≤ A

n = on(). Noticing that

A
n =

∫
Bc

rn+

K(x)φu′
n (x)u

n(x) dx ≤
∫

Bc
rn

K(x)φun (x)u
n(x) dx, (.)

we argue as in the proof of (.) and (.) and obtain A
n = on(). Similarly,

A
n =

∫
Brn

K(x)φu′′
n (x)u

n(x) dx =


π

∫
Brn

∫
R

K(y)(u′′
n(y))

|x – y| K(x)u
n(x) dy dx

≤ 
π

∫
Brn

∫
Bc

rn

K(y)u
n(y)

|x – y| K(x)u
n(x) dy dx =

∫
Bc

rn

K(y)φun (y)u
n(y) dy, (.)
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we get from (.) and A
n = on() that A

n = on() if K ∈ L(R) ∪ L∞(R) and finish the
proof of (P). Then the proof of Lemma . is completed. �

3 Proof of Theorem 1.1
In order to prove Theorem ., we first show that the weak limit u of the minimizing se-
quence {un} in Section  verifies

p‖u‖p
E + pF(u) + p‖u‖m

m,a ≤ d (.)

and

‖u‖
E + F(u) = ‖u‖m

m,a + λ‖u‖q
q,b, (.)

where pi is given by (.).
Let {un} be a minimizing sequence for d on N in Section . Then, if necessary, up to a

subsequence, we have un ⇀ u in E and Lm(R, a). By the weak lower semi-continuity of
norms, we obtain

p‖u‖
E + pF(u) + p‖u‖m

m,a ≤ p lim inf
n→∞ ‖un‖

E + p lim inf
n→∞ F(un) + p lim inf

n→∞ ‖un‖m
m,a

≤ lim inf
n→∞

(
p‖un‖

E + pF(un) + p‖un‖m
m,a

)
= lim inf

n→∞ J(un) = d. (.)

This implies relation (.). By Lemma ., we get u ≥ , u ≡  in R
. We now prove (.).

If

‖u‖
E + F(u) < ‖u‖m

m,a + λ‖u‖q
q,b, (.)

we set

h(t) = J ′(tu)tu = t‖u‖
E + tF(u) – tm‖u‖m

m,a – λtq‖u‖q
q,b for t ≥ . (.)

Then one sees that h(t) >  for small t >  and h() < , so that there exists t ∈ (, ) such
that h(t) =  and tu ∈N and

d ≤ J(tu) = pt‖u‖
E + ptF(u) + ptm‖u‖m

m,a

< p‖u‖
E + pF(u) + p‖u‖m

m,a ≤ d. (.)

This contradiction shows that (.) cannot occur. Now we assume

‖u‖
E + F(u) > ‖u‖m

m,a + λ‖u‖q
q,b (.)

and choose small δ >  such that

‖u‖
E + F(u) > ‖u‖m

m,a + λ‖u‖q
q,b + δ. (.)
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Since u′
n ⇀ u weakly in E, one has

‖u‖
E ≤ lim inf

n→∞
∥∥u′

n
∥∥

E . (.)

Moreover, it follows from (P) that

F(u) ≤ lim inf
n→∞ F(un) ≤ lim inf

n→∞ F
(
u′

n
)

+ lim sup
n→∞

F
(
u′′

n
)

+
∑

j=

lim sup
n→∞

Aj
n

= lim inf
n→∞ F

(
u′

n
)
. (.)

Then, from (.)-(.), there exist δ ∈ (, δ) and n ≥  such that

∥∥u′
n
∥∥

E + F
(
u′

n
)

>
∥∥u′

n
∥∥m

m,a + λ
∥∥u′

n
∥∥q

q,b + δ for n ≥ n. (.)

Now, by Lemma ., we derive from (.), (.) and the fact un ∈N that

∥∥u′
n
∥∥

E +
∥∥u′′

n
∥∥

E ≤ ‖un‖
E + on() = ‖un‖m

m,a + λ‖un‖q
q,b – F(un) + on()

≤ ∥∥u′
n
∥∥m

m,a + λ
∥∥u′

n
∥∥q

q,b +
∥∥u′′

n
∥∥m

m,a + λ
∥∥u′′

n
∥∥q

q,b – F
(
u′

n
)

– F
(
u′′

n
)

+ on()

<
∥∥u′

n
∥∥

E +
∥∥u′′

n
∥∥m

m,a + λ
∥∥u′′

n
∥∥q

q,b – F
(
u′′

n
)

– δ + on(). (.)

This implies that

∥∥u′′
n
∥∥

E + F
(
u′′

n
) ≤ ∥∥u′′

n
∥∥m

m,a + λ
∥∥u′′

n
∥∥q

q,b – δ + on(). (.)

The application of (.) and (.) shows that there exist δ ∈ (, δ) and n ≥ n such
that

∥∥u′′
n
∥∥

Y + F
(
u′′

n
) ≤ ∥∥u′′

n
∥∥m

m,a + λ
∥∥u′′

n
∥∥q

q,b – δ + on() for n ≥ n.

Again, we set an auxiliary function

γn(t) = J ′
α

(
tu′′

n
)(

tu′′
n
)

= t∥∥u′′
n
∥∥

Y + tF
(
u′′

n
)

– tm∥∥u′′
n
∥∥m

m,a – λtq∥∥u′′
n
∥∥q

q,b for t > .

Obviously, γn(t) >  for small t >  and γn() <  for n ≥ n. Then there exists tn ∈ (, )
such that γn(tn) =  and tnu′′

n ∈Nα . Then it follows from (.) and (.) that

dα ≤ Jα
(
tnu′′

n
)

= pt
n
∥∥u′′

n
∥∥

Y + pt
nF

(
u′′

n
)

+ ptm
n
∥∥u′′

n
∥∥m

m,a

< p
∥∥u′′

n
∥∥

Y + pF
(
u′′

n
)

+ p
∥∥u′′

n
∥∥m

m,a

≤ p
∥∥u′′

n
∥∥

E + pF
(
u′′

n
)

+ p
∥∥u′′

n
∥∥m

m,a + on()

≤ p‖un‖
E + pF(un) + p‖un‖m

m,a + on() = J(un) + on() → d as n → ∞.

This shows that dα ≤ d and contradicts the result in Lemma .. Therefore, (.) fails to
be true and (.) is satisfied.
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Since u satisfies (.) and (.), it follows that u ∈ N and so that J(u) = d and u is a
minimum point for J on N .

To finish the proof of Theorem ., it is sufficient to prove that u is a critical point for
the functional J(u) in E, that is, J ′(u)v =  for all v ∈ E, and thus J ′(u) =  in E∗.

For every fixed v ∈ E, there exists ε >  such that u + sv ≡  for all s ∈ (–ε, ε). From
Lemma ., there is t(s) ∈ R such that t(s)(u + sv) ∈ N . We will show that t = t(s) is a C

function. So, we consider the function ϕ : (–ε, ε) ×R →R as

ϕ(s, t) = J ′(t(s)(u + εv)
)
t(s)(u + sv) = t‖u + sv‖

E + tF(u + sv)

– tm‖u + sv‖m
m,a – λtq‖u + sv‖q

q,b.

Since u ∈N , we have

ϕ(, ) = ‖u‖
E + F(u) – ‖u‖m

m,a – λ‖u‖q
q,b = .

Moreover, we derive

∂ϕ

∂t
(, ) = ‖u‖

E + F(u) – m‖u‖m
m,a – λq‖u‖q

q,b

= ( – q)‖u‖
E + ( – q)F(u) + (q – m)‖u‖m

m,b < .

Then, by the implicit function theorem, there exists a C function t(s) such that
ϕ(s, t(s)) =  and t() =  for every s ∈ (–ε, ε) ⊂ (–ε, ε). This also shows that t(s) = 
and t(s)(u + sv) ∈ N . Then the function h(s) = J(t(s)(u + sv)), s ∈ (–ε, ε) is in C and has
a minimum at s = . Therefore,

 = h′() = t′()
(‖u‖

E + F(u) – ‖u‖m
m,a – λ‖u‖q

q,b
)

+ J ′(u)v. (.)

Then, from (.), it follows for every v ∈ E that J ′(u)v = . Thus J ′(u) =  in E∗. So, u is
a critical point for J , and then u is a weak solution of problem (.) in E, that is, u is a
solution of (.). Since J(u) = J(|u|) = d > , we can assume u ≥  a.e. in R

. Furthermore,
the application of maximum principle in [] yields u(x) >  in R

. Then the proof of
Theorem . is finished.

Acknowledgements
This work is supported by China Postdoctoral Science Foundation funded project (No. 2017M610436).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The main idea of this paper was proposed by CC, HY and QY prepared the manuscript in part. All authors read and
approved the final manuscript.

Author details
1College of Science, Hohai University, Nanjing, 210098, P.R. China. 2College of Mathematics and Systems Science,
Shandong University of Science and Technology, Qingdao, 266590, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 July 2017 Accepted: 8 October 2017



Yuan et al. Boundary Value Problems  (2017) 2017:151 Page 17 of 17

References
1. Bonheure, D, Mercuri, C: Embedding theorems and existence results for nonlinear Schrödinger-Poisson systems with

unbounded and vanishing potentials. J. Differ. Equ. 251, 1056-1085 (2011)
2. Benci, V, Fortunato, D: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear

Anal. 11, 283-293 (1998)
3. Sáchez, O, Soler, J: Long-time dynamics of the Schrödinger-Poisson-Slater system. J. Stat. Phys. 114, 179-204 (2004)
4. Ambrosetti, A, Ruiz, D: Multiple bound states for the Schrödinger-Poisson equation. Commun. Contemp. Math. 10(3),

391-404 (2008)
5. Azzollini, A: Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity.

J. Differ. Equ. 249, 1746-1763 (2010)
6. D’Aprile, T, Wei, JC: On bound states concentrating on spheres for the Maxwell-Schrödinger equation. SIAM J. Math.

Anal. 37, 321-342 (2005)
7. Kikuchi, H: On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations. Nonlinear

Anal. 67, 1445-1456 (2007)
8. Mercuri, C: Positive solutions of nonlinear Schrödinger-Poisson systems with radial potentials vanishing at infinity. Atti

Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 19, 211-227 (2008)
9. Ruiz, D: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655-674

(2006)
10. Zhang, J: On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth. Nonlinear Anal. 75,

6391-6401 (2012)
11. Cerami, G, Vaira, G: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differ. Equ. 248,

521-543 (2010)
12. Sun, JT, Wu, TF, Feng, ZS: Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system. J. Differ. Equ.

260, 586-627 (2016)
13. Zhang, Q, Li, FY, Liang, ZP: Existence of multiple positive solutions to nonhomogeneous Schrödinger-Poisson system.

Appl. Math. Comput. 259, 353-363 (2015)
14. Liu, HL, Chen, HB, Yang, XX: Multiple solutions for superlinear Schrödinger-Poisson system with sign-changing

potential and nonlinearity. Comput. Math. Appl. 68, 1982-1990 (2014)
15. Huang, WN, Tang, XH: The existence of infinitely many solutions for the nonlinear Schrödinger-Maxwell equations.

Results Math. 65, 223-234 (2014)
16. Li, HY, Sun, JX: Positive solutions of superlinear semipositone nonlinear boundary value problems. Comput. Math.

Appl. 61, 2806-2815 (2011)
17. Liu, ZL, Wang, ZQ, Zhang, JJ: Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system.

Ann. Mat. Pura Appl. 195, 775-794 (2016)
18. Wang, LX, Ma, SW, Wang, XM: On the existence of solutions for nonhomogeneous Schrödinger-Poisson system.

Bound. Value Probl. 2016, 76 (2016). doi:10.1186/s13661-016-0584-9
19. Zhao, GL, Zhu, XL, Li, YH: Existence of infinitely many solutions to a class of Kirchhoff-Schrödinger-Poisson system.

Appl. Math. Comput. 256, 572-581 (2015)
20. Badiale, M, Serra, E: Semilinear Elliptic Equations for Beginners: Existence Results via the Variational Approach.

Springer, London (2011)
21. Chen, CS, Yuan, Q: Existence of solution to p-Kirchhoff type problem in R

N via Nehari manifold. Commun. Pure Appl.
Anal. 13(6), 2289-2303 (2014)

22. Evans, LC: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. Am. Math. Soc., Providence (1998)
23. D’Aprile, T, Mugnai, D: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc.

R. Soc. Edinb., Sect. A 134, 893-906 (2004)

http://dx.doi.org/10.1186/s13661-016-0584-9

	Existence of positive solutions for a Schrodinger-Poisson system with bounded potential and weighted functions in R3
	Abstract
	MSC
	Keywords

	Introduction and main results
	Preliminaries
	Proof of Theorem 1.1
	Acknowledgements
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


