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Abstract
In this paper, we consider the existence of a positive periodic solution for the
following kind of high-order p-Laplacian neutral singular Rayleigh equation with
variable coefficient:

(ϕp(x(t) – c(t)x(t – σ ))(n))(m) + f (t, x′(t)) + g(t, x(t)) = e(t).

Our proof is based on Mawhin’s continuation theory.
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1 Introduction
In this paper, we consider the following high-order p-Laplacian neutral singular Rayleigh
equation with variable coefficient:

(
ϕp
(
x(t) – c(t)x(t – σ )

)(n))(m) + f
(
t, x′(t)

)
+ g

(
t, x(t)

)
= e(t), (.)

where p > , ϕp(x) = |x|p–x for x �=  and ϕp() = , c ∈ Cn(R,R) and c(t + T) ≡ c(t), f is
a continuous function defined in R

 and periodic in t with f (t, ·) = f (t + T , ·) and f (t, ) =
, g(t, x) = g(x) + g(t, x), where g : R × (, +∞) → R is an L-Carathéodory function,
g(t, ·) = g(t + T , ·), g ∈ C((,∞);R) has a singularity at x = , e : R → R is a continuous
periodic function with e(t + T) ≡ e(t) and

∫ T
 e(t) dt = , T is a positive constant, and n and

m are positive integers.
In recent years, there are many works on periodic solutions for high-order neutral dif-

ferential equations (see [–] and the references therein). Wang and Lu [] in  inves-
tigated the existence of periodic solution for the following high-order neutral functional
differential equation with distributed delay:

(
x(t) – cx(t – σ )

)(n) + f
(
x(t)

)
x′(t) + g

(∫ 

–r
x(t + s) dα(s)

)
= p(t). (.)
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Using the continuation theorem of coincidence degree theory, they obtained the existence
of periodic solutions for (.). Afterwards, Ren et al. considered the following high-order
p-Laplacian neutral differential equation

(
ϕp
(
x(t) – cx(t – σ )

)(l))(n–l) = F
(
t, x(t), x′(t), . . . , x(l–)(t)

)
. (.)

They obtained the existence of periodic solutions for (.) in the general case (|c| �= ) in
[] and in the critical case (|c| = ) in [], respectively.

At the same time, some authors began to consider high-order neutral differential equa-
tion with singularity. Recently, applying the coincidence degree theory and some analysis
skills, Xin et al. [] discussed the existence of a positive periodic solution for the following
neutral Liénard equation with singularity:

(
ϕp
(
x(t) – cx(t – τ )

)(n))(m) + f
(
x(t)

)
x′(t) + g

(
t, x(t – σ )

)
= e(t). (.)

Inspired by these results in [, –], in this paper, we consider the existence of a positive
periodic solution for (.) with singularity by applications of Mawhin’s continuation the-
ory. The obvious difficulty lies in the following two respects. Firstly, (x(t) – c(t)x(t –σ ))(n) �=
x(n)(t) – c(t)x(n)(t –σ ), and the calculation of (x(t) – c(t)x(t –σ ))(n) is very complicated. Sec-
ondly, a priori bounds of periodic solutions are not easy to estimate.

2 Preparation
Firstly, we give qualitative properties of the neutral operator (Ax)(t) := x(t) – c(t)x(t – σ ).

Lemma . (see []) If |c(t)| �= , then the operator A has a continuous inverse A– on
CT := {φ ∈ C(R,R) : φ(t + T) ≡ φ(t)}, satisfying

∣
∣(A–f

)
(t)
∣
∣≤ |f |∞

�
, ∀f ∈ CT ,

where � :=
{  – |c|∞ for |c|∞ := maxt∈[,T] |c(t)| < ,

|c| –  for |c| := mint∈[,T] |c(t)| > .

Lemma . (Gaines and Mawhin []) Let X and Y be two Banach spaces, and let L :
D(L) ⊂ X → Y be a Fredholm operator with index zero. Let � ⊂ X be an open bounded set,
and let N : � → Y be L-compact on �. Assume that the following conditions hold:

() Lx �= λNx, ∀x ∈ ∂� ∩ D(L), λ ∈ (, );
() Nx /∈ Im L, ∀x ∈ ∂� ∩ Ker L;
() deg{JQN ,� ∩ Ker L, } �= , where J : Im Q → Ker L is an isomorphism.

Then the equation Lx = Nx has a solution in � ∩ D(L).

Lemma . (see []) If x ∈ C
T := {x ∈ C(R,R) : x(t + T) ≡ x(t)} and there exists a point

t ∈ (, T) such that |x(t)| < d, then

|x|∞ ≤ d +



∫ T



∣
∣x′(t)

∣
∣dt,

where |x|∞ := maxt∈R |x(t)|.
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To use the continuation degree theorem, we rewrite (.) in the form

⎧
⎨

⎩
(Ax)(n)(t) = ϕq(x(t)),

x(m)
 (t) = –f (t, x′

(t)) + g(t, x(t)) + e(t),
(.)

where 
p + 

q = . Clearly, if a periodic solution of (.) is x(t) :=
( x

x

)
, then x(t) must be a

periodic solution of (.). Thus, the problem of finding a periodic solution for (.) reduces
to finding a periodic solution for (.).

Now, set

X :=
{

x ∈ C
(
R,R) : x(t + T) ≡ x(t)

}

with the norm |x|∞ = max{|x|∞, |x|∞} and

Y :=
{

x ∈ C(
R,R) : x(t + T) ≡ x(t)

}

with the norm ‖x‖ = max{|x|∞, |x′|∞}. Clearly, both X and Y are Banach spaces. Mean-
while, define

L : D(L) =
{

x ∈ Cn+m(
R,R) : x(t + T) = x(t), t ∈R

}⊂ X → Y

by

(Lx)(t) =

(
(Ax)(n)(t)

x(m)
 (t)

)

and N : X → Y by

(Nx)(t) =

(
ϕq(x(t))

–f (t, x′
(t)) – g(t, x(t)) + e(t)

)

. (.)

Then (.) can be converted into the abstract equation Lx = Nx.
If x =

( x
x

) ∈ Ker L, that is,
{ (x(t) – c(t)x(t – σ ))(n) = ,

x(m)
 (t) = ,

then we have

⎧
⎨

⎩
x(t) – c(t)x(t – σ ) = an–tn– + an–tn– + · · · + at + a,

x(t) = bm–tm– + bm–tm– + · · · + bt + b,

where a, . . . , an–, b, . . . , bm– ∈R are constant. From x(t) – c(t)x(t – σ ) ∈ CT and x(t) ∈
CT we have a = · · · = an– =  and b = b = · · · = bm– = . Let φ(t) �=  be a solution of
x(t) – c(t)x(t – σ ) = . Then Ker L = x =

( aφ(t),a∈R
b,b∈R

)
. From the definition of L we can easily

see that

Ker L ∼= R
, Im L =

{

y ∈ Y :
∫ T



(
y(s)
y(s)

)

ds =

(



)}

.

So L is a Fredholm operator with index zero.
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Next, we will consider L-compact N . Let P : X → Ker L and Q : Y → Im Q ⊂ R
 be de-

fined by

Px =

(
(Ax)()

x()

)

and Qy =

T

∫ T



(
y(s)
y(s)

)

ds.

Then Im P = Ker L and Ker Q = Im L. Denote LP = L|D(L)∩Ker P and let L–
P : Im L → D(L) be

the inverse of LP . Then

[
L–

P y
]
(t) =

(
(A–Gy)(t)

(Gy)(t)

)

,

[Gy](t) =
n–∑

i=


i!

aiti +


(n – )!

∫ t


(t – s)n–y(s) ds,

[Gy](t) =
m–∑

i=


i!

biti +


(m – )!

∫ t


(t – s)m–y(s) ds,

(.)

where ai := (Ax)(i)() are defined as follows:

EZ = C, where E =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

   · · ·  
e   · · ·  
e e  · · ·  
· · ·

en– en– en– · · ·  
en– en– en– · · · e 

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

(n–)×(n–)

,

Z = (an–, an– · · · , a)�, C = (c, c, . . . , cn–)�, ci = – 
i!T

∫ T
 (T – s)iy(s) ds, and ej = Tj

(j+)! , j =
, , . . . , n – . Similarly, we can get b := x(i)

 (), i = , , . . . , m – . Therefore, from (.) and
(.) we get that N is L-compact on �̄.

3 Periodic solutions for (1.1) with repulsive singularity
For convenience, we list the following assumptions, which will further used repeatedly:

(H) There exists a positive constant K such that |f (t, u)| ≤ K for (t, u) ∈ R×R.
(H) There exist positive constants α and β such that |f (t, u)| ≤ α|u|p– + β for (t, u) ∈

R×R.
(H) f (t, u) ≥  for (t, u) ∈R×R;
(H) There exists a positive constant D such that g(t, x) > K for x > D.
(H) There exists a positive constant D such that g(t, x) > |e|∞ for x > D.
(H) There exist positive constants γ , ζ such that

g(t, x) ≤ γ xp– + ζ for all x > .

(H) (Repulsive singularity)
∫ 

 g(s) ds = –∞.
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Theorem . Assume that (H), (H), and (H)-(H) hold. Then (.) has at least one
T-periodic solution if

 <
Tp

p–

(
T

π

)(n–)(p–)+(m–)
γ

(� – T

∑n–

k= Ck
ncn–k( T

π
)n––k)p–

< ,

where cn–k := maxt∈[,ω] |c(n–k)(t)|.

Proof Consider the abstract equation

Lx = λNx, λ ∈ (, ).

Set � = {x : Lx = λNx,λ ∈ (, )}. If x(t) = (x(t), x(t))� ∈ �, then
⎧
⎨

⎩
(Ax)(n)(t) = λϕq(x(t)),

x(m)
 (t) = –λf (t, x′

(t)) – λg(t, x(t)) + λe(t).
(.)

Substituting x(t) = λ–pϕp[(Ax)(n)(t)] into the second equation of (.), we have

(
ϕp(Ax)(n)(t)

)(m) + λpf
(
t, x′

(t)
)

+ λpg
(
t, x(t)

)
= λpe(t). (.)

Integrating both sides of (.) from  to T , we have

∫ T



(
f
(
t, x′

(t)
)

+ g
(
t, x(t)

))
dt = . (.)

From the mean value theorem, there exists a point ξ ∈ (, T) such that

f
(
ξ , x′

(ξ )
)

+ g
(
ξ , x(ξ )

)
= .

Then by (H) we have

g
(
ξ , x(ξ )

)
=
∣∣–f

(
ξ , x′

(ξ )
)∣∣≤ K ,

and in view of (H), we get that x(ξ ) ≤ D. Since x(t) is periodic with period T and x(t) > 
for t ∈ [, T]. Then  < x(ξ ) ≤ D. Therefore, from Lemma . we can get

|x|∞ ≤ D +



∫ T



∣∣x′
(s)

∣∣ds. (.)

From (.) and the Wirtinger inequality (see [], Lemma .) we get

|x|∞ ≤ D +



T



(∫ T



∣∣x′
(s)

∣∣ ds
) 



≤ D +



T



(
T

π

)n–(∫ T



∣
∣x(n)

 (s)
∣
∣ ds

) 


≤ D +
T


(
T

π

)n–∣
∣x(n)


∣
∣∞. (.)
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Since x(i–)
 () = x(i–)

 (T), i = ,  . . . , n – , there exists a point t∗
i ∈ [, T] such that x(i)

 (t∗
i ) =

. From the Hölder and Wirtinger inequalities, we can easily get

∣∣x(i)

∣∣∞ ≤ 



∫ T



∣∣x(i+)
 (t)

∣∣dt

≤ T 




(∫ T



∣
∣x(i+)

 (t)
∣
∣ dt

) 


≤ T


(
T

π

)(n–i–)∣
∣x(n)


∣
∣∞. (.)

On the other hand, since (Ax)(t) = x(t) – c(t)x(t – σ ), we have

(
Ax(t)

)(n) =
(
x(t) – c(t)x(t – σ )

)(n)

= x(n)
 (t) –

(
c(n)(t)x(t – σ ) + nc(n–)(t)x′

(t – σ )

+
n(n – )

!
c(n–)x′′

 (t – σ ) + · · · + c(t)x(n)
 (t – σ )

)

= x(n)
 (t) – c(t)x(n)

 (t – σ ) –
(

c(n)(t)x(t – σ ) + nc(n–)(t)x′
(t – σ )

+
n(n – )

!
c(n–)x′′

 (t – σ ) + · · · + nc′(t)x(n–)
 (t – σ )

)
.

So, we can get

Ax(n)
 (t) =

(
Ax(t)

)(n) +
(

c(n)(t)x(t – σ ) + nc(n–)(t)x′
(t – σ )

+
n(n – )

!
c(n–)x′′

 (t – σ ) + · · · + nc′(t)x(n–)
 (t – σ )

)
.

Applying Lemma ., (.), and (.), we have

∣∣x(n)

∣∣∞ = max

t∈[,T]

∣∣A–Ax(n)
 (t)

∣∣

≤
(

max
t∈[,T]

∣
∣(Ax)(n)(t) + c(n)(t)x(t – σ )

+ nc(n–)(t)x′
(t – σ ) + · · · + nc′(t)x(n–)

 (t – σ )
∣∣
)

/�

≤ ϕq(|x|∞) + cn|x|∞ + ncn–|x′
|∞ + · · · + nc|x(n–)

 |∞
�

≤
(

ϕq
(|x|∞

)
+ cn

(
D +

T


(
T

π

)n–∣
∣x(n)


∣
∣∞

)

+ ncn–

(



T
(

T
π

)n–∣
∣x(n)


∣
∣∞

)
+ · · · + nc

T

∣
∣x(n)


∣
∣∞

)/
�
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≤
(

ϕq
(|x|∞

)
+

T


((
T

π

)n–

cn + ncn–

(
T

π

)n–

+
n(n – )

!
cn–

(
T

π

)n–

+ · · · + nc

)∣∣x(n)

∣∣∞ + cnD

)
/
�

≤ ϕq(|x|∞) + T
 (
∑n–

k= Ck
ncn–k( T

π
)n––k)|x(n)

 |∞ + cnD
�

.

Since � – T
 (
∑n–

k= Ck
ncn–k( T

π
)n––k) > , we have

∣
∣x(n)


∣
∣∞ ≤ ϕq(|x|∞) + cnD

� – T
 (
∑n–

k= Ck
ncn–k( T

π
)n––k)

. (.)

In view of
∫ T

 (ϕq(x(t))) dt =
∫ T

 (Ax(t))(n)(t) dt = , there exists a point t ∈ (, T) such
that x(t) = . From the Wirtinger inequality and from (.) we easily get

|x|∞ ≤ 


∫ T



∣
∣x′

(t)
∣
∣dt ≤

√
T



(∫ T



∣
∣x′

(t)
∣
∣
) 



≤
√

T


(
T

π

)m–(∫ T



∣∣x(m–)
 (t)

∣∣ dt
) 



≤ T


(
T

π

)m–∣∣x(m–)


∣∣∞. (.)

Besides, from x(m–)
 () = x(m–)

 (T), there exists a point t ∈ (, T) such that x(m–)
 (t) = ,

which, together with the integration of the second equation of (.) on interval [, T], yield


∣∣x(m–)

 (t)
∣∣≤ 

(
x(m–)

 (t) +



∫ T



∣∣x(m)
 (t)

∣∣dt
)

≤ λ

∫ T



∣
∣f
(
t, x′

(t)
)

– g
(
t, x(t)

)
+ e(t)

∣
∣dt

≤
∫ T



∣∣f
(
t, x′

(t)
)∣∣dt +

∫ T



∣∣g
(
t, x(t)

)∣∣dt +
∫ T



∣∣e(t)
∣∣dt

≤ KT +
∫ T



∣
∣g
(
t, x(t)

)∣∣dt + T |e|∞, (.)

since |f (t, u)| ≤ K form (H). From (H) and (H) we have

∫ T



∣∣g
(
t, x(x)

)∣∣dt =
∫

g(t,x(t))≥
g
(
t, x(t)

)
dt –

∫

g(t,x(t))≤
g
(
t, x(t)

)
dt

= 
∫

g(t,x(t))≥
g
(
t, x(t)

)
dt +

∫ T


f (t, x′

(t) dt

≤ 
∫ T



(
γ xp–

 + ζ
)

dt +
∫ T



∣
∣f
(
t, x′

(t)
)∣∣dt

≤ γ |x|p–
∞ T + ζT + KT . (.)
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Since ( + x)k ≤  + ( + k)x for x ∈ [, δ], where δ is a constant, which depends only on
k > , substituting (.) into (.), we have


∣∣x(m–)

 (t)
∣∣≤ Tγ |x|p–

∞ + ζT + KT + T |e|∞

≤ Tγ

(
D +




∫ T



∣
∣x′

(t)
∣
∣dt

)p–

+ N

= Tγ

(
 +

D


∫ T

 |x′
(t)|dt

)p–( 


)p–(∫ T



∣∣x′
(t)

∣∣dt
)p–

+ N

≤ 
p– Tγ

(
 +

Dp
∫ T

 |x′
(t)|dt

)(∫ T



∣∣x′
(t)

∣∣dt
)p–

+ N, (.)

where N := ζT + KT + T |e|∞. Substituting (.) and (.) into (.), we have


∣∣x(m–)

 (t)
∣∣

≤ Tpγ

p–

∣
∣x′


∣
∣p–
∞ +

DpTp–γ

p–

∣
∣x′


∣
∣p–
∞ + N

≤ Tpγ

p– ·
(

T


)p–( T
π

)(n–))p–)∣∣x(n)

∣∣p–
∞

+
DpTp–γ

p–

(
T


)p–( T
π

)(n–)(p–)∣∣x(n)

∣∣p–
∞ + N

≤ Tp–γ

p–

(
T

π

)(n–)(p–) (ϕq(|x|∞) + CnD)p–

(� – T
 (
∑n–

k= Ck
ncn–k( T

π
)n––k))p–

+
DpTp–γ

p–

(
T

π

)(n–)(p–) (ϕq(|x|∞) + CnD)p–

(� – T
 (
∑n–

k= Ck
ncn–k( T

π
)n––k))p–

+ N. (.)

Combining of (.) and (.) implies

|x|∞ ≤ T


(
T

π

)m–∣∣x(m–)


∣∣∞

≤ T


(
T

π

)m–[Tp–γ

p–

(
T

π

)(n–)(p–) (ϕq(|x|∞) + CnD)p–

(� – T
 (
∑n–

k= Ck
ncn–k( T

π
)n––k))p–

+
DpTp–γ

p–

(
T

π

)(n–)(p–) (ϕq(|x|∞) + CnD)p–

(� – T
 (
∑n–

k= Ck
ncn–k( T

π
)n––k))p–

+ N

]
. (.)

So, we have

|x|∞ ≤ Tpγ

p–

(
T

π

)(n–)(p–)+(m–) |x|∞
(� – T

 (
∑n–

k= Ck
ncn–k( T

π
)n––k))p–

+
Tpγ

p–

(
T

π

)(n–)(p–)+(m–) (
∑p–

i= Ci
p–(|x|q–

∞ )p––i(cnD)i)

(� – T
 (
∑n–

k= Ck
ncn–k( T

π
)n––k))p–
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+
DpTp–γ

p–

(
T

π

)(n–)(p–)+(m–) (
∑p–

i= Ci
p–(|x|q–

∞ )p––i(cnD)i)

(� – T
 (
∑n–

k= Ck
ncn–k( T

π
)n––k))p–

+
T


(
T

π

)m–

N. (.)

Since

Tp

p–

(
T

π

)(n–)(p–)+(m–)
γ

(� – T

∑n–

k= Ck
ncn–k( T

π
)n––k)p–

< ,

there exists a positive constant M such that

|x|∞ ≤ M. (.)

Therefore, from (.) we have

∣
∣x(n)


∣
∣∞ ≤ ϕq(|x|∞) + cnD

� – T
 (
∑n–

k= Ck
ncn–k( T

π
)n––k)

≤ Mq–
 + cnD

� – T

∑n–

k= Ck
ncn–k( T

π
)n––k

:= M′
n. (.)

From (.) we have

∣
∣x′


∣
∣∞ ≤ T



(
T

π

)n–∣
∣x(n)


∣
∣∞ ≤ T



(
T

π

)n–

M′
n := M. (.)

Hence, from (.) we have

|x|∞ ≤ D +



∫ T



∣∣x′
(t)

∣∣dt ≤ D +
TM


:= M. (.)

From (.), (.), and (.) we have

∣
∣x(m–)


∣
∣∞ ≤ 


max

∣∣
∣∣

∫ T


x(m)

 (t) dt
∣∣
∣∣

≤ 


∫ T



∣∣–f
(
t, x′

(t)
)

– g
(
t, x(t)

)
+ e(t)

∣∣dt

≤ 


∫ T



∣
∣f (t, x′

(t)
∣
∣dt +




∫ T



∣
∣g(t, x(t)

∣
∣dt +




∫ T



∣
∣e(t)

∣
∣dt

≤ KT + mMp–
 T + nT +



|e|∞T := Mm–.

From (.) we get

∣∣x′

∣∣∞ ≤ T



(
T

π

)m–∣∣x(m–)


∣∣∞ ≤ T


(
T

π

)m–

Mm– := M.

On the other hand, since g(t, x) = g(t, x(t)) + g(x(t)), (.) can be rewritten as

(
ϕp(Ax)(n))(m) + λpf

(
t, x′

(t)
)

+ λp(g
(
t, x(t)

)
+ g

(
x(t)

))
= λpe(t). (.)
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Let τ ∈ [, T] for any τ ≤ t ≤ T . Multiplying both sides of (.) by x′
(t) and integrating

on [τ , t], we have

λp
∫ x(t)

x(τ )
g(u) du = λp

∫ t

τ

g
(
x(s)

)
x′

(s) ds

= –
∫ t

τ

(
ϕp(Ax)(n)(s)

)(m)x′
(s) ds – λp

∫ t

τ

f
(
s, x′

(s)
)
x′

(s) ds

– λp
∫ t

τ

g
(
s, x(s)

)
x′

(s) ds + λp
∫ t

τ

e(s)x′
(s) ds. (.)

By (.), (.), (.), and (.) we have

∣∣∣
∣

∫ t

τ

(
ϕp(Ax)(n)(s)

)(m)x(s) ds
∣∣∣
∣

≤
∫ t

τ

∣∣(ϕp(Ax)(n)(s)
)(m)∣∣∣∣x′

(s)
∣∣ds

≤ ∣∣x′

∣∣∞

∫ t

τ

∣∣(ϕp(Ax)(n)(s)
)(m)∣∣ds

≤ λpM

(∫ T



∣∣f
(
t, x′

(t)
)∣∣dt +

∫ T



∣∣g
(
t, x(t)

)∣∣dt +
∫ T



∣∣e(t)
∣∣dt

)

≤ λpM
(
KT + mMp–

 T + nT + |e|∞T
)
. (.)

Moreover, we have

∣∣
∣∣

∫ t

τ

f
(
s, x′

(s)
)
x′

(s) ds
∣∣
∣∣≤

∣
∣x′


∣
∣∞

∫ T



∣
∣f
(
t, x′

(t)
)∣∣dt ≤ MKT ,

∣∣∣
∣

∫ t

τ

g
(
s, x(s)

)
x′

(s) ds
∣∣∣
∣≤

∣∣x′

∣∣∞

∫ T



∣∣g
(
t, x(t)

)∣∣dt ≤ M
√

T‖gM‖,

∣
∣∣∣

∫ t

τ

e(s)x′
(s) ds

∣
∣∣∣≤

∣∣x′

∣∣∞

∫ T



∣∣e(t)
∣∣dt ≤ M|e|∞T ,

(.)

where gM := max<x≤M |g(t, u)| ∈ L(, T) and ‖gM‖ := (
∫ T

 |g(t, x′
(t))| dt) 

 . Substitut-
ing (.) and (.) into (.), we have

∣∣
∣∣

∫ x(t)

x(τ )
g(x) dx

∣∣
∣∣≤ M

(
KT + mMp–

 T + nT +
√

T‖gM‖ + |e|∞T
)

:= M∗
 .

From repulsive singular condition (H) we know that there exists a constant M >  such
that

x(t) ≥ M, ∀t ∈ [τ , T]. (.)

The case t ∈ [, τ ] can be treated similarly.
Let

� =
{

x = (x, x)� : E < x(t) < E,
∣∣x′


∣∣∞ < E, |x|∞ < E,

∣∣x′

∣∣∞ < E

}
,
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where  < E < M, E > max{D, M}, E > M, E > M, and E > M. Next, we shall prove
that � is a bounded set. In fact, for all x ∈ �, x = , x = aφ(t), and a ∈R

+, we have

 =
∫ T


g
(
t, aφ(t)

)
dt.

From assumption (H) we have  < aφ(t) ≤ D. So � is a bounded set.
Let � = {x ∈ (x, x)� : ‖x‖ ≤ M}, where M = max{E, E, E, E}. Then � ∪� ⊂ �, and,

as it follows from the above proof, Lx �= λNx for all (x,λ) ∈ ∂� × (, ), so that conditions
() and () of Lemma . are both satisfied. Define the isomorphism J : Im Q → Ker L as
follows:

J(x, x)� = (x, –x)�.

Let H(μ, x) = –μx + ( – μ)JQNx, (μ, x) ∈ [, ] × �. Then, for all (μ, x) ∈ (, ) × (∂� ∩
Ker L),

H(μ, x) =

(
–μx(t) – –μ

T
∫ T

 g(t, x(t)) dt
–μx(t) – ( – μ)ϕq(x(t))

)

,

since
∫ T

 e(t) dt =  and f (t, ) = . From (H) it is obvious that x�H(μ, x) <  for all (μ, x) ∈
(, ) × (∂� ∩ Ker L). Hence

deg{JQN ,� ∩ Ker L, } = deg
{

H(, x),� ∩ Ker L, 
}

= deg
{

H(, x),� ∩ Ker L, 
}

= deg{I,� ∩ Ker L, } �= .

So condition () of Lemma . is satisfied. Applying Lemma ., we conclude that equation
Lx = Nx has a solution x = (x, x)� on �̄ ∩ D(L), that is, (.) has a T-periodic solution
x(t). �

Theorem . Assume that (H)-(H) and (H)-(H) hold. Then (.) has at least a non-
constant T-periodic solution if

 <
( Tpγ

p– + Tp+α
p )( T

π
)m+n–

(� – T

∑n–

k= Ck
ncn–k( T

π
)n––k)p–

< .

Proof We follow the same strategy and notation as the proof of Theorem .. Now, we
consider ‖x′‖ ≤ M.

We first claim that there is a constant ξ ∗ ∈ [, T] such that

 < x
(
ξ ∗)≤ D. (.)

Since
∫ T

 (ϕp(Ax)′(t))′dt = , there exist two points ξ ∗, ξ∗ ∈ [, T] such that

(
ϕp(Ax)′

(
ξ ∗))′ ≥  and

(
ϕp(Ax)′(ξ∗)

)′ ≤ .
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From (H) and (.) we have

g
(
ξ ∗, x

(
ξ ∗)) – e

(
ξ ∗)≤ –f

(
ξ ∗, x′


(
ξ ∗))≤ ,

since f (ξ ∗, x′
(ξ ∗)) > . Therefore, we get

g
(
ξ ∗, x′


(
ξ ∗))≤ e

(
ξ ∗)≤ |e|∞.

From (H) we have

x(ξ ) ≤ D.

Since x(t) > , we get  < x(ξ ∗) ≤ D. This proves (.).
Similarly, from (.) we have

∣∣x(t)
∣∣≤ D +




∫ T



∣∣x′
(t)

∣∣dt. (.)

From (.) and (H) we get


∣
∣x(m–)

 (t)
∣
∣≤ 

(
x(m–)

 (t) +



∫ T



∣
∣x(m)

 (t)
∣
∣dt

)

≤ λ

∫ T



∣∣f
(
t, x′

(t)
)

– g
(
t, x(t)

)
+ e(t)

∣∣dt

≤
∫ T



∣
∣f
(
t, x′

(t)
)∣∣dt +

∫ T



∣
∣g
(
t, x(t)

)∣∣dt +
∫ T



∣
∣e(t)

∣
∣dt

≤ α

∫ T



∣∣x′
(t)

∣∣p– dt + βT +
∫ T



∣∣g
(
t, x(t)

)∣∣dt + T |e|∞. (.)

From (.), (H), and (H) we have

∫ T



∣∣g
(
t, x(t)

)∣∣dt =
∫

g(t,x(t))≥
g
(
t, x(t)

)
dt –

∫

g(t,x(t))<
g
(
t, x(t)

)
dt

= 
∫

g(t,x(t))≥
g
(
t, x(t)

)
dt +

∫ T


f
(
t, x′

(t)
)

dt

≤ 
∫

g(t,x(t))≥

(
γ xp–

 (t) + ζ
)

dt +
∫ T



∣
∣f
(
t, x′

(t)
)∣∣dt

≤ γ |x|p–T + ζT + α

∫ T



∣∣x′
(t)

∣∣p– dt + βT . (.)

Substituting (.) into (.), from (.) we have


∣
∣x(m–)

 (t)
∣
∣≤ γ

∫ T



∣
∣x(t)

∣
∣p– dt + ζT + α

∫ T



∣
∣x′(t)

∣
∣p– dt + βT + |e|∞T

≤
(

Tpγ

p– + αT
)∣
∣x′


∣
∣p–
∞ +

DpTp–γ

p–

∣
∣x′


∣
∣p–
∞ + N, (.)
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where N = T(ζ + β) + ‖e‖T . From (.), (.), and (.) we get

|x|∞ ≤
(

Tpγ

p– +
Tp+α

p

)(
T

π

)(n–)(p–)+(m–) |x|∞
(� – T

 (
∑n–

k= Ck
ncn–k( T

π
)n––k))p–

+
Tpγ

p–

(
T

π

)(n–)(p–)+(m–) (
∑p–

i= Ci
p–(|x|q–

∞ )p––i(cnD)i)

(� – T
 (
∑n–

k= Ck
ncn–k( T

π
)n––k))p–

+
DpTp–γ

p–

(
T

π

)(n–)(p–)+(m–) (
∑p–

i= Ci
p–(|x|q–

∞ )p––i(cnD)i)

(� – T
 (
∑n–

k= Ck
ncn–k( T

π
)n––k))p–

+
T


(
T

π

)m–

N.

Since
( Tpγ

p– + Tp+α
p )( T

π )(n–)(p–)+(m–)

(�– T

∑n–

k= Ck
ncn–k ( T

π )n––k )p– < , it is easy to see that there exists a positive constant

M such that

∥∥x′∥∥≤ M.

The rest of the proof is the same as in Theorem .. �

We illustrate our results with an example.

Example . Consider the neutral functional differential

(
ϕp

(
x(t) –




sin(t)x(t – σ )
)′′′)′′′

+ cos(t) sin x′(t) +


π

(
sin(t) + 

)
x(t) –


xμ

=  cos(t), (.)

where p = , σ and μ are constants, and  < σ < T . It is clear that T = π
 , n = , m = ,

c(t) = 
 sin t, e(t) =  cos t, c = maxt∈[,T] | 

 cos t| = 
 , c = maxt∈[,T] | – 

 sin t| = 
 ,

and c = maxt∈[,T] | – cos t| = . In this case, f (t, u) = cos(t) sin u, f (t, ) = , |f (t, u)| =
| cos(t) sin u| ≤ , K = ; and g(t, x) = 

π
(sin t + )x(t) – 

xμ ≤ 
π

x + , γ = 
π

, ζ = ;
Obviously, conditions (H) and (H)-(H) hold. Choose D = π such that (H) holds. Now
we consider the following condition:

Tp

p–

(
T

π

)(n–)(p–)+(m–)
γ

(� – T

∑n–

k= Ck
ncn–k( T

π
)n––k)p–

=
( π

 )



( π


π

) 
π

( 
 – π

 × ( × 
 +  × 

 × 
 +  × 

 ))

≈ π

 < .

So, by Theorem ., (.) has at least one nonconstant π
 -periodic solution.

4 Conclusions
In summary, a periodic solution of (.) with singularity is illustrated by Theorems . and
.. In Theorem ., we consider the existence of a periodic solution for (.) in the case
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|f (t, u)| ≤ K . Furthermore, in Theorem ., we give a condition on f (t, u) that is weaker
than |f (, u)| ≤ K in Theorem ., that is, we obtain the existence of periodic solution for
(.) in the case where |f (t, u)| ≤ α|u|p– + β . From the mathematical point of view, the
results are valuable to understand the periodic solutions for high-order neutral differential
equations.
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