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Abstract
In this paper, we deal with the blow-up and global solutions of the following
p-Laplacian parabolic problems with Neumann boundary conditions:

⎧
⎪⎨

⎪⎩

(g(u))t =∇ · (|∇u|p–2∇u) + k(t)f (u) in � × (0, T ),
∂u
∂n = 0 on ∂� × (0, T ),

u(x, 0) = u0(x) ≥ 0 in �,

where p > 2 and � is a bounded domain in R
n (n ≥ 2) with smooth boundary ∂�. By

introducing some appropriate auxiliary functions and technically using maximum
principles, we establish conditions to guarantee that the solution blows up in some
finite time or remains global. In addition, the upper estimates of blow-up rate and
global solution are specified. We also obtain an upper bound of blow-up time.

MSC: 35K65; 35B40
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1 Introduction
In the past decades, many authors have researched the blow-up problems of p-Laplacian
elliptic and parabolic equations (see, for instance, [–]). In this paper, we study the blow-
up phenomena of the following p-Laplacian parabolic problems with Neumann boundary
conditions:

⎧
⎪⎪⎨

⎪⎪⎩

(g(u))t = ∇ · (|∇u|p–∇u) + k(t)f (u) in � × (, T),
∂u
∂n =  on ∂� × (, T),

u(x, ) = u(x) ≥  in �.

(.)

In (.), p > , � is a bounded domain in R
n (n ≥ ) with smooth boundary ∂�, T is

the blow-up time if blow-up occurs, otherwise T = +∞, g(s) is a C(R+) function satis-
fying g ′(s) > , s ∈ R+, f (s) is a positive C(R+) function, k(t) is a positive C(R+) func-
tion, and u(x) is a positive C(�) function which satisfies the compatibility condition
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∂u(x)/∂n = , x ∈ ∂�. With the aid of the regularity theorem [], we know that the non-
negative classical solution of (.) satisfies u ∈ C(� × (, T)) ∩ C(� × [, T)).

There is a lot of papers dealing with the blow-up and global solutions of parabolic prob-
lems with Neumann boundary conditions. We refer readers to [–] and the references
therein. In [], Payne and Philippin studied the following problems:

⎧
⎪⎪⎨

⎪⎪⎩

ut = �u + k(t)f (u) in � × (, T),
∂u
∂n =  on ∂� × (, T),

u(x, ) = u(x) ≥  in �,

where � is a bounded domain in R
n (n ≥ ) with smooth boundary. By means of the

differential inequality technique, they set up conditions on data to guarantee that u(x, t)
blows up at some finite time. Moreover, an upper bound for blow-up time was obtained.
When � ⊂ R

, a lower bound of blow-up time was also derived if blow-up occurred. In
[, ], An et al. considered the following problems:

⎧
⎪⎪⎨

⎪⎪⎩

ut = ∇ · (a(u)∇u) + f (u) in � × (, T),
∂u
∂n =  on ∂� × (, T),

u(x, ) = u(x) ≥  in �,

where � is a bounded domain in R
n (n ≥ ) with smooth boundary. By using the differen-

tial inequality technique, they gave the upper and lower bounds for blow-up time when the
blow-up of the solution occurred. In [], Gao et al. researched the following problems:

⎧
⎪⎪⎨

⎪⎪⎩

(g(u))t = ∇ · (a(u)∇u) + f (u) in � × (, T),
∂u
∂n =  on ∂� × (, T),

u(x, ) = u(x) >  in �,

where � is a bounded domain in R
n (n ≥ ) with smooth boundary. By introducing some

auxiliary functions and using maximum principles, they established some conditions on
nonlinearities to guarantee the existence of blow-up solution or global solution. Further-
more, the upper estimates of global solution and blow-up rate were obtained. They gave
also an upper bound for blow-up time of the solution.

As far as we know, there is little information about the blow-up problem of (.). Inspired
by the above research, in this paper, we study the blow-up phenomena of (.). However,
it is difficult to use the differential inequality technique employed in [, , ] to study
the blow-up problem of (.). In this paper, we technically use maximum principles to deal
with problem (.). We note that the auxiliary functions in [] are not suitable for (.).
Therefore, we must introduce some new auxiliary functions to complete our research.

Our paper is constructed as follows. In Section , we establish conditions that ensure
the solution blows up in some finite time. At the same time, an upper bound of blow-up
time and an upper estimate of blow-up solution are obtained. Section  is dedicated to
finding conditions to guarantee that the solution remains global. We also give an upper
estimate of the global solution. In Section , two examples are presented to illustrate the
abstract results of this paper.
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For convenience, throughout the paper, the notation u, i = ∂u
∂xi

, u, ij = ∂u
∂xi∂xj

will be used.
We will also adopt the summation convention (i.e., summation over repeated indies), e.g.,

u, iu, ju, ij =
n∑

i=

n∑

j=

∂u
∂xi

∂u
∂xj

∂u
∂xi∂xj

.

2 Blow-up solution
In this section, we set up some conditions for blow-up to occur and derive an upper bound
for blow-up time. In order to achieve this goal, we need to construct three auxiliary func-
tions as follows:

φ(x, t) = g ′(u)ut – k(t)f (u), (x, t) ∈ � × [, T), (.)

ψ(s) =
∫ s


k(τ ) dτ , s ∈ R+, (.)

η(s) =
∫ +∞

s

g ′(τ )
f (τ )

dτ , s ∈ R+. (.)

Now we have

ψ ′(s) = k(s) > , s ∈R+,

which ensures the existence of the inverse function ψ– of ψ . Similarly,

η′(s) = –
g ′(s)
f (s)

< , s ∈R+

implies that there exists the inverse function η–. By using the above three auxiliary func-
tions, we can get the following Theorem ..

Theorem . Let u be a nonnegative classical solution of problem (.). Assume that the
initial value u satisfies

∇ · (|∇u|p–∇u
) ≥ , x ∈ �. (.)

In addition, we assume that the functions f , g and k satisfy

∫ ∞

M

g ′(τ )
f (τ )

dτ <
∫ +∞


k(τ ) dτ , M = max

�

u(x) (.)

and

g ′(s)
(

f ′(s)
g ′(s)

)′
– f (s)

(
g ′′(s)

(g ′(s))

)′
≥ , s ∈R+. (.)

Then the solution u blows up at some finite time T and

T ≤ ψ

(∫ +∞

M

g ′(τ )
f (τ )

dτ

)

,
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u(x, t) ≤ η–
(∫ T

t
k(τ ) dτ

)

.

Proof Consider the auxiliary function φ(x, t) defined in (.). By direct calculation, we have

φ, i = g ′′utu, i + g ′ut , i – kf ′u, i (.)

and

φ, ij = g ′′′utu, iu, j + g ′′ut , ju, i + g ′′ut , iu, j + g ′′utu, ij + g ′ut , ij – kf ′′u, iu, j – kf ′u, ij. (.)

It follows from (.) that

�φ = φ, ii = g ′′′|∇u|ut + g ′′(∇u · ∇ut) + g ′′ut�u + g ′�ut – kf ′′|∇u| – kf ′�u. (.)

Now we use the first equation of (.) to obtain

φt =
[
g ′(u)ut – k(t)f (u)

]

t =
[(

g(u)
)

t – k(t)f (u)
]

t =
[∇ · (|∇u|p–∇u

)]

t

=
[|∇u|p–�u + (p – )|∇u|p–u, iu, ju, ij

]

t

= (p – )|∇u|p–(∇u · ∇ut)�u + |∇u|p–�ut

+ (p – )(p – )|∇u|p–(∇u · ∇ut)u, iu, ju, ij

+ (p – )|∇u|p–ut , iu, ju, ij + (p – )|∇u|p–u, iu, jut , ij. (.)

Making use of (.), (.) and (.), we obtain

|∇u|p–

g ′ �φ + (p – )
|∇u|p–

g ′ u, iu, jφ, ij – φt

= (p – )
g ′′′

g ′ |∇u|put + (p – )
g ′′

g ′ |∇u|p–(∇u · ∇ut)

+
g ′′

g ′ |∇u|p–ut�u – (p – )
kf ′′

g ′ |∇u|p

–
kf ′

g ′ |∇u|p–�u + (p – )
g ′′

g ′ |∇u|p–utu, iu, ju, ij – (p – )
kf ′

g ′ |∇u|p–u, iu, ju, ij

– (p – )|∇u|p–(∇u · ∇ut)�u – (p – )(p – )|∇u|p–(∇u · ∇ut)u, iu, ju, ij

– (p – )|∇u|p–ut , iu, ju, ij. (.)

It follows from (.) that

ut , i =

g ′ φ, i –

g ′′

g ′ utu, i +
kf ′

g ′ u, i (.)

and

∇ut =

g ′ ∇φ –

g ′′

g ′ ut∇u +
kf ′

g ′ ∇u. (.)
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Substituting (.) and (.) into (.), we arrive at

|∇u|p–

g ′ �φ + (p – )
|∇u|p–

g ′ u, iu, jφ, ij

+
|∇u|p–

g ′

(

(p – )|∇u|�u + (p – )(p – )u, iu, ju, ij

– (p – )
g ′′

g ′ |∇u|
)

(∇u · ∇φ)

+ (p – )
|∇u|p–

g ′ u, iu, ijφ, i – φt

=
(

(p – )
g ′′′

g ′ – (p – )
(g ′′)

(g ′)

)

|∇u|put +
(

(p – )
kf ′g ′′

(g ′) – (p – )
kf ′′

g ′

)

|∇u|p

+ (p – )
g ′′

g ′ |∇u|p–ut�u

– (p – )
kf ′

g ′ |∇u|p–�u + (p – )(p – )
g ′′

g ′ |∇u|p–u, iu, ju, ijut

– (p – )(p – )
kf ′

g ′ |∇u|p–u, iu, ju, ij. (.)

The first equation of (.) implies

|∇u|p–�u = g ′ut – (p – )|∇u|p–u, iu, ju, ij – kf . (.)

Inserting (.) into (.), we derive

|∇u|p–

g ′ �φ + (p – )
|∇u|p–

g ′ u, iu, jφ, ij

+
|∇u|p–

g ′

(

(p – )|∇u|�u + (p – )(p – )u, iu, ju, ij

– (p – )
g ′′

g ′ |∇u|
)

(∇u · ∇φ)

+ (p – )
|∇u|p–

g ′ u, iu, ijφ, i – φt

=
(

(p – )
g ′′′

g ′ – (p – )
(g ′′)

(g ′)

)

|∇u|put +
(

(p – )
kf ′g ′′

(g ′) – (p – )
kf ′′

g ′

)

|∇u|p

+ (p – )g ′′(ut) –
(

(p – )
kfg ′′

g ′ + (p – )kf ′
)

ut + (p – )
kff ′

g ′ . (.)

By (.), we have

ut =

g ′ φ +

kf
g ′ . (.)

Substituting (.) into (.), we deduce

|∇u|p–

g ′ �φ + (p – )
|∇u|p–

g ′ u, iu, jφ, ij

+
|∇u|p–

g ′

(

(p – )|∇u|�u + (p – )(p – )u, iu, ju, ij
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– (p – )
g ′′

g ′ |∇u|
)

(∇u · ∇φ)

+ (p – )
|∇u|p–

g ′ u, iu, ijφ, i

+ (p – )

g ′

{

kf ′ –

g ′

[

g ′′(φ + kf ) +
(

g ′′′ – 
(g ′′)

g ′

)

|∇u|p
]}

φ – φt

= ( – p)k
[

g ′
(

f ′

g ′

)′
– f

(
g ′′

(g ′)

)′]
|∇u|p. (.)

Assumption (.) implies that the right-hand side in equality (.) is nonpositive. In other
words, we have

|∇u|p–

g ′ �φ + (p – )
|∇u|p–

g ′ u, iu, jφ, ij

+
|∇u|p–

g ′

(

(p – )|∇u|�u + (p – )(p – )u, iu, ju, ij

– (p – )
g ′′

g ′ |∇u|
)

(∇u · ∇φ)

+ (p – )
|∇u|p–

g ′ u, iu, ijφ, i

+ (p – )

g ′

{

kf ′ –

g ′

[

g ′′(φ + kf )

+
(

g ′′′ – 
(g ′′)

g ′

)

|∇u|p
]}

φ – φt ≤  in � × (, T). (.)

Making use of the maximum principle [], we have the following three possible cases
where φ may take its minimum value:

(i) for t = ,
(ii) at a point where |∇u| = ,

(iii) on the boundary ∂� × (, T).
We first consider the first case. It follows from (.) that

φ(x, ) = g ′(u)ut – k()f (u) =
(
g(u)

)

t – k()f (u)
(.)

= ∇ · (|∇u|p–∇u
) ≥ , x ∈ �.

Then we consider the second case. Assume that (x̄, t̄) ∈ � × (, T) is a point where
|∇u(x̄, t̄)| = . Since

∣
∣φ(x, t)

∣
∣ =

∣
∣∇ · (|∇u|p–∇u

)∣
∣ =

∣
∣|∇u|p–�u + |∇u|p–u, iu, ju, ij

∣
∣

≤ |∇u|p–|�u| + |∇u|p–|∇u||∇u||u, ij| = |∇u|p–(|�u| + |u, ij|
)
,

the fact that p >  and |∇u(x̄, t̄)| =  imply

∣
∣φ(x̄, t̄)

∣
∣ ≤ ∣

∣∇u(x̄, t̄)
∣
∣p–(∣∣�u(x̄, t̄)

∣
∣ +

∣
∣u, ij(x̄, t̄)

∣
∣
)

= . (.)
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Hence, we have φ(x̄, t̄) = . Finally, we consider the third case. Applying the boundary
condition of (.), we get

∂φ

∂n
= g ′′(u)ut

∂u
∂n

+ g ′ ∂ut

∂n
– f ′(u)

∂u
∂n

= g ′(u)
(

∂u
∂n

)

t
=  on ∂� × (, T). (.)

Combining (.)-(.) and the maximum principle, we now get that the minimum of
φ in � × [, T) is nonnegative. Thus

φ ≥  in � × [, T);

that is,

g ′(u)
f (u)

ut ≥ k(t). (.)

At the point x∗ ∈ �, where u(x∗) = M, we integrate (.) over [, t] to obtain

∫ t



g ′(u)
f (u)

ut dt =
∫ u(x∗ ,t)

M

g ′(τ )
f (τ )

dτ ≥
∫ t


k(τ ) dτ , (.)

which ensures that u blows up in some finite time T . In fact, suppose that u remains global,
then for any t > , we have

∫ +∞

M

g ′(τ )
f (τ )

dτ ≥
∫ u(x∗ ,t)

M

g ′(τ )
f (τ )

dτ ≥
∫ t


k(τ ) dτ . (.)

Letting t → +∞ in (.), we deduce

∫ +∞

M

g ′(τ )
f (τ )

dτ ≥
∫ +∞


k(τ ) dτ ,

which contradicts assumption (.). This shows that u blows up in some finite time T .
Furthermore, taking the limit as t → T– in (.), we arrive at

lim
t→T–

∫ u(x∗ ,t)

M

g ′(τ )
f (τ )

dτ ≥ lim
t→T–

∫ t


k(τ ) dτ

and
∫ +∞

M

g ′(τ )
f (τ )

dτ ≥
∫ T


k(τ ) dτ = ψ(T). (.)

It follows from (.) that

T ≤ ψ–
(∫ +∞

M

g ′(τ )
f (τ )

dτ

)

.

For each fixed x, we integrate inequality (.) over [t, t∗] ( < t < t∗ < T) to obtain

η
(
u(x, t)

) ≥ η
(
u(x, t)

)
– η

(
u
(
x, t∗)) =

∫ u(x,t∗)

u(x,t)

g ′(τ )
f (τ )

dτ ≥
∫ t∗

t
k(τ ) dτ . (.)
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Letting t∗ → T– in (.), we deduce

η
(
u(x, t)

) ≥
∫ T

t
k(τ ) dτ ,

from which we have

u(x, t) ≤ η–
(∫ T

t
k(τ ) dτ

)

.

The proof of Theorem . is complete. �

Remark . When
∫ +∞


k(τ ) dτ = +∞,

assumption (.) means

∫ +∞

M

g ′(τ )
f (τ )

dτ < +∞, M = max
�

u(x).

3 Global solution
In this section, we establish some conditions on functions f , g, k, and initial value u to
ensure that the solution of (.) remains global. In order to accomplish this task, in addition
to using the auxiliary function φ defined in (.), we also need to construct the following
auxiliary function:

ζ (s) =
∫ s



g ′(τ )
f (τ )

dτ , s ∈R+. (.)

Now we have

ζ ′(s) =
g ′(s)
f (s)

> , s ∈ R+,

which guarantees the existence of the inverse function ζ – of function ζ . The main result
of this section is the following Theorem ..

Theorem . Let u be a nonnegative classical solution of problem (.). Suppose that the
initial value u satisfies

∇ · (|∇u|p–∇u
) ≤ , x ∈ �, (.)

and the functions f , g and k satisfy

∫ ∞

M

g ′(τ )
f (τ )

dτ ≥
∫ +∞


k(τ ) dτ , M = max

�

u(x) (.)

and

g ′(s)
(

f ′(s)
g ′(s)

)′
– f (s)

(
g ′′(s)

(g ′(s))

)′
≤ , s ∈R+. (.)
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Then u exists globally and

u(x, t) ≤ ζ –
(∫ t


k(τ ) dτ + ζ

(
u(x)

)
)

.

Proof It follows from (.) and (.) that

|∇u|p–

g ′ �φ + (p – )
|∇u|p–

g ′ u, iu, jφ, ij

+
|∇u|p–

g ′

(

(p – )|∇u|�u + (p – )(p – )u, iu, ju, ij

– (p – )
g ′′

g ′ |∇u|
)

(∇u · ∇φ)

+ (p – )
|∇u|p–

g ′ u, iu, ijφ, i

+ (p – )

g ′

{

kf ′ –

g ′

[

g ′′(φ + kf )

+
(

g ′′′ – 
(g ′′)

g ′

)

|∇u|p
]}

φ – φt ≥  in � × (, T).

The maximum principle implies that φ may take its maximum value in the following three
possible cases:

(i) for t = ,
(ii) at a point where |∇u| = ,

(iii) on the boundary ∂� × (, T).
By using the same reasoning process as (.), we have

φ(x, ) = ∇ · (|∇u|p–∇u
) ≤ , x ∈ �, (.)

where we use assumption (.). It follows from (.), (.)-(.) and the maximum prin-
ciple that the maximum value of φ in � × [, T) is nonpositive. In other words, we have

φ(x, t) ≤ , in � × [, T);

that is,

g ′(u)
f (u)

ut ≤ k(t). (.)

Now, for each fixed x ∈ �, we integrate (.) over [, t] to obtain

∫ t



g ′(u)
f (u)

ut dt =
∫ u(x,t)

u(x)

g ′(τ )
f (τ )

dτ ≤
∫ t


k(τ ) dτ , (.)

which implies that u remains global. In fact, suppose that u(x, t) blows up in some finite
time T , we have

lim
t→T–

u(x, t) = +∞.
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Letting t → T– in (.), we derive

∫ +∞

M

g ′(τ )
f (τ )

dτ ≤
∫ +∞

u(x)

g ′(τ )
f (τ )

dτ ≤
∫ T

u(x)
k(τ ) dτ <

∫ +∞


k(τ ) dτ ,

which contradicts assumption (.). This shows that u is a global solution. Furthermore,
it follows from (.) and (.) that

ζ
(
u(x, t)

)
– ζ

(
u(x)

)
=

∫ u(x,t)



g ′(τ )
f (τ )

dτ –
∫ u(x)



g ′(τ )
f (τ )

dτ =
∫ u(x,t)

u(x)

g ′(τ )
f (τ )

dτ

≤
∫ t


k(τ ) dτ .

Hence, we deduce

u(x, t) ≤ ζ –
(∫ t


k(τ ) dτ + ζ

(
u(x)

)
)

.

The proof of Theorem . is complete. �

Remark . When
∫ +∞

M

g ′(τ )
f (τ )

dτ = +∞, M = max
�

u(x),

assumption (.) means

∫ +∞


k(τ ) dτ < +∞.

4 Applications
In the following, we present two examples to demonstrate the applications of Theo-
rems .-. obtained in this paper.

Example . Let u be a nonnegative classical solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

(ueu)t = ∇ · (|∇u|p–∇u) + e–t( + u)eu in � × (, T),
∂u
∂n =  on ∂� × (, T),

u(x, ) =  in �,

where p >  and � = {x = (x, x, x)|∑
i= x

i < }. Now we have

g(u) = ueu, f (u) = ( + u)eu, k(t) = e–t , u(x) = .

It is easy to verify that assumptions (.)-(.) hold. It follows from Theorem . that u
blows up in some finite time T and

T ≤ ψ–
(∫ +∞

M

g ′(τ )
f (τ )

dτ

)

= ψ–
(∫ +∞




( + τ ) dτ

)

= ψ–
(




)

= ln ,
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u(x, t) ≤ η–
(∫ T

t
k(τ ) dτ

)

= η–
(∫ T

t
e–τ dτ

)

= η–(e–t – e–T)
=

eT et

eT – et – .

Example . Let u be a nonnegative classical solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

(eu)t = ∇ · (|∇u|p–∇u) + eu

(+t) in � × (, T),
∂u
∂n =  on ∂� × (, T),

u(x, ) =  in �,

where p >  and � = {x = (x, x, x)|∑
i= x

i < }. We then have

g(u) = eu, f (u) = eu, k(t) =


( + t) , u(x) = .

It can be easily seen that assumptions (.)-(.) hold. Hence, Theorem . implies that u
exists globally and

u(x, t) ≤ ζ –
(∫ t


k(τ ) dτ + ζ

(
u(x)

)
)

= ζ –
(∫ t




( + τ ) dτ + ζ ()

)

= ζ –
(

t
 + t

+ 
(
e – 

)
)

=



ln

(
t

( + t)
+ e

)

.

5 Conclusion
In this paper, we study the blow-up and global solutions of problem (.). As far as we
know, there is little information about the blow-up problem of (.). It is difficult to use a
differential inequality technique employed in [, , ] to study the blow-up problem
of (.). We technically use maximum principles to deal with problem (.). We note that
the auxiliary functions in [] are not suitable for (.). Therefore, the key to our research
is to construct the appropriate auxiliary functions. We establish conditions to guarantee
that the solution of (.) blows up in some finite time or remains global. In addition, the
upper estimates of blow-up rate and global solution are specified. We also obtain an upper
bound of blow-up time.
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