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Abstract
The aim of this paper is to consider the dynamical behaviour for a class of
non-autonomous reaction-diffusion equations in R

n, where the external force g(x, t)
satisfies only a certain integrability condition. The existence of
(L2(Rn), L2(Rn))-D-pullback attractors and (L2(Rn), Lp(Rn))-D-pullback attractors is
obtained for this evolution equation.
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1 Introduction
In this paper, we consider the asymptotic behaviour of solutions for the following non-
autonomous reaction-diffusion equations defined in the whole space:

⎧
⎨

⎩

ut – ν�u + λu + f(u) + a(x)f(u) = g(x, t), in R
n × [τ ,∞),

u(x, τ ) = uτ , in R
n,

(.)

where ν and λ are positive constants. Assume that nonlinear terms f(u), f(u) ∈ C(R;R)
satisfy the following conditions:

α|u|p – β|u| ≤ f(u)u ≤ α|u|p + β|u| and f ′
 (u) ≥ –l (.)

with p >  and λ > β,

α|u|p – β ≤ f(u)u ≤ α|u|p + β and f ′
(u) ≥ –l (.)

with p > , where αi, βi, i = , , , , and li, i = ,  are positive constants. Furthermore, a(x)
is a function in R

n and the external force g(x, t) ∈ L
loc(R; L(Rn)) satisfies the following

conditions:

a(x) ∈ L(
R

n) ∩ L∞(
R

n) and a(x) > , (.)
∫ t

–∞
eσ s∥∥g(x, s)

∥
∥

L(Rn) ds < ∞, for all t ∈ R,σ ∈ (,λ – β). (.)
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In the last decade, the autonomous and non-autonomous infinite dimensional dynam-
ical systems have been studied extensively by many authors (see, e.g. [–] and the refer-
ences therein). The concept of pullback attractors was proposed in [] when the authors
considered the asymptotic behaviour of random dynamical systems. Such attractors is a
parameterised family {A(t)}t∈R of invariant compact sets, which attract the trajectories of
the systems when the initial instant of time goes to –∞ and the final time remains fixed.
Later on, the pullback attractors were extended to non-autonomous dynamical systems.
In the last two decades, the theory of pullback attractors has been developed for non-
autonomous dynamical systems and random dynamical systems (see, e.g. [–] and the
references therein). In [], the authors introduced the notion of D-pullback attractors,
which requires that the process U(t, τ ) associated with the systems be D-pullback asymp-
totically compact.

It is well known that the Sobolev embeddings are no longer compact in unbounded
domain, and so it is difficult to verify the process U(t, τ ) associated with the systems to
be pullback asymptotically compact. To overcome this drawback, in [], using the idea of
Wang [], the authors proved the existence of pullback attractors in L(Rn) and H(Rn) for
non-autonomous reaction-diffusion equations defined on R

n. Recently, motivated by [],
the authors of [] gave a new method to prove the existence of D-pullback attractors by
using the technique of non-compactness measure, and this method only needs the process
U(t, τ ) associated with the systems to be norm-to-weak continuous (see Definition .) in
the phase space.

As we know, the solutions may be unbounded for many non-autonomous systems when
time tends to infinity, and we cannot obtain the existence of a uniform attractor for these
systems. So we prove the existence of a pullback attractor to overcome this drawback. In
this paper, we use a different approach from the article [] to prove the existence of pull-
back attractors, and we improve the model equation as Eq. (.), which amounts to putting
a weight function partially on the nonlinearity. We can also replace the conditions for the
nonlinearity f (u) as given in [] that f (u) satisfies only a Sobolev growth rate with some
weak assumptions. For Eq. (.), the (L(Rn), L(Rn))-global attractor, (L(Rn), Lp(Rn))-
global attractor and (L(Rn), H(Rn))-global attractor were proved in [, ]. Using the
new method in [], we prove the existence of D-pullback attractors in L(Rn) for Eq. (.)
and, motivated by the idea in [, ], we obtain the existence of D-pullback attractors in
Lp(Rn) for Eq. (.). This new method has been used successfully in many papers (see, e.g.
[, , , ] and the references therein).

For convenience, the letter C denotes a constant which may be different from line to line
and even in the same line. We use ‖ · ‖ and (·, ·) for the usual norm and the inner product
of L(Rn), respectively. We denote by ‖ · ‖p the norm of Lp(Rn) ( ≤ p ≤ ∞) and by ‖ · ‖H

the norm of H(Rn). In general, m(e) is the Lebesgue measure of e ⊂R
n. ‖ · ‖E denotes the

norm of any Banach space E and B(E) is the set of all bounded subsets of E. Let X, Y ⊂ E,
denote by dist (X, Y ) = supx∈X infy∈Y d(x, y) the semidistance between X and Y .

2 Preliminaries
In this section, we first recall the basic definitions and theorems.

Definition . ([]) Let X be a complete metric space and {U(t, τ )} = {U(t, τ ) : t ≥ τ ,
τ ∈R} be a two-parameter family of mappings acting on X: U(t, τ ) : X → X, t ≥ τ , τ ∈ R.
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We say that {U(t, τ )}τ≤t is a continuous process (or norm-to-weak continuous process) in
X if

() U(t, s)U(s, τ ) = U(t, τ ), ∀t ≥ s ≥ τ ,
() U(τ , τ ) = Id is the identity operator, τ ∈R,
() x → U(t, τ )x is continuous in X

(or U(t, τ )xn ⇀ U(t, τ )x if xn → x, ∀t ≥ τ , τ ∈ R).
Suppose that D is a nonempty class of parameterised sets D̂ = {D(t) : t ∈R} ⊂ B(E).

Definition . ([]) The process {U(t, τ )}τ≤t is said to be D-pullback asymptotically
compact if, for any t ∈ R and any D̂ ∈ D , and any sequence τn → –∞, any sequence
xn ∈ D(τn), the sequence {U(t, τn)xn} is precompact in X.

Definition . ([]) It is said that B̂ ∈ D is D-pullback absorbing for the process
{U(t, τ )}τ≤t if, for any t ∈ R and any D̂ ∈ D , there exists τ(t, D̂) ≤ t such that U(t, τ ) ×
D(τ ) ⊂ B(t) for all τ ≤ τ(t, D̂).

Definition . ([]) The family Â = {A(t) : t ∈ R} ⊂ B(E) is said to be a D-pullback at-
tractor for U(t, τ ) if

() A(t) is compact for all t ∈R,
() Â is invariant, i.e.

U(t, τ )A(τ ) = A(τ ) for all t ≥ τ ,

() Â is D-pullback attracting, i.e.

lim
τ→–∞ dist

(
U(t, τ )D(τ ), A(t)

)
=  for all D̂ ∈ D and all t ∈R,

() if {C(t)}t∈R is another family of closed attracting sets, then A(t) ⊂ C(t) for all t ∈R.

Definition . ([]) Let M be a metric space and A be a bounded subset of M. The Ku-
ratowski measure of non-compactness α(A) is defined by

α(A) = inf{δ >  | A admits a finite cover by sets of diameter ≤ δ}.

It has the following properties.

Lemma . ([]) Let B, B, B ∈ B(E). Then
() α(B) =  ⇔ α(N(B, ε)) ≤ ε ⇔ B̄ is compact;
() α(B + B) ≤ α(B) + α(B);
() α(B) ≤ α(B) whenever B ⊂ B;
() α(B ∪ B) ≤ max{α(B),α(B)};
() α(B) = α(B̄);
() if B is a ball of radius ε, then α(B) ≤ ε.

Definition . ([]) A process {U(t, τ )}τ≤t is called D-pullback ω-limit compact if for
any ε >  and D̂ ∈ D , there exists τ(t, D̂) ≤ t such that α(

⋃
τ≤τ

U(t, τ )D(τ )) ≤ ε.
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Theorem . ([]) Let {U(t, τ )}τ≤t be a process on X. Then {U(t, τ )}τ≤t is D-pullback
asymptotically compact if and only if {U(t, τ )}τ≤t is D-pullback ω-limit compact.

Theorem . ([]) Let {U(t, τ )}τ≤t be a norm-to-weak continuous process such that
{U(t, τ )}τ≤t is D-pullback ω-limit compact. If there exists a family of D-pullback absorb-
ing sets {B(t) : t ∈ R} ∈ D , i.e. for any t ∈ R and D̂ ∈ D , there exists τ(t, D̂) ≤ t such that
U(t, τ )D(τ ) ⊂ B(t) for all τ ≤ τ, then there exists a D-pullback attractor A = {A(t) : t ∈R}
and

A(t) = ω(B̂, t) =
⋂

s≤t

⋃

τ≤s
U(t, τ )B(τ ).

Remark Obviously, a continuous process and a weak continuous process are both norm-
to-weak continuous processes.

Theorem . ([]) Let  be a domain in R
n, {U(t, τ )}τ≤t be a process on Lp() and Lq()

(p > q ≥ ) and {U(t, τ )}τ≤t satisfy the following two assumptions:
() {U(t, τ )}τ≤t is D-pullback ω-limit compact in Lq();
() for any ε > , B̂ ∈ D , there exist M(ε, B̂) and τ = τ(ε, B̂) ≤ t such that

(∫

(|U(t,τ )|≥M)

∣
∣U(t, τ )uτ

∣
∣p dx

) 
p

< – p+
p ε for any uτ ∈ B(τ ) and τ ≥ τ.

Then {U(t, τ )}τ≤t is D-pullback ω-limit compact in Lp().

Theorem . ([]) Let X, Y be two Banach spaces with the norms ‖ ·‖X and ‖ ·‖Y , respec-
tively. Let {U(t, τ )}τ≤t be a continuous process on X and a process on Y . Assume that the
family B̂ = {B(t) : t ∈R} is (X, X)-D-pullback absorbing for U(t, τ ), and for any t ∈R and
any sequence τn → –∞, any sequence xn ∈ B(τn), the sequence {U(t, τn)xn} is precompact
in X. Then the family of sets A = {A(t) : t ∈R}, where

A(t) =
⋂

s≤t

⋃

τ≤s
U(t, τ )B(τ )

X

is a (X, X)-D-pullback attractor for {U(t, τ )}τ≤t , where AX denotes the closure of A with
respect to the norm topology in X.

Furthermore, if the family B̂ = {B(t) : t ∈ R} is (X, Y )-D-pullback absorbing for
{U(t, τ )}τ≤t , and it satisfies that, for any t ∈ R and any sequence τn → –∞, any se-
quence xn ∈ B(τn), the sequence {U(t, τn)xn} is precompact in Y . Then the family of sets
A′ = {A′(t) : t ∈R}, where

A′(t) =
⋂

s≤t

⋃

τ≤s
U(t, τ )

(
B(τ ) ∩ B(τ )

)X
=

⋂

s≤t

⋃

τ≤s
U(t, τ )

(
B(τ ) ∩ B(τ )

)Y

is a (X, Y )-D-pullback attractors for {U(t, τ )}τ≤t .

Remark When {U(t, τ )}τ≤t is only a process on Y , we also prove A′ = {A′(t) : t ∈ R} is a
(X, Y )-D-pullback attractor for {U(t, τ )}τ≤t .
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Lemma . Let {U(t, τ )}τ≤t be a process on Lp(Rn) (p ≥ ), B̂ = {B(t) : t ∈ R} is (X, Y )-
D-pullback absorbing for {U(t, τ )}τ≤t . Then, for any ε > , t ∈ R and D̂ ∈ D ⊂ B(Lp(Rn)),
there exist M(t, ε) and τ = τ(t, ε) such that

m
(
R

n(∣∣U(t, τ )
∣
∣ ≥ M(t, ε)

))
< ε for all uτ ∈ D(τ ) and τ ≤ τ.

The proof of the above lemma is identical to the proof of Lemma . in [].
Using the standard Faedo-Galerkin method (see [, ]), it is easy to prove the following

lemma.

Lemma . Assume that (.)-(.) hold and g ∈ L
loc(R, L(Rn)). Then, for any T > , uτ ∈

L(Rn), τ ∈R and T ≥ τ , there exists a unique weak solution u(x, t) for Eq. (.) satisfying

u ∈ C
(
[τ , T]; L(

R
n)) ∩ Lp(τ , T ; Lp(

R
n)) ∩ L(τ , T ; H(

R
n)).

Furthermore, uτ �→ u(t, τ ; uτ ) is continuous in L(Rn).

Based on Lemma ., we can define a continuous process {U(t, τ )}τ≤t in L(Rn) by

U(t, τ )uτ = u(t) for all t ≥ τ , (.)

where u(t) is the solution of Eq. (.) with the initial value u(x, τ ) = uτ ∈ L(Rn). Moreover,
we also know that {U(t, τ )}τ≤t is a process in Lp(Rn).

3 Main results
3.1 (L2(Rn), L2(Rn))-D-pullback attractors
Firstly, the following lemma ensures a D-pullback absorbing set in L(Rn).

Lemma . Assume that (.)-(.) hold and the external force g ∈ L
loc(R, L(Rn)) satisfies

(.). Then, for any D̂ ∈ D ⊂ B(L(Rn)) and any t ∈R, there exists τ(t, D̂) ≤ t such that

∥
∥U(t, τ )uτ

∥
∥ ≤ R(t) for all τ ≤ τ(t, D̂) and all uτ ∈ D(τ ), (.)

where R(t) = ( β‖a(x)‖
σ

+ e–σ t

λ–β

∫ t
–∞ eσ r‖g(x, r)‖ dr) 

 .

Proof Taking the inner product of (.) with u in L(Rn), we have




d
dt

‖u‖ + ν‖∇u‖ + λ‖u‖ +
(
f(u), u

)
+

(
a(x)f(u), u

)
=

(
g(x, t), u

)
.

Due to (.)-(.) and Young’s inequality, we get

d
dt

‖u‖ + (λ – β)‖u‖ ≤ β
∥
∥a(x)

∥
∥

 +
‖g(x, t)‖

λ – β
, (.)

d
dt

‖u‖ + (λ – β)‖u‖ + ν‖∇u‖ + α‖u‖p
p + α

∫

Rn
a(x)|u|p dx

≤ β
∥
∥a(x)

∥
∥

 +
‖g(x, t)‖

λ – β
. (.)
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By (.), we obtain

d
dr

(
eσ r‖u‖) + (λ – β – σ )eσ r‖u‖ ≤ β

∥
∥a(x)

∥
∥

eσ r +
‖g(x, r)‖

λ – β
eσ r .

Integrating over the interval [τ , t] and noting that σ ∈ (,λ – β), we have

eσ t∥∥u(t)
∥
∥ ≤ β‖a(x)‖

σ
eσ t +


λ – β

∫ t

τ

eσ r∥∥g(x, r)
∥
∥ dr + eστ‖uτ‖

≤ β‖a(x)‖

σ
eσ t +


λ – β

∫ t

–∞
eσ r∥∥g(x, r)

∥
∥ dr + eστ‖uτ‖. (.)

Thus, we get

∥
∥u(t)

∥
∥ ≤ β‖a(x)‖

σ
+ e–σ teστ‖uτ‖ +

e–σ t

λ – β

∫ t

–∞
eσ r∥∥g(x, r)

∥
∥ dr,

and this implies (.). �

Let B̂ = {B(t) : t ∈R}, where

B(t) =
{

u ∈ L(
R

n) : ‖u‖ ≤ R(t)
}

. (.)

By Lemma ., it is easy to know that the family B̂ is (L(Rn), L(Rn))-D-pullback ab-
sorbing for the process {U(t, τ )}τ≤t defined by (.) and

eσ t(R(t)
) →  as t → –∞. (.)

Let F(u) =
∫ u

 f(s) ds and F(u) =
∫ u

 f(s) ds. By (.)-(.), there exist positive constants
α̃i, β̃i, i = , , , , such that

α̃|u|p – β̃|u| ≤ F(u) ≤ α̃|u|p + β̃|u|, λ > β̃, (.)

α̃|u|p – β̃ ≤ F(u) ≤ α̃|u|p + β̃. (.)

Lemma . Assume that (.)-(.) hold and the external force g ∈ L
loc(R, L(Rn)) satisfies

(.). Then, for any D̂ ∈ D ⊂ B(L(Rn)) and any t ∈R, there exists τ(t, D̂) ≤ t such that

∥
∥u(t)

∥
∥ +

∥
∥∇u(t)

∥
∥ +

∥
∥u(t)

∥
∥p

p ≤ (
R(t)

) for all τ ≤ τ(t, D̂) and all uτ ∈ D(τ ), (.)

where R(t) = C( β‖a(x)‖
σ

+ e–σ t

λ–β

∫ t
–∞ eσ r‖g(x, r)‖ dr) 

 and the positive constant C is inde-
pendent of t and D̂ .

Proof Multiplying (.) by eσ t , we have

d
dt

(
eσ t∥∥u(t)

∥
∥) + (λ – β – σ )eσ t∥∥u(t)

∥
∥ + νeσ t∥∥∇u(t)

∥
∥

+ αeσ t‖u‖p
p + αeσ t

∫

Rn
a(x)|u|p dx

≤ βeσ t∥∥a(x)
∥
∥

 + eσ t ‖g(x, t)‖

λ – β
.
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Let τ < t –  and r ∈ [τ , t – ], integrating over the interval [r, r + ], we get

eσ (r+)∥∥u(r + )
∥
∥ + (λ – β – σ )

∫ r+

r
eσ s∥∥u(s)

∥
∥ ds + ν

∫ r+

r
eσ s∥∥∇u(s)

∥
∥ ds

+ α

∫ r+

r
eσ s∥∥u(s)

∥
∥p

p ds + α

∫ r+

r
eσ s

∫

Rn
a(x)

∣
∣u(s)

∣
∣p dx ds

≤ β
∥
∥a(x)

∥
∥



∫ r+

r
eσ s ds +

∫ r+

r
eσ s ‖g(x, s)‖

λ – β
ds + eσ r∥∥u(r)

∥
∥.

By (.), we find

∫ r+

r
eσ s

(
∥
∥u(s)

∥
∥ +

∥
∥∇u(s)

∥
∥ +

∥
∥u(s)

∥
∥p

p +
∫

Rn
a(x)

∣
∣u(s)

∣
∣p dx

)

ds

≤ C
(

β‖a(x)‖

σ
eσ (r+) +


λ – β

∫ r+

τ

eσ s∥∥g(x, s)
∥
∥ ds + eστ‖uτ‖

)

≤ C
(

β‖a(x)‖

σ
eσ t + eστ‖uτ‖ +


λ – β

∫ t

–∞
eσ s∥∥g(x, s)

∥
∥ ds

)

.

Thus, by (.) and (.), we can obtain

∫ r+

r
eσ s

(
ν


‖∇u‖ +

λ


‖u‖ +

∫

Rn
F(u) dx +

∫

Rn
a(x)F(u) dx

)

ds

≤ C
(

β‖a(x)‖

σ
eσ t + eστ‖uτ‖ +


λ – β

∫ t

–∞
eσ s∥∥g(x, s)

∥
∥ ds

)

. (.)

Multiplying (.) by ut and integrating on R
n, we have

‖ut‖ +
d
dt

(
ν


‖∇u‖ +

λ


‖u‖ +

∫

Rn
F(u) dx +

∫

Rn
a(x)F(u) dx

)

≤ 

(∥
∥g(x, t)

∥
∥ + ‖ut‖).

And then

d
dt

(
ν


‖∇u‖ +

λ


‖u‖ +

∫

Rn
F(u) dx +

∫

Rn
a(x)F(u) dx

)

≤ 

∥
∥g(x, t)

∥
∥. (.)

It follows from (.) that

d
dr

eσ r
(

ν


‖∇u‖ +

λ


‖u‖ +

∫

Rn
F(u) dx +

∫

Rn
a(x)F(u) dx

)

≤ σ eσ r
(

ν


‖∇u‖ +

λ


‖u‖ +

∫

Rn
F(u) dx +

∫

Rn
a(x)F(u) dx

)

+
eσ r


∥
∥g(x, t)

∥
∥.

By (.), (.), (.), (.) and the uniform Gronwall inequality, we obtain

ν


‖∇u‖ +

λ


‖u‖ +

∫

Rn
F(u) dx +

∫

Rn
a(x)F(u) dx

≤ C
(

β‖a(x)‖

σ
+ e–σ (t–τ )‖uτ‖ +

e–σ t

λ – β

∫ t

–∞
eσ s∥∥g(x, s)

∥
∥ ds

)

. (.)



Zhang Boundary Value Problems  (2017) 2017:146 Page 8 of 15

It follows from (.) and (.) that

∥
∥u(t)

∥
∥ +

∥
∥∇u(t)

∥
∥ +

∥
∥u(t)

∥
∥p

p

≤ C
(

β‖a(x)‖

σ
+ e–σ (t–τ )‖uτ‖ +

e–σ t

λ – β

∫ t

–∞
eσ s∥∥g(x, s)

∥
∥ ds

)

,

and this implies (.). �

Lemma . Assume that (.)-(.) hold and the external force g ∈ L
loc(R, L(Rn)) satisfies

(.). Let the family B̂ = {B(t) : t ∈ R} be defined by (.). Then, for any ε ≥  and any
t ∈R, there exist k̃ = k̃(t, ε) >  and τ ′(t, ε) such that

∫

|x|≥k

∣
∣U(t, τ )uτ

∣
∣ dx ≤ ε for all k ≥ k̃, τ ≤ τ ′(t, ε) and uτ ∈ B(τ ). (.)

Proof Choose a smooth function θ such that  ≤ θ (s) ≤  for s ∈R
+,

θ (s) =

⎧
⎨

⎩

,  ≤ s ≤ ,

, s ≥ ,

and there exists a constant c such that |θ ′(s)| ≤ c.
Multiplying (.) by θ( |x|

k )u and integrating on R
n, we have




d
dt

∫

Rn
θ

( |x|
k

)

|u| dx – ν

∫

Rn
θ

( |x|
k

)

u�u dx + λ

∫

Rn
θ

( |x|
k

)

|u| dx

= –
∫

Rn
θ

( |x|
k

)

f(u)u dx –
∫

Rn
θ

( |x|
k

)

a(x)f(u)u dx +
∫

Rn
θ

( |x|
k

)

g(x, t)u dx

≤ β

∫

Rn
θ

( |x|
k

)

|u| dx – α

∫

Rn
θ

( |x|
k

)

|u|p dx + β

∫

Rn
θ

( |x|
k

)

a(x) dx

– α

∫

Rn
θ

( |x|
k

)

a(x)|u|p dx +
λ – β



∫

Rn
θ

( |x|
k

)

|u| dx

+


(λ – β)

∫

Rn
θ

( |x|
k

)
∣
∣g(x, t)

∣
∣ dx.

And so

d
dt

∫

Rn
θ

( |x|
k

)

|u| dx – ν

∫

Rn
θ

( |x|
k

)

u�u dx + (λ – β)
∫

Rn
θ

( |x|
k

)

|u| dx

≤ β

∫

Rn
θ

( |x|
k

)

a(x) dx +


(λ – β)

∫

Rn
θ

( |x|
k

)
∣
∣g(x, t)

∣
∣ dx. (.)

For the second term on the left-hand side of (.), we know

– ν

∫

Rn
θ

( |x|
k

)

u�u dx

= ν

∫

Rn
θ

( |x|
k

)

|∇u| dx + ν

∫

Rn
θ ′

( |x|
k

)

θ

( |x|
k

)

u
x
k · ∇u dx (.)
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and
∣
∣
∣
∣

∫

Rn
θ ′

( |x|
k

)

θ

( |x|
k

)

u
x
k · ∇u dx

∣
∣
∣
∣

≤ 
√

c
k

∫

k≤|x|≤√
k

|u||∇u|dx ≤ C
k

‖u‖‖∇u‖. (.)

It follows from (.) and (.) that

d
dr

(

eσ r
∫

Rn
θ

( |x|
k

)

|u| dx
)

≤ βeσ r
∫

|x|≥k
a(x) dx +

eσ r

(λ – β)

∫

|x|≥k

∣
∣g(x, t)

∣
∣ dx +

C
k

eσ r‖u‖‖∇u‖.

Integrating over the interval [τ , t], we get

∫

Rn
θ

( |x|
k

)
∣
∣u(t)

∣
∣ dx

≤ βe–σ t
∫ t

τ

eσ r
∫

|x|≥k
a(x) dx dr +

e–σ t

(λ – β)

∫ t

τ

eσ r
∫

|x|≥k

∣
∣g(x, r)

∣
∣ dx dr

+
C
k

e–σ t
∫ t

τ

eσ r‖u‖‖∇u‖dr + e–σ teστ‖uτ‖, (.)

where τ ≤ τ(t, D̂). We now treat each term on the right-hand side of (.). For the first
term,

βe–σ t
∫ t

τ

eσ r
∫

|x|≥k
a(x) dx dr ≤ βe–σ teσ t

∫

|x|≥k
a(x) dx ≤ β

∫

|x|≥k
a(x) dx,

by (.), for any ε > , there exists k(ε, t) such that

β

∫

|x|≥k
a(x) dx <

ε


for all k ≥ k. (.)

For the second term, by (.), for any ε > , there exists k(ε, t) such that


(λ – β)

∫ t

τ

eσ r
∫

|x|≥k

∣
∣g(x, r)

∣
∣ dx dr

≤ 
(λ – β)

∫ t

–∞
eσ r

∫

|x|≥k

∣
∣g(x, r)

∣
∣ dx dr <

ε


for all k ≥ k. (.)

For the forth term, since uτ ∈ B(τ ), by (.), for any t ∈ R, we get

e–σ teστ‖uτ‖ →  as τ → –∞. (.)

We now handle the third term on the right-hand side of (.). By Young’s inequality, we
know

C
k

e–σ t
∫ t

τ

eσ r‖u‖‖∇u‖dr ≤ C
k

e–σ t
∫ t

τ

eσ r‖u‖ dr +
C
k

e–σ t
∫ t

τ

eσ r‖∇u‖ dr.
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We can find δ >  such that

∫ t

τ

eσ r‖u‖ dr ≤
∫ t

τ

e(σ+δ)r‖u‖ dr,

and by (.), we have

∫ t

τ

e(σ+δ)r∥∥u(r)
∥
∥ dr

≤
∫ t

τ

e(σ+δ)r
(

β‖a(x)‖

σ
+ e–σ reστ‖uτ‖ +

e–σ r

λ – β

∫ r

–∞
eσ s∥∥g(x, s)

∥
∥ ds

)

dr

≤ β‖a(x)‖

σ
e(σ+δ)t + eστ‖uτ‖

∫ t

τ

eδr dr +


λ – β

∫ t

τ

eδs ds
∫ t

–∞
eσ s∥∥g(x, s)

∥
∥ ds

≤ β‖a(x)‖

σ
e(σ+δ)t +


δ

eδteστ‖uτ‖ +


δ(λ – β)
eδt

∫ t

–∞
eσ s∥∥g(x, s)

∥
∥ ds

< ∞.

Analogously, we can obtain

∫ t

τ

eσ r‖∇u‖ dr < ∞.

Thus, for any ε > , there exists k(ε, t) such that

C
k

e–σ t
∫ t

τ

eσ r‖u‖‖∇u‖dr <
ε


for all k ≥ k. (.)

It follows from (.)-(.) that

∫

|x|≥k

∣
∣U(t, τ )uτ

∣
∣ dx ≤

∫

Rn
θ

( |x|
k

)
∣
∣u(t)

∣
∣ dx < ε.

So, the proof is complete. �

Next, we utilise Definition . to prove that the process {U(t, τ )}τ≤t associated with the
initial value problem (.) is D-pullback ω-limit compact.

Lemma . Assume that (.)-(.) hold and the external force g ∈ L
loc(R, L(Rn)) satisfies

(.). Then the process {U(t, τ )}τ≤t associated with the initial value problem (.) is D-
pullback ω-limit compact in L(Rn).

Proof Denote Br = B(, r) ∩R
n, we can split u(t) as

u(t) = χ (x)u(t) +
(
 – χ (x)

)
u(t),

where χ (x) is a smooth function satisfying  ≤ χ (x) ≤ , |χ ′(x)| ≤ c, and it is defined by

χ (x) =

⎧
⎨

⎩

, x ∈ Br ,

, x /∈ Br+.
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And so, we have

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

u(t), x ∈ Br ,

, x /∈ Br+,

χ (x)u(t), others,

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

, x ∈ Br ,

u(t), x /∈ Br+,

( – χ (x))u(t), others.

For any D̂ ∈ D ⊂ B(L(Rn)), {U(t, τ )D(τ )} = {U(t, τ )uτ | uτ ∈ D(τ )} can be split as

U(t, τ )D(τ ) = χ (x)U(t, τ )D(τ ) +
(
 – χ (x)

)
U(t, τ )D(τ ).

By Lemma ., we have

α
(
U(t, τ )D(τ )

) ≤ α
(
χ (x)U(t, τ )D(τ )

)
+ α

((
 – χ (x)

)
U(t, τ )D(τ )

)
. (.)

By Lemma ., we get u(t) ∈ L(Br) as τ ≤ τ(t, D̂) and

χ (x)U(t, τ )D(τ ) =
{
χ (x)U(t, τ )uτ = u(t) | uτ ∈ D(τ )

}
.

By Lemma ., we have

∥
∥u(t)

∥
∥

H
(Br+) =

∥
∥∇u(t)

∥
∥

L(Br+) ≤ R(t) for all τ ≤ τ(t, D̂).

Since H
(Br+) ↪→ L(Br+) is compact, χ (x)U(t, τ )D(τ ) is compact in L(Br+). By Lem-

ma ., we obtain

α
(
χ (x)U(t, τ )D(τ )

)
= . (.)

By Lemma ., for any ε > , we can choose r large enough such that
∫

|x|≥r
|u| ≤ ε.

And then

‖u‖ ≤ ε for all τ ≤ τ ′(t, ε). (.)

We know

(
 – χ (x)

)
U(t, τ )D(τ ) =

{(
 – χ (x)

)
U(t, τ )uτ = u(t) | uτ ∈ D(τ )

}
.

By (.), we obtain

α
((

 – χ (x)
)
U(t, τ )D(τ )

) ≤ ε for all τ ≤ τ ′(t, ε). (.)

It follows from (.), (.) and (.) that

α
(
U(t, τ )D(τ )

) ≤ ε for all τ ≤ min
{
τ(t, D̂), τ(t, D̂), τ ′(t, ε)

}
.

By Definition ., we obtain {U(t, τ )}τ≤t is D-pullback ω-limit compact in L(Rn). �
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Using Theorem . or Theorem ., it is easy to prove the following theorem by
Lemma . and Lemma ..

Theorem . Assume that (.)-(.) hold and the external force g ∈ L
loc(R, L(Rn)) satis-

fies (.). Then the process {U(t, τ )}τ≤t associated with the initial value problem (.) has a
D-pullback attractor A = {A(t) : t ∈R} in L(Rn).

3.2 (L2(Rn), Lp(Rn))-D-pullback attractors
In this subsection, we prove the existence of D-pullback attractors in Lp(Rn). We set B̂ =
{B(t) : t ∈R}, where

B(t) =
{

u ∈ L(
R

n) ∩ Lp(
R

n) : ‖u‖ + ‖u‖p ≤ R(t)
}

for all t ∈R, (.)

and R(t) is defined in Lemma .. So by Lemma ., we obtain the family B̂ = {B(t) : t ∈
R} is (L(Rn), Lp(Rn))-D-pullback absorbing for the process {U(t, τ )}τ≤t , i.e. for any D̂ ∈
D ⊂ B(L(Rn)), there exists τ(t, D̂) ≤ t such that U(t, τ )D(τ ) ⊂ B(t) for all τ ≤ τ(t, D̂).
We also know

eσ t(R(t)
) →  as t → –∞. (.)

Based on Theorem ., we only prove that the process {U(t, τ )}τ≤t associated with the
initial value problem (.) is D-pullback ω-limit compact in Lp(Rn). Firstly, we prove the
following lemma.

Lemma . Assume that (.)-(.) hold and the external force g ∈ L
loc(R, L(Rn)) satisfies

(.). Let the family B̂ = {B(t) : t ∈ R} be defined by (.). Then, for any ε ≥ , any D̂ ∈
D ⊂ B(L(Rn)) and any t ∈R, there exist M = M(t, ε) >  and τ ′′(t, ε) such that

∫

Rn(|U(t,τ )uτ |≥M)

∣
∣U(t, τ )uτ

∣
∣p dx ≤ ε

for all uτ ∈ D(τ ), τ ≤ τ ′′(t, ε) and M ≥ M. (.)

Proof For any ε >  be given, by (.), there exists δ >  such that

∫ t

–∞
eσ s

∫

e

∣
∣g(x, s)

∣
∣ dx ds < ε, (.)

where e ⊂ R
n and m(e) ≤ δ. By Lemma . and Lemma ., we know that there exist

M = M(t, ε) and τ = τ(t, ε) such that

m
(
R

n(∣∣U(t, τ )uτ

∣
∣ ≥ M

)) ≤ δ for all uτ ∈ D(τ ) and τ ≤ τ. (.)

By (.) and (.), we can choose M large enough such that

α|u|p– – β|u| ≤ f(u) ≤ α|u|p– + β|u| in R
n (

U(t, τ )uτ ≥ M
)
, (.)

α|u|p– ≤ f(u) ≤ α|u|p– in R
n (

U(t, τ )uτ ≥ M
)
. (.)
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Let M = max{M, M} and τ ≤ τ. Multiplying Eq. (.) by (u – M)p–
+ and integrating on

R
n, we have


p

d
dt

∫

Rn

∣
∣(u – M)+

∣
∣p dx – ν

∫

Rn
�u(u – M)p–

+ dx + λ

∫

Rn
u(u – M)p–

+ dx

+
∫

Rn
f(u)(u – M)p–

+ dx +
∫

Rn
a(x)f(u)(u – M)p–

+ dx =
∫

Rn
g(x, t)(u – M)p–

+ dx,

where (u – M)+ denotes the positive part of u – M, that is

(u – M)+ =

⎧
⎨

⎩

u – M, u ≥ M,

, u < M.

Let  = R
n(U(t, τ )uτ ≥ M), we get

(u – M)p–
+ ≤ |u|p–(u – M)p–

+ and (u – M)p
+ ≤ u(u – M)p–

+ in .

It follows from (.), (.), Young’s inequality and Hölder’s inequality that

–ν

∫

Rn
�u(u – M)p–

+ dx = ν(p – )
∫



|∇u|(u – M)p–
+ dx ≥ , (.)

∫

Rn
f(u)(u – M)p–

+ dx ≥
∫



α|u|p–(u – M)p–
+ dx

–
∫



β|u|(u – M)p–
+ dx, (.)

∫

Rn
a(x)f(u)(u – M)p–

+ dx ≥ α

∫



a(x)|u|p–(u – M)p–
+ dx ≥ , (.)

∫

Rn
g(x, t)(u – M)p–

+ dx ≤ 
α

∫



∣
∣g(x, t)

∣
∣ dx +

α



∫



(u – M)p–
+ dx

≤ 
α

∫



∣
∣g(x, t)

∣
∣ dx +

α



∫



|u|p–(u – M)p–
+ dx. (.)

By (.)-(.), we get


p

d
dt

∫



∣
∣(u – M)+

∣
∣p dx + (λ – β)

∫



∣
∣(u – M)+

∣
∣p dx ≤ 

α

∫



∣
∣g(x, t)

∣
∣ dx,

which implies that

d
dt

(t – τ )eσ t
∫



∣
∣(u – M)+

∣
∣p dx + ceσ t

∫



∣
∣(u – M)+

∣
∣p dx

≤ p(t – τ )
α

eσ t
∫



∣
∣g(x, t)

∣
∣ dx, (.)

where u >  in  and c = (p(λ – β) – σ )(t – τ ) – . Since σ ∈ (,λ – β) and p > , there
exists τ = τ(t, ε) <  such that

(
p(λ – β) – σ

)
(t – τ ) ≥  for all τ ≤ τ.
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So integrating (.) over the interval [τ , t], we have

∫



∣
∣(u – M)+

∣
∣p dx ≤ p

α
e–σ t

∫ t

–∞
eσ s

∫



∣
∣g(x, s)

∣
∣ dx ds.

By (.), we can obtain

∫



∣
∣(u – M)+

∣
∣p dx ≤ Cε for all τ ≤ τ and uτ ∈ D(τ ), (.)

where C >  is a constant independent of M. Set  = R
n(U(t, τ )uτ ≤ –M). Likewise,

replacing (u – M)+ with (u + M)–, we can also obtain that there exists τ = τ(t, ε) such
that

∫



∣
∣(u + M)–

∣
∣p dx ≤ Cε for all τ ≤ τ and uτ ∈ D(τ ), (.)

where (u + M)– is the negative part of u + M, that is

(u + M)– =

⎧
⎨

⎩

u + M, u ≤ –M,

, u > –M.

Then it follows from (.) and (.) that

∫

Rn(|U(t,τ )uτ |≥M)

∣
∣
(|u| – M

)∣
∣p dx ≤ ε for all τ ≤ τ ′′(t, ε) and uτ ∈ D(τ ),

where τ ′′(t, ε) = min{τ, τ}. Hence, we get

∫

Rn(|U(t,τ )uτ |≥M)

∣
∣U(t, τ )uτ

∣
∣p dx

=
∫

Rn(|U(t,τ )uτ |≥M)

(|u| – M + M
)p dx

≤ p–
(∫

Rn(|U(t,τ )uτ |≥M)

(|u| – M
)p dx +

∫

Rn(|U(t,τ )uτ |≥M)
(M)p dx

)

≤ p–
(∫

Rn(|U(t,τ )uτ |≥M)

(|u| – M
)p dx +

∫

Rn(|U(t,τ )uτ |≥M)

(|u| – M
)p dx

)

≤ pε.

Finally, we obtain (.) and the proof is complete. �

By Theorem ., Lemma . and Lemma ., we can obtain that the process {U(t, τ )}τ≤t

associated with the initial value problem (.) is D-pullback ω-limit compact in Lp(Rn).
So it is easy to prove the following theorem.

Theorem . Assume that (.)-(.) hold and the external force g ∈ L
loc(R, L(Rn)) satis-

fies (.). Then the family of sets A′ = {A′(t) : t ∈ R} is (L(Rn), Lp(Rn))-D-pullback attrac-
tors for {U(t, τ )}τ≤t .
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Proof We know that the family B̂ = {B(t) : t ∈R} is (L(Rn), Lp(Rn))-D-pullback absorb-
ing for the process {U(t, τ )}τ≤t , where B(t) is defined by (.). Thus, by Theorem ., we
can deduce that the theorem is true. �
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