RESEARCH

Open Access

A new technique to study the boundary behaviors of superharmonic multifunctions and their application

Yong Lu¹ and Jianguo Sun^{2*}

*Correspondence: sunjmju@tom.com ²Department of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, China Full list of author information is available at the end of the article

Abstract

Using some recent results of the Riesz decomposition method for sharp estimates of certain boundary value problems of harmonic functions in (St. Cer. Mat. 27:323-328, 1975), the boundary behaviors of upper and lower superharmonic multifunctions are studied. Several fundamental properties of these new classes of these functions are shown. A new technique is proposed to find the exact boundary behaviors by using Levin's type boundary behaviors for harmonic functions admitting certain lower bounds in (Pacific J. Math. 15:961-970, 1965). Finally, some examples are given to illustrate the applications of our results.

Keywords: superharmonic function; superharmonic multifunction; boundary behavior

1 Introduction

In 1977, Husain [3] has initiated the concept of superharmonic-open sets, which is considered as a wider class of some known types of near-open sets. In 1983, Mashhour *et al.* [4, 5] defined the concept of S-continuity, but for a single-valued function $f:(X,\tau) \rightarrow (Y,\sigma)$. Many topological properties of the above mentioned concepts and others have been established in [6, 7]. The purpose of this paper is to present the upper (resp. lower) superharmonic-continuous multifunction as a generalization of each of upper (resp. lower) super-continuous superharmonic multifunction in the sense of Berge [7] the upper (resp. lower) sub-continuous and the upper (resp. lower) precontinuous superharmonic multifunction due to Popa [1, 8] and also upper (resp. lower) α -continuous and upper (resp. lower) β -continuous superharmonic multifunctions as given in [9, 10] recently. Moreover, these new superharmonic multifunctions are characterized and many of their properties have also been established.

2 Preliminaries

The topological space or simply space which is used here will be given by (X, τ) and (Y, σ) . τ -cl(W) and τ -int(W) denote the closure and the interior of any subset W of X with respect to a topology τ . In (X, τ) , the class $\tau^* \subseteq P(X)$ is called a superharmonic topology on X if $X \in \tau^*$ and τ^* is closed under arbitrary union [3], (X, τ^*) is a superharmonic-topological space or simply superharmonic space, each member of τ is superharmonic-

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

open and its complement is superharmonic-closed [5], In (X, τ^*) , the superharmonicclosure, the superharmonic-interior and superharmonic-frontier of any $A \subseteq X$ will be denoted by superharmonic-cl(A), superharmonic-int(A) and superharmonic-fr(A), respectively, which are defined in [5] and likewise the corresponding ordinary ones. Meanwhile, for any $x \in X$, we define

$$\tau^*(x) = \{ W \subseteq X : W \in \tau^*, x \in W \}.$$

In (X, τ) , $A \subseteq X$ is called super-open [11] if there exists $U \in \tau$ such that $U \subseteq A \subseteq \tau$ -cl(U), while A is preopen [5] if $A \subseteq \tau$ -int(τ -cl(A)). The families of all super-open and preopen sets in (X, τ) are denoted by $SO(X, \tau)$ and $PO(X, \tau)$, respectively. Moreover,

$$\tau^{\alpha} = SO(X, \tau) \cap PO(X, \tau)$$

and

$$\beta O(X, \tau) \supset SO(X, \tau) \cup PO(X, \tau).$$

 $A \in \tau^{\alpha}$ and $A \in \beta O(X, \tau)$ are called a superharmonic- α -set [2] and a superharmonic- β open set [6], respectively. A single-valued superharmonic multifunction $f : (X, \tau) \to (Y, \sigma)$ is called superharmonic-S-continuous [5], if the inverse image of each open set in (Y, σ) is τ^* -supra open in (X, τ) . For a superharmonic multifunction $F : (X, \tau) \to (Y, \sigma)$, the upper and the lower inverses of any $B \subseteq Y$ are given by

$$F^+(B) = \left\{ x \in X : F(x) \subseteq B \right\}$$

and

$$F^{-}(B) = \left\{ x \in X : F(X) \cap B \neq \phi \right\},\$$

respectively. Moreover, $F : (X, \tau) \to (Y, \sigma)$ is called upper (resp. lower) super-continuous [7], if for each $V \in \sigma$, $F^+(V) \in \tau$ (resp. $F^-(V) \in \tau$). If τ in super-continuity is replaced by $SO(X, \tau)$, τ^{α} , $PO(X, \tau)$ and $\beta O(X, \tau)$, then F is upper (resp. lower) sub-continuous [8], upper (resp. lower) superharmonic α -continuous [1], upper (resp. lower) precontinuous [9] and upper (resp. lower) superharmonic- β -continuous [10], respectively. A space (X, τ) is called superharmonic-compact [12], if every supraopen cover of X admits a finite subcover.

3 Supra-continuous superharmonic multifunctions

Definition 3.1 A superharmonic multifunction $F: (X, \tau) \rightarrow (Y, \sigma)$ is said to be:

(a) upper superharmonic-continuous at a point $x \in X$ if for each open set V containing F(x), there exists $W \in \tau^*(x)$ such that

 $F(W) \subseteq V;$

(b) lower superharmonic-continuous at a point $x \in X$ if for each open set V containing F(x), there exists $W \in \tau^*(x)$ such that

 $F(W) \cap V \neq \phi;$

(c) upper (resp. lower) superharmonic-continuous if F has this property at every point of X.

Any single-valued superharmonic function $f : (X, \tau) \to (Y, \sigma)$ can be considered as a multi-valued one which assigns to any $x \in X$ the singleton $\{f(x)\}$. We apply the above definitions of both upper and lower superharmonic-continuous multifunctions to the single-valued case. It is clear that they coincide with the notion of *S*-continuous due to Mashhour *et al.* [5]. One characterization of the above superharmonic multifunction is established throughout the following result, of which the proof is straightforward, so it is omitted.

Remark 3.1 For a superharmonic multifunction $F : (X, \tau) \to (Y, \sigma)$, many properties of upper (resp. lower) semicontinuity [7] (resp. upper (lower)) *F*-continuity [9], upper (resp. lower) sub-continuity [1], upper (resp. lower) precontinuity [10] and upper (resp. lower) (*G*-continuity [10]) can be deduced from the upper (resp. lower) superharmoniccontinuity by considering $\tau^* = \tau$ (resp. $\tau^* = \tau^{\alpha}$, $\tau^* = SO(X, \tau)$, $\tau^* = PO(X, \tau)$ and $\tau^* = \beta O(X, \tau)$).

Proposition 3.1 A superharmonic multifunction $F : (X, \tau) \to (Y, \sigma)$ is upper (resp. lower) superharmonic-continuous at a point $x \in X$ if and only if for $V \in \sigma$ with $F(x) \subseteq V$ (resp. $F(x) \cap V \neq \phi$). Then $x \in$ superharmonic-int($F^+(V)$) (resp. $x \in$ superharmonic-int($F^-(V)$).

Lemma 3.1 For any $A \in (X, \tau)$, we have

 τ -int(A) \subseteq superharmonic-int(A) $\subseteq A \subseteq$ superharmonic-cl(A) $\subseteq \tau$ -cl(A).

Theorem 3.1 *The following are equivalent for a superharmonic multifunction* $F : (X, \tau) \rightarrow (Y, \sigma)$:

- (i) *F* is upper superharmonic-continuous;
- (ii) for each $x \in X$ and each $V \in \sigma(F(x))$, we have $F^+(V) \in \tau^*(x)$;
- (iii) for each $x \in X$ and each $V \in \sigma(F(x))$, there exists $W \in \tau^*$ such that

 $F(W) \subseteq V;$

(iv) $F^+(V) \in \tau^*$ for every $V \in \sigma$; (v) $F^-(K)$ is superharmonic-closed for every closed set $K \subseteq Y$; (vi) superharmonic-cl($F^-(B)$) $\subseteq F^-(\tau \text{-cl}(B))$ for every $B \subseteq Y$; (vii) $F^+(\tau \text{-int}(B)) \subseteq$ superharmonic-int($F^+(B)$) for every $B \subseteq Y$; (viii) superharmonic-fr($F^-(B)$) $\subseteq F^-(\text{fr}(B))$ for every $B \subseteq Y$; (ix) $F: (X, \tau^*) \to (Y, \sigma)$ is upper superharmonic-continuous.

Proof (i) \iff (ii) and (i) \Rightarrow (iv): Follow from Proposition 3.1.

(ii) \iff (iii): This is obvious, since the arbitrary union of superharmonic-open set is superharmonic-open.

(iv) = (v): Let K be closed in Y, the result satisfies

$$F^+(Y \backslash K) = X \backslash F^-(K).$$

(v) \Rightarrow (vi): By putting $K = \sigma$ -cl(B) and applying Lemma 3.1.

(vi) \Rightarrow (vii): Let $B \Rightarrow Y$, then σ -int(B) $\in \sigma$ and so $Y \setminus \sigma$ -int(B) is super-closed in (Y, σ). Therefore by (vi) we get

$$X \setminus \operatorname{super-int}(F^+(B)) = \operatorname{super-cl}(X \setminus F^+(B)) \subseteq \operatorname{sub-cl}(X \setminus F^+(\sigma \operatorname{-int}(B)))$$

and

$$\operatorname{supra-cl}(F^{-}(Y \,\sigma \operatorname{-int}(B)) \subseteq F - (Y \setminus \sigma \operatorname{-int}(B)) \subseteq X \setminus F^{+}(\sigma \operatorname{-int}(B)).$$

This implies that

$$F^+(\sigma\operatorname{-int}(B)) \subseteq \operatorname{supra-int}(F^+(B)).$$

(vii) \Rightarrow (ii): Let $x \in X$ be arbitrary and each $V \in \sigma(F(x))$ then

 $F^+(V) \subseteq \operatorname{supra-int}(F^+(V)).$

Hence $F^+(V) \in \tau^*(x)$.

(viii) \Leftrightarrow (v): Clearly, a suprafrontier and frontier of any set is superharmonic-closed and closed, respectively.

(ix) \Leftrightarrow (iv): Follows immediately.

Theorem 3.2 For a superharmonic multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

(i) *F* is lower superharmonic-continuous;

(ii) for each $X \in X$ and each $V \in \sigma$ such that

 $F(x) \cap V \neq \phi$ and $F^{-}(V) \in \tau^{*}(x)$;

(iii) for each $x \in X$ and each $V \in \sigma$ with $F(x) \cap V \neq \phi$, there exists $W \in \tau^*$ such that

 $F(W) \cap V \neq \phi;$

(iv) $F^-(V) \in \tau^*$ for every $V \in \sigma$; (v) $F^+(K)$ is superharmonic-closed for every closed set $K \subseteq Y$; (vi) superharmonic-cl($F^+(B)$) $\subseteq F^+(\sigma \text{ cl-}(B))$ for any $B \subseteq Y$; (vii) $F^-(\sigma \text{-int}(B)) \subseteq$ superharmonic-int($F^-(B)$) for any $B \subseteq Y$; (viii) superharmonic-fr($F^+(B)$) $\subseteq F^+(\text{fr}(B))$ for every $B \subseteq Y$; (ix) $F: (X, \tau^*) \to (Y, \sigma)$ is lower superharmonic-continuous.

Proof The proof is a quite similar to that of Theorem 3.1. Recall that the net $(\chi_i)_{(i \in I)}$ is superharmonic-convergent to x_0 , if for each $W \in \tau^*(x_0)$ there exists a $i_o \in I$ such that for each $i \ge i_o$ it implies $x_i \in W$.

Theorem 3.3 A superharmonic multifunction $F : (X, \tau) \to (Y, \sigma)$ is upper superharmoniccontinuous if and only if for each net $(\chi_i)_{(i \in l)}$ superharmonic-convergent to x_o and for each $V \in \sigma$ with $F(x_o) \subseteq V$ there is $i_o \in I$ such that $F(X_i) \subseteq V$ for all $i \ge i_o$.

Proof Necessity, let $V \in \sigma$ with $F(x_o) \subseteq V$. By upper superharmonic-continuity of F, there is $W \in \tau^*(X_O)$ such that $F(W) \subseteq V$. Since from the hypothesis a net $(\chi_i)_{(i \in I)}$ is superharmonic-convergent to x_o and $W \in \tau^*(x_o)$ there is one $i_o \in I$ such that $x_i \in W$ for all $i > i_o$ and then $F(X_i) \subseteq V$ for all $i > i_o$. As regards sufficiency, assume the converse, *i.e.* there is an open set V in Y with $F(x_o) \subseteq V$ such that for each $W \in \tau^*$ under inclusion we have the relation $F(W) \nsubseteq V$, *i.e.* there is $x_w \in W$ such that $F(x_w) \nsubseteq V$. Then all of x_w will form a net in X with directed set W of $\tau^*(x_o)$, clearly this net is superharmonic-convergent to x_o . But $F(x_w) \nsubseteq V$ for all $W \in \tau^*(x_o)$. This leads to a contradiction which completes the proof.

Theorem 3.4 A superharmonic multifunction $F : (X, \tau) \to (Y, \sigma)$ is lower superharmoniccontinuous if and only if for each $y_o \in F(x_o)$ and for every net $(\chi_i)_{(i \in l)}$ superharmonicconvergent to x_o , there exists a subnet $(Z_j)_{(j \in J)}$ of the net $(\chi_i)_{(i \in l)}$ and a net $(y_i)_{(j,v) \in J}$ in Yso that $(y_i)_{(j,v) \in J}$ superharmonic-convergent to y and $y_j \in F(z_j)$.

Proof For necessity, suppose *F* is lower superharmonic-continuous, $(\chi_i)_{(i \in l)}$ is a net superharmonic-convergent to x_o , $y \in F(x_o)$ and $V \in \sigma(y)$. So we have $F(x_o) \cap V \neq \phi$, by lower superharmonic-continuity of *F* at x_o , there is a superharmonic-open set $W \subseteq X$ containing x_o such that $W \subseteq F^-(V)$. We have superharmonic-convergence of a net $(\chi_i)_{(i \in l)}$ to x_0 and for this *W*, there is a $i_o \in I$ such that, for each $i > i_o$, we have $x_i \in W$ and therefore $x_i \in F^-(V)$. Hence, for each $V \in \sigma(y)$, define the sets

$$I_{\nu} = \left\{ i_o \in I : i > i_o \Longrightarrow x_i \in F^-(V) \right\}$$

and

$$J = \{(i, V) : V \in D(y), i \in I_{\nu}\}$$

and an order \geq on J given as $(i', V') \geq (i, V)$ if and only if i' > i and $V' \subseteq V$. Also, define $\zeta : J \to I$ by $\zeta((j, V)) = j$. Then ζ is increasing and cofinal in I, so ζ defines a subset of $(\chi_i)_{(i\in I)}$, denoted by $(z_i)_{(j,v)\in J}$. On the other hand for any $(j, V) \in J$, since $j > j_o$ implies $x_j \in F^-(V)$ we have $F(Z_j) \cap V = F(X_j) \cap V \neq \phi$. Pick $y_j \in F(Z_j) \cap V \neq \phi$. Then the net $(y_i)_{(j,v)\in J}$ is supraconvergent to y. To see this, let $V_0 \in \sigma(y)$; then there is $j_0 \in I$ with $j_o = \zeta(j_o, V_o)$; $(j_o, V_o) \in J$ and $y_{j_o} \in V$. If $(j, V) > (j_o, V_o)$ this means that $j > j_o$ and $V \subseteq V_o$. Therefore

$$y_j \in F(z_j) \cap V \subseteq F(x_j) \cap V \subseteq F(x_j) \cap V_o.$$

So $y_j \in V_o$. Thus $(y_i)_{(j,v) \in J}$ is superharmonic-convergent to *y*, which shows the result.

To show the sufficiency, assume the converse, *i.e.* F is not lower superharmoniccontinuous at x_o . Then there exists $V \in \sigma$ such that $F(x_o) \cap V \neq \phi$ and for any superharmonic-neighborhood $W \subseteq X$ of x_o , there exists $x_w \in W$ for which $F(x_w) \cap V = \phi$. Let us consider the net $(\chi_w)_{W \in \tau^*(\chi_0)}$, which is obviously superharmonic-convergent to *x_o*. Suppose $y_o \in F(x_o) \cap V$, by hypothesis there is a superset $(z_k)_{k \in K}$ of $(\chi_w)_{W \in \tau^*(\chi_0)}$ and $y_k \in F(z_k)$ like $(y_k)_{k \in K}$ superharmonic-convergent to y_o . As $y_o \in V \in \sigma$ there is $k'_0 \in K$ so that $k > k'_0$ implies $y_k \in V$. On the other hand $(z_k)_{k \in K}$ is a superset of the net $(\chi^w)_{W \in \tau^*(\chi_0)}$ and so there exists a superharmonic function $\Omega : K \to \tau^*(x_o)$ such that $z_k = \chi_{\Omega(k)}$ and for each $W \in \tau^*(x_o)$ there exists $k''_0 \in K$ such that $\Omega(k''_0) \ge W$. If $k \ge k''_0$ then $\Omega(k) \ge \Omega(k''_0) \ge W$. Considering $k_0 \in K$ so that $k_o \ge k'_0$ and $k_o \ge k''_0$. Therefore $y_k \in V$ and by the meaning of the net $(\chi_W)_{W \in \tau^*(\chi_0)}$, we have

 $F(z_k) \cap V = F(\chi_{\Omega(K)}) \cap V = \phi.$

This gives $\gamma_k \notin V$, which contradicts the hypothesis and so the requirement holds. \Box

Definition 3.2 A subset *W* of a space (X, τ) is called superharmonic-regular, if for any $x \in W$ and any $H \in \tau^*(x)$ there exists $U \in \tau$ such that

 $x \in U \subseteq \tau$ -cl $(U) \subseteq H$.

Recall that $F: (X, \tau) \to (Y, \sigma)$ is punctually superharmonic-regular, if for each $X \in X$, F(x) is superharmonic-regular.

Lemma 3.2 In a superharmonic space (X, τ) , if $W \subseteq X$ is superharmonic-regular and contained in a superharmonic-open set H, then there exists $U \in \tau$ such that

 $W \subseteq U \subseteq \tau \operatorname{-cl}(U) \subseteq H.$

For a superharmonic multifunction $F : (X, \tau) \to (Y, \sigma)$, a superharmonic multifunction superharmonic-cl(F) : $(X, \tau) \to (Y, \sigma)$ is defined as follows:

(superharmonic-cl F)(x) = superharmonic-cl(F(x))

for each $x \in X$.

Proposition 3.2 For a punctually α -paracompact and punctually superharmonic-regular superharmonic multifunction $F: (X, \tau) \rightarrow (Y, \sigma)$, we have

 $(\text{superharmonic-cl}(F)^+(W)) = F^+(W)$

for each $W \in \sigma^*$.

Proof Let $x \in (\text{superharmonic-cl}(F))^+(W)$ for any $W \in \sigma^*$, this means

 $F(x) \subseteq$ superharmonic-cl $(F(x)) \subseteq W$,

which leads to $x \in F^+(W)$. Hence one inclusion holds. To show the other, let $X \in F^+(W)$ where $W \in \sigma^*(x)$. Then $F(x) \subseteq W$, by the hypothesis of F and the fact that $\sigma \subseteq \sigma^*$, applying Lemma 3.2, there exists $G \in \sigma$ such that

$$F(x) \subseteq G \in \sigma \operatorname{-cl}(G) \subseteq W.$$

Therefore

superharmonic-cl $(F(x)) \subseteq W$.

This means that $x \in (\text{superharmonic-cl} F)^+(W)$. Hence the equality holds.

Theorem 3.5 Let $F(X,\tau) \rightarrow (Y,\sigma)$ be a punctually a-paracompact and punctually superharmonic-regular superharmonic multifunction. Then F is upper superharmonic-continuous if and only if

(superharmonic-cl F): $(X, \tau) \rightarrow (Y, \sigma)$

is upper superharmonic-continuous.

Proof As regards necessity, suppose $V \in \sigma$ and $x \in (\text{superharmonic-cl} F)^+(V) = F^+(V)$ (see Proposition 3.2). By upper superharmonic-continuity of F, there exists $H \in \tau^*(x)$ such that $F(H) \subseteq V$. Since $\sigma \in \sigma^*$, by Lemma 3.2 and the assumption of F, there exists $G \in \sigma$ such that

$$F(h) \subseteq G \subseteq \sigma \operatorname{-cl}(G) \subseteq W$$

for each $h \in H$. Hence

superharmonic-cl(F(h)) \subseteq superharmonic-cl(G) $\subseteq \sigma$ -cl(G) $\subseteq V$

for each $h \in H$, which shows that [13]

 $(\text{superharmonic-cl} F)(H) \subseteq V.$

Thus (superharmonic-cl *F*) is upper superharmonic-continuous. As regards sufficiency, assume $V \in \sigma$ and $X \in F^+(V) =$ (superharmonic-cl *F*)⁺(*V*). By the hypothesis of *F* in this case, there is $H \in \tau^*(x)$ such that (superharmonic-cl *F*)(*H*) $\subseteq V$, which obviously gives $F(H) \subseteq V$. This completes the proof.

Lemma 3.3 In a space (X, τ) , any $x \in X$ and $A \subseteq X, X \in$ superharmonic-cl(A) if and only if

 $A \cap W \neq \phi$

for each $W \in \tau^*(x)$.

Proposition 3.3 *For a superharmonic multifunction* $F : (X, \tau) \rightarrow (Y, \sigma)$ *,*

 $(\text{superharmonic-cl} F)^{-}(W) = F^{-}(W)$

for each $W \in \sigma^*$.

Proof Let $x \in (\text{superharmonic-cl} F)^-(W)$. Then

 $W \cap$ superharmonic-cl $(F(x)) \neq \phi$.

Since $W \in \sigma^*$, Lemma 3.3 gives $W \cap F(x) \neq \phi$ and hence $x \in F^-(W)$. Conversely, let $x \in F^-(W)$, then

$$\phi \neq F(x) \cap W \subseteq (\operatorname{supracl} F)^{-}(x) \cap W$$

and so

```
x \in (\text{superharmonic-cl} F)^{-}(W).
```

Hence

 $x \in (\text{superharmonic-cl} F)^+(W)$

and this completes the equality.

Theorem 3.6 A superharmonic multifunction $F : (X, \tau) \to (Y, \sigma)$ is lower superharmoniccontinuous if and only if (superharmonic-cl F) : $(X, \tau) \to (Y, \sigma)$ is lower superharmoniccontinuous.

Proof This is an immediate consequence of Proposition 3.2 taking in consideration that $\tau \subseteq \tau^*$ and (iv) of Theorem 3.2.

Theorem 3.7 If $F: (X, \tau) \to (Y, \sigma)$ is an upper superharmonic-continuous surjection and for each $x \in X$, F(x) is compact relative to Y. If (X, τ) is superharmonic-compact, then (Y, σ) is compact.

Proof Let

 $\{V_i : i \in I, V_i \in \sigma\}$

be a cover of *Y*; *F*(*x*) is compact relative to *Y*, for each $x \in X$. Then there exists a finite $I_o(x)$ of *I* such that [14]

 $F(x) \subseteq U(V_i : i \in I_o(x)).$

Upper superharmonic-continuity of *F* shows that there exists $W(x) \in \tau^*(X, x)$ such that

$$F(W(x)) \subseteq \bigcup V_i : i \in I_o(x).$$

Since (X, τ) is superharmonic-compact, there exists x_1, x_2, \ldots, x_n such that

$$X = \bigcup (W(x_j) : 1 \le j \le n).$$

Therefore

$$Y = F(X) = \bigcup \left(F(W(x_j)) : 1 \le j \le n \right) \subseteq \bigcup V_i : i \in I_0(X_j) \quad 1 \le j \le n.$$

Hence (Y, σ) is compact.

4 Supra-continuous superharmonic multifunctions and superharmonic-closed graphs

Definition 4.1 A superharmonic multifunction $F : (X, \tau) \to (Y, \sigma)$ is said to have a superharmonic-closed graph if there exists $W \in \tau^*(X)$ and $H \notin \sigma^*(y)$ such that

$$(W \times H) \cap G(F) = \phi$$

for each pair $(x, y) \notin G(F)$.

A superharmonic multifunction $F : (X, \tau) \to (Y, \sigma)$ is point-closed (superharmonicclosed), if for each $x \in X$, F(x) is closed (superharmonic-closed) in Y.

Proposition 4.1 A superharmonic multifunction $F : (X, \tau) \to (Y, \sigma)$ has a superharmonicclosed graph if and only if for each $x \in X$ and $y \in Y$ such that $y \notin F(x)$, there exist two superharmonic-open sets H, W containing x and y, respectively, such that

 $F(H) \cap W = \phi$.

Proof As regards necessity, let $x \in X$ and $y \in Y$ with $y \notin F(x)$. Then by the superharmonicclosed graph of F, there are $H \in \tau^*(x)$ and $W \in \sigma^*$ containing F(x) such that $(HxW) \cap$ $G(F) = \phi$. This implies that for every $x \in H$ and $y \in W$ where $y \notin F(x)$ we have $F(H) \cap W = \phi$.

As regards sufficiency, let $(x, y) \notin G(F)$, this means $y \notin F(x)$; then there are two disjoint superharmonic-open sets H, W containing x and y, respectively, such that $F(H) \cap W = \phi$. This implies that $(H \times W) \cap G(F) = \phi$, which completes the proof.

Theorem 4.1 If $F : (X, \tau) \to (Y, \sigma)$ is an upper superharmonic-continuous and pointclosed superharmonic multifunction, then G(F) is superharmonic-closed if (Y, σ) is regular.

Proof Suppose that

 $(x, y) \notin G(F).$

Then $y \notin F(x)$. Since *Y* is regular, there exists disjoint

$$V_i \in \sigma$$
 $(i = 1, 2)$

such that

 $y \in V_1$

and

$$F(x) \subseteq V_2.$$

Since *F* is upper superharmonic-continuous at *x*, there exists

 $W \in \tau^*(x)$

such that $F(W) \subseteq V_2$. As $V_1 \cap V_2 = \phi$, then

$$\bigcap_{i=1}^{2} \text{superharmonic-int}(V_i) \neq \phi$$

and therefore

 $x \in \text{superharmonic-int}(W) = W$,

 $y \in \text{superharmonic-int}(V_1),$

and

 $(x, y) \in W \times \text{superharmonic-int}(V_1) \subseteq (X \times Y) \setminus G(F).$

Thus

 $(X \times Y) \setminus G(F) \in \tau^*(X \times Y),$

which gives the result.

Definition 4.2 A subset *W* of a space (X, τ) is called α -paracompact [12] if for every open cover ν of *W* in (X, τ) there exists a locally finite open cover ξ of *W* which refines ν .

Theorem 4.2 Let $F : (X, \tau) \to (Y, \sigma)$ be an upper superharmonic-continuous superharmonic multifunction from (X, τ) into a Hausdorff space (Y, σ) . If F(x) is α -paracompact for each $x \in X$, then G(F) is superharmonic-closed.

Proof Let $(x_o, y_o) \notin G(F)$, then $y_o \notin F(x_o)$. Since (Y, σ) is Hausdorff, for each $y \in F(x_o)$ there exist $V_y \in \sigma(y)$ and $V_y^* \in \sigma(y_o)$ such that

 $V_y \cap V_y^* = \phi$.

So the family $\{V_y : y \in F(x_0)\}$ is an open cover of $F(x_o)$. Thus, by α -paracompactness of $F(x_o)$ [15], there is a locally finite open cover $\{U_i : i \in I\}$ which refines $\{V_y : y \in F(x_o)\}$. Therefore, there exists $H_o \in \sigma(y_o)$ such that H_o intersects only finitely many members $U_{i_1}, U_{i_2}, \ldots, U_{i_n}$ of h. Choose y_1, y_2, \ldots, y_n in $F(x_o)$ such that $U_{i_j} \subseteq U_{y_j}$ for each 1 < j < n, and the set

$$H = H_o \cap \left(\bigcup_{i \in I} V_{y_i}\right).$$

Then $H \in \sigma(y_o)$ such that

$$H\cap \left(\bigcup_{i\in I}V_i\right)=\phi.$$

The upper superharmonic-continuity of *F* means that there exists $W \in \tau^*(xo)$ such that [16]

$$x_o \in W \subseteq F^+\left(\bigcup_{i \in I} V_i\right).$$

It follows that $(W \times H) \cap G(F) = \phi$, and hence G(F) is superharmonic-closed.

Lemma 4.1 ([14]) *The following hold for* $F : (X, \tau) \rightarrow (Y, \sigma), A \subseteq X$ *and* $B \subseteq Y$; (*i*)

$$G_F^+(A \times B) = A \cap F^+(B);$$

(ii)

$$G_F^-(A \times B) = A \cap F^-(B).$$

Theorem 4.3 For a superharmonic multifunction $F : (X, \tau) \to (Y, \sigma)$, if GF is upper superharmonic-continuous, then F is upper superharmonic-continuous. Proof. Let $x \in X$ and $V \in \sigma(F(x))$. Since $X \times V \in \tau \times \sigma$ and

$$G_F(x) \subseteq X \times V$$
,

by Theorem 3.1, there exists $W \in \tau^*(x)$ such that $G_F(W) \subseteq X \times V$. Therefore, by Lemma 4.1, we get

$$W \subseteq G_F^-(X \times V) = X \cap G_f^+(V) = F^+(V)$$

and so $F(W) \subseteq V$. Hence Theorem 3.1 shows also that F upper supracontinuous.

Theorem 4.4 If the graph G_F of a superharmonic multifunction $F : (X, \tau) \rightarrow (Y, \sigma)$ is lower superharmonic-continuous, then F is also.

Proof Let $x \in X$ and $V \in \sigma(F(x))$ with $F(x) \cap V \neq \phi$, also since

$$X \times V \in \tau \times \sigma$$
,

then

$$G_F(x) \cap (X \times V) = x \times F(x) \cap (X \times V) = x \times (F(x) \cap V) \neq \phi.$$

Theorem 3.2 shows that there exists $W \in \tau^*(x)$ such that

$$G_F(w) \subseteq (X \times V) \neq \phi$$

for each $w \in W$. Hence Lemma 4.1 obtains; we have

$$W \subseteq G^-(X \times V) = X \cap G^-(V) = F^-(V).$$

Therefore,

 $F(w) \cap V \neq \phi$

for each $w \in W$ and Theorem 3.2 completes the proof.

Acknowledgements

The authors want to thank the reviewers for much encouragement, support, productive feedback, cautious perusal and making helpful remarks, which improved the presentation and comprehensibility of the article.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed to each part of this work equally and read and approved the final manuscript.

Author details

¹College of Power and Energy Engineering, Harbin Engineering University, Harbin, 150001, China. ²Department of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, China.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 July 2017 Accepted: 26 August 2017 Published online: 02 October 2017

References

- 1. Popa, V: A supra unei decopuneri cvascontinuitatii multifunctiolor. St. Cer. Mat. 27, 323-328 (1975)
- 2. Njastad, O: On some classes of nearly open sets. Pac. J. Math. 15, 961-970 (1965)
- 3. Husain, T: Topology and Maps. Plenum Press, New Yourk (1977)
- 4. Hasanein, IA: Some supratopological results. J. Hohannes Kepler Univ. Linz, Austria 25, 29-41 (1983)
- Mashhour, AS, Allam, AA, Mahmoud, FS, Khedr, FH: On supratopological spaces. Indian J. Pure Appl. Math. 14, 502-510 (1983)
- Abd El-Monsef, ME, El-Deeb, SN, Mahmoud, RA: β-open sets and β-continuous mappings. Bull. Sci. Tech. Assiut Univ. 12(1), 77-90 (1983)
- 7. Berge, C: Espaces Topologiques, Fonctions Multivoques. Dunod, Paris (1966)
- 8. Noiri, T, Popa, V: Some properties of H-almost continuous multifunctions. Problemy Mat 10, 9-26 (1988)
- 9. Wang, JF, Huang, B, Yamini, N: An augmented Riesz decomposition method for sharp estimates of certain boundary value problem. Bound. Value Probl. 2016, 156 (2016)
- 10. Wang, JJ, Pu, J, Zama, A: Solutions of the Dirichlet-Schrödinger problems with continuous data admitting arbitrary growth property in the boundary. Adv. Differ. Equ. **2016**, 33 (2016)
- 11. Levine, N: Semi-open sets and semi-continuity in topological spaces. Am. Math. Mon. 70, 36-41 (1963)
- 12. Wine, JD: Locally paracomact spaces. Glas. Mat. 10, 351-357 (1975)
- Li, Z, Vetro, M: Levin's type boundary behaviors for functions R and admitting certain lower bounds. Bound. Value Probl. 2015, 159 (2015)
- 14. Jiang, Z, Hou, L, Peixoto-de-Büyükkurt, C: Growth property at infinity of harmonic functions. J. Inequal. Appl. 2015, 401 (2015)
- Huang, J, Li, P, Liu, Y: Poisson semigroup, area function, and the characterization of Hardy space associated to degenerate Schrödinger operators. Banach J. Math. Anal. 10(4), 727-749 (2016)
- 16. Rao, F, Huang, J: Strong convergence by the shrinking projection method for a generalized equilibrium problems and hemi-relatively nonexpansive mappings. J. Math. Res. Exposition **30**(6), 1099-1107 (2010)