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Abstract
Using some recent results of the Riesz decomposition method for sharp estimates of
certain boundary value problems of harmonic functions in (St. Cer. Mat. 27:323-328,
1975), the boundary behaviors of upper and lower superharmonic multifunctions are
studied. Several fundamental properties of these new classes of these functions are
shown. A new technique is proposed to find the exact boundary behaviors by using
Levin’s type boundary behaviors for harmonic functions admitting certain lower
bounds in (Pacific J. Math. 15:961-970, 1965). Finally, some examples are given to
illustrate the applications of our results.
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1 Introduction
In , Husain [] has initiated the concept of superharmonic-open sets, which is
considered as a wider class of some known types of near-open sets. In , Mash-
hour et al. [, ] defined the concept of S-continuity, but for a single-valued function
f : (X, τ ) → (Y ,σ ). Many topological properties of the above mentioned concepts and
others have been established in [, ]. The purpose of this paper is to present the up-
per (resp. lower) superharmonic-continuous multifunction as a generalization of each of
upper (resp. lower) super-continuous superharmonic multifunction in the sense of Berge
[] the upper (resp. lower) sub-continuous and the upper (resp. lower) precontinuous su-
perharmonic multifunction due to Popa [, ] and also upper (resp. lower) α-continuous
and upper (resp. lower) β-continuous superharmonic multifunctions as given in [, ]
recently. Moreover, these new superharmonic multifunctions are characterized and many
of their properties have also been established.

2 Preliminaries
The topological space or simply space which is used here will be given by (X, τ ) and (Y ,σ ).
τ -cl(W ) and τ -int(W ) denote the closure and the interior of any subset W of X with re-
spect to a topology τ . In (X, τ ), the class τ ∗ ⊆ P(X) is called a superharmonic topology
on X if X ∈ τ ∗ and τ ∗ is closed under arbitrary union [], (X, τ ∗) is a superharmonic-
topological space or simply superharmonic space, each member of τ is superharmonic-
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open and its complement is superharmonic-closed [], In (X, τ ∗), the superharmonic-
closure, the superharmonic-interior and superharmonic-frontier of any A ⊆ X will be
denoted by superharmonic-cl(A), superharmonic-int(A) and superharmonic-fr(A), respec-
tively, which are defined in [] and likewise the corresponding ordinary ones. Meanwhile,
for any x ∈ X, we define

τ ∗(x) =
{

W ⊆ X : W ∈ τ ∗, x ∈ W
}

.

In (X, τ ), A ⊆ X is called super-open [] if there exists U ∈ τ such that U ⊆ A ⊆ τ -cl(U),
while A is preopen [] if A ⊆ τ -int(τ -cl(A)). The families of all super-open and preopen
sets in (X, τ ) are denoted by SO(X, τ ) and PO(X, τ ), respectively. Moreover,

τα = SO(X, τ ) ∩ PO(X, τ )

and

βO(X, τ ) ⊃ SO(X, τ ) ∪ PO(X, τ ).

A ∈ τα and A ∈ βO(X, τ ) are called a superharmonic-α-set [] and a superharmonic-β-
open set [], respectively. A single-valued superharmonic multifunction f : (X, τ ) → (Y ,σ )
is called superharmonic-S-continuous [], if the inverse image of each open set in (Y ,σ ) is
τ ∗-supra open in (X, τ ). For a superharmonic multifunction F : (X, τ ) → (Y ,σ ), the upper
and the lower inverses of any B ⊆ Y are given by

F+(B) =
{

x ∈ X : F(x) ⊆ B
}

and

F–(B) =
{

x ∈ X : F(X) ∩ B 	= φ
}

,

respectively. Moreover, F : (X, τ ) → (Y ,σ ) is called upper (resp. lower) super-continuous
[], if for each V ∈ σ , F+(V ) ∈ τ (resp. F–(V ) ∈ τ ). If τ in super-continuity is replaced
by SO(X, τ ), τα , PO(X, τ ) and βO(X, τ ), then F is upper (resp. lower) sub-continuous [],
upper (resp. lower) superharmonic α-continuous [], upper (resp. lower) precontinuous
[] and upper (resp. lower) superharmonic-β-continuous [], respectively. A space (X, τ )
is called superharmonic-compact [], if every supraopen cover of X admits a finite sub-
cover.

3 Supra-continuous superharmonic multifunctions
Definition . A superharmonic multifunction F : (X, τ ) → (Y ,σ ) is said to be:

(a) upper superharmonic-continuous at a point x ∈ X if for each open set V containing
F(x), there exists W ∈ τ ∗(x) such that

F(W ) ⊆ V ;
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(b) lower superharmonic-continuous at a point x ∈ X if for each open set V containing
F(x), there exists W ∈ τ ∗(x) such that

F(W ) ∩ V 	= φ;

(c) upper (resp. lower) superharmonic-continuous if F has this property at every point
of X.

Any single-valued superharmonic function f : (X, τ ) → (Y ,σ ) can be considered as a
multi-valued one which assigns to any x ∈ X the singleton {f (x)}. We apply the above defi-
nitions of both upper and lower superharmonic-continuous multifunctions to the single-
valued case. It is clear that they coincide with the notion of S-continuous due to Mashhour
et al. []. One characterization of the above superharmonic multifunction is established
throughout the following result, of which the proof is straightforward, so it is omitted.

Remark . For a superharmonic multifunction F : (X, τ ) → (Y ,σ ), many properties
of upper (resp. lower) semicontinuity [] (resp. upper (lower)) F-continuity [], upper
(resp. lower) sub-continuity [], upper (resp. lower) precontinuity [] and upper (resp.
lower) (G-continuity []) can be deduced from the upper (resp. lower) superharmonic-
continuity by considering τ ∗ = τ (resp. τ ∗ = τα , τ ∗ = SO(X, τ ), τ ∗ = PO(X, τ ) and τ ∗ =
βO(X, τ )).

Proposition . A superharmonic multifunction F : (X, τ ) → (Y ,σ ) is upper (resp. lower)
superharmonic-continuous at a point x ∈ X if and only if for V ∈ σ with F(x) ⊆ V (resp.
F(x) ∩ V 	= φ). Then x ∈ superharmonic-int(F+(V )) (resp. x ∈ superharmonic-int(F–(V )).

Lemma . For any A ∈ (X, τ ), we have

τ -int(A) ⊆ superharmonic-int(A) ⊆ A ⊆ superharmonic-cl(A) ⊆ τ -cl(A).

Theorem . The following are equivalent for a superharmonic multifunction F : (X, τ ) →
(Y ,σ ):

(i) F is upper superharmonic-continuous;
(ii) for each x ∈ X and each V ∈ σ (F(x)), we have F+(V ) ∈ τ ∗(x);
(iii) for each x ∈ X and each V ∈ σ (F(x)), there exists W ∈ τ ∗ such that

F(W ) ⊆ V ;

(iv) F+(V ) ∈ τ ∗ for every V ∈ σ ;
(v) F–(K) is superharmonic-closed for every closed set K ⊆ Y ;
(vi) superharmonic-cl(F–(B)) ⊆ F–(τ -cl(B)) for every B ⊆ Y ;
(vii) F+(τ -int(B)) ⊆ superharmonic-int(F+(B)) for every B ⊆ Y ;
(viii) superharmonic-fr(F–(B)) ⊆ F–(fr(B)) for every B ⊆ Y ;
(ix) F : (X, τ ∗) → (Y ,σ ) is upper superharmonic-continuous.

Proof (i) ⇐⇒ (ii) and (i) ⇒ (iv): Follow from Proposition ..
(ii) ⇐⇒ (iii): This is obvious, since the arbitrary union of superharmonic-open set is

superharmonic-open.
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(iv) = (v): Let K be closed in Y , the result satisfies

F+(Y\K) = X\F–(K).

(v) ⇒ (vi): By putting K = σ -cl(B) and applying Lemma ..
(vi) ⇒ (vii): Let B ⇒ Y , then σ -int(B) ∈ σ and so Y\σ -int(B) is super-closed in (Y ,σ ).

Therefore by (vi) we get

X\ super-int
(
F+(B)

)
= super-cl

(
X\F+(B)

) ⊆ sub-cl(X\F+(
σ -int(B)

)

and

supra-cl(F–(
Y σ -int(B)

) ⊆ F –
(
Y\σ -int(B)

) ⊆ X\F+(
σ -int(B)

)
.

This implies that

F+(
σ -int(B)

) ⊆ supra-int
(
F+(B)

)
.

(vii) ⇒ (ii): Let x ∈ X be arbitrary and each V ∈ σ (F(x)) then

F+(V ) ⊆ supra-int
(
F+(V )

)
.

Hence F+(V ) ∈ τ ∗(x).
(viii) ⇔ (v): Clearly, a suprafrontier and frontier of any set is superharmonic-closed and

closed, respectively.
(ix) ⇔ (iv): Follows immediately. �

Theorem . For a superharmonic multifunction F : (X, τ ) → (Y ,σ ), the following state-
ments are equivalent:

(i) F is lower superharmonic-continuous;
(ii) for each X ∈ X and each V ∈ σ such that

F(x) ∩ V 	= φ and F–(V ) ∈ τ ∗(x);

(iii) for each x ∈ X and each V ∈ σ with F(x) ∩ V 	= φ, there exists W ∈ τ ∗ such that

F(W ) ∩ V 	= φ;

(iv) F–(V ) ∈ τ ∗ for every V ∈ σ ;
(v) F+(K) is superharmonic-closed for every closed set K ⊆ Y ;
(vi) superharmonic-cl(F+(B)) ⊆ F+(σ cl-(B)) for any B ⊆ Y ;
(vii) F–(σ -int(B)) ⊆ superharmonic-int(F–(B)) for any B ⊆ Y ;
(viii) superharmonic-fr(F+(B)) ⊆ F+(fr(B)) for every B ⊆ Y ;
(ix) F : (X, τ ∗) → (Y ,σ ) is lower superharmonic-continuous.

Proof The proof is a quite similar to that of Theorem .. Recall that the net (χi)(i∈l) is
superharmonic-convergent to x, if for each W ∈ τ ∗(xO) there exists a io ∈ I such that for
each i ≥ io it implies xi ∈ W . �
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Theorem . A superharmonic multifunction F : (X, τ ) → (Y ,σ ) is upper superharmonic-
continuous if and only if for each net (χi)(i∈l) superharmonic-convergent to xo and for each
V ∈ σ with F(xo) ⊆ V there is io ∈ I such that F(Xi) ⊆ V for all i ≥ io.

Proof Necessity, let V ∈ σ with F(xo) ⊆ V . By upper superharmonic-continuity of F ,
there is W ∈ τ ∗(XO) such that F(W ) ⊆ V . Since from the hypothesis a net (χi)(i∈l) is
superharmonic-convergent to xo and W ∈ τ ∗(xo) there is one io ∈ I such that xi ∈ W for
all i > io and then F(Xi) ⊆ V for all i > io. As regards sufficiency, assume the converse, i.e.
there is an open set V in Y with F(xo) ⊆ V such that for each W ∈ τ ∗ under inclusion we
have the relation F(W ) � V , i.e. there is xw ∈ W such that F(xw) � V . Then all of xw will
form a net in X with directed set W of τ ∗(xo), clearly this net is superharmonic-convergent
to xo. But F(xw) � V for all W ∈ τ ∗(xo). This leads to a contradiction which completes the
proof. �

Theorem . A superharmonic multifunction F : (X, τ ) → (Y ,σ ) is lower superharmonic-
continuous if and only if for each yo ∈ F(xo) and for every net (χi)(i∈l) superharmonic-
convergent to xo, there exists a subnet (Zj)(j∈J) of the net (χi)(i∈l) and a net (yi)(j,v)∈J in Y
so that (yi)(j,v)∈J superharmonic-convergent to y and yj ∈ F(zj).

Proof For necessity, suppose F is lower superharmonic-continuous, (χi)(i∈l) is a net
superharmonic-convergent to xo, y ∈ F(xo) and V ∈ σ (y). So we have F(xo) ∩ V 	= φ, by
lower superharmonic-continuity of F at xo, there is a superharmonic-open set W ⊆ X
containing xo such that W ⊆ F–(V ). We have superharmonic-convergence of a net (χi)(i∈l)

to x and for this W , there is a io ∈ I such that, for each i > io, we have xi ∈ W and therefore
xi ∈ F–(V ). Hence, for each V ∈ σ (y), define the sets

Iv =
{

io ∈ I : i > io ⇒ xi ∈ F–(V )
}

and

J =
{

(i, V ) : V ∈ D(y), i ∈ Iv
}

and an order ≥ on J given as (i′, V ′) ≥ (i, V ) if and only if i′ > i and V ′ ⊆ V . Also, define
ζ : J → I by ζ ((j, V )) = j. Then ζ is increasing and cofinal in I , so ζ defines a subset of
(χi)(i∈l), denoted by (zi)(j,v)∈J . On the other hand for any (j, V ) ∈ J , since j > jo implies xj ∈
F–(V ) we have F(Zj) ∩ V = F(Xj) ∩ V 	= φ. Pick yj ∈ F(Zj) ∩ V 	= φ. Then the net (yi)(j,v)∈J

is supraconvergent to y. To see this, let V ∈ σ (y); then there is j ∈ I with jo = ζ (jo, Vo);
(jo, Vo) ∈ J and yjo ∈ V . If (j, V ) > (jo, Vo) this means that j > jo and V ⊆ Vo. Therefore

yj ∈ F(zj) ∩ V ⊆ F(xj) ∩ V ⊆ F(xj) ∩ Vo.

So yj ∈ Vo. Thus (yi)(j,v)∈J is superharmonic-convergent to y, which shows the result.
To show the sufficiency, assume the converse, i.e. F is not lower superharmonic-

continuous at xo. Then there exists V ∈ σ such that F(xo) ∩ V 	= φ and for any
superharmonic-neighborhood W ⊆ X of xo, there exists xw ∈ W for which F(xw) ∩ V = φ.
Let us consider the net (χw)W∈τ∗(χ), which is obviously superharmonic-convergent to
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xo. Suppose yo ∈ F(xo) ∩ V , by hypothesis there is a superset (zk)k∈K of (χw)W∈τ∗(χ)

and yk ∈ F(zk) like (yk)k∈K superharmonic-convergent to yo. As yo ∈ V ∈ σ there is
k′

 ∈ K so that k > k′
 implies yk ∈ V . On the other hand (zk)kEK is a superset of the

net (χw)W∈τ∗(χ) and so there exists a superharmonic function 	 : K → τ ∗(xo) such that
zk = χ	(k) and for each W ∈ τ ∗(xo) there exists k′′

 ∈ K such that 	(k′′
) ≥ W . If k ≥ k′′

 then
	(k) ≥ 	(k′′

) ≥ W . Considering k ∈ K so that ko ≥ k′
 and ko ≥ k′′

 . Therefore yk ∈ V and
by the meaning of the net (χW )W∈τ∗(χ), we have

F(zk) ∩ V = F(χ	(K )) ∩ V = φ.

This gives yk /∈ V , which contradicts the hypothesis and so the requirement holds. �

Definition . A subset W of a space (X, τ ) is called superharmonic-regular, if for any
x ∈ W and any H ∈ τ ∗(x) there exists U ∈ τ such that

x ∈ U ⊆ τ -cl(U) ⊆ H .

Recall that F : (X, τ ) → (Y ,σ ) is punctually superharmonic-regular, if for each X ∈ X, F(x)
is superharmonic-regular.

Lemma . In a superharmonic space (X, τ ), if W ⊆ X is superharmonic-regular and con-
tained in a superharmonic-open set H , then there exists U ∈ τ such that

W ⊆ U ⊆ τ -cl(U) ⊆ H .

For a superharmonic multifunction F : (X, τ ) → (Y ,σ ), a superharmonic multifunction
superharmonic-cl(F) : (X, τ ) → (Y ,σ ) is defined as follows:

(superharmonic-cl F)(x) = superharmonic-cl
(
F(x)

)

for each x ∈ X.

Proposition . For a punctually α-paracompact and punctually superharmonic-regular
superharmonic multifunction F : (X, τ ) → (Y ,σ ), we have

(
superharmonic-cl(F)+(W )

)
= F+(W )

for each W ∈ σ ∗.

Proof Let x ∈ (superharmonic-cl(F))+(W ) for any W ∈ σ ∗, this means

F(x) ⊆ superharmonic-cl
(
F(x)

) ⊆ W ,

which leads to x ∈ F+(W ). Hence one inclusion holds. To show the other, let X ∈ F+(W )
where W ∈ σ ∗(x). Then F(x) ⊆ W , by the hypothesis of F and the fact that σ ⊆ σ ∗, apply-
ing Lemma ., there exists G ∈ σ such that

F(x) ⊆ G ∈ σ -cl(G) ⊆ W .



Lu and Sun Boundary Value Problems  (2017) 2017:144 Page 7 of 12

Therefore

superharmonic-cl
(
F(x)

) ⊆ W .

This means that x ∈ (superharmonic-cl F)+(W ). Hence the equality holds. �

Theorem . Let F(X, τ ) → (Y ,σ ) be a punctually a-paracompact and punctually
superharmonic-regular superharmonic multifunction. Then F is upper superharmonic-
continuous if and only if

(superharmonic-cl F) : (X, τ ) → (Y ,σ )

is upper superharmonic-continuous.

Proof As regards necessity, suppose V ∈ σ and x ∈ (superharmonic-cl F)+(V ) = F+(V ) (see
Proposition .). By upper superharmonic-continuity of F , there exists H ∈ τ ∗(x) such that
F(H) ⊆ V . Since σ ∈ σ ∗, by Lemma . and the assumption of F , there exists G ∈ σ such
that

F(h) ⊆ G ⊆ σ -cl(G) ⊆ W

for each h ∈ H .
Hence

superharmonic-cl
(
F(h)

) ⊆ superharmonic-cl(G) ⊆ σ -cl(G) ⊆ V

for each h ∈ H , which shows that []

(superharmonic-cl F)(H) ⊆ V .

Thus (superharmonic-cl F) is upper superharmonic-continuous. As regards sufficiency, as-
sume V ∈ σ and X ∈ F+(V ) = (superharmonic-cl F)+(V ). By the hypothesis of F in this case,
there is H ∈ τ ∗(x) such that (superharmonic-cl F)(H) ⊆ V , which obviously gives F(H) ⊆ V .
This completes the proof. �

Lemma . In a space (X, τ ), any x ∈ X and A ⊆ X, X ∈ superharmonic-cl(A) if and only if

A ∩ W 	= φ

for each W ∈ τ ∗(x).

Proposition . For a superharmonic multifunction F : (X, τ ) → (Y ,σ ),

(superharmonic-cl F)–(W ) = F–(W )

for each W ∈ σ ∗.
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Proof Let x ∈ (superharmonic-cl F)–(W ). Then

W ∩ superharmonic-cl
(
F(x)

) 	= φ.

Since W ∈ σ ∗, Lemma . gives W ∩ F(x) 	= φ and hence x ∈ F–(W ). Conversely, let x ∈
F–(W ), then

φ 	= F(x) ∩ W ⊆ (supracl F)–(x) ∩ W

and so

x ∈ (superharmonic-cl F)–(W ).

Hence

x ∈ (superharmonic-cl F)+(W )

and this completes the equality. �

Theorem . A superharmonic multifunction F : (X, τ ) → (Y ,σ ) is lower superharmonic-
continuous if and only if (superharmonic-cl F) : (X, τ ) → (Y ,σ ) is lower superharmonic-
continuous.

Proof This is an immediate consequence of Proposition . taking in consideration that
τ ⊆ τ ∗ and (iv) of Theorem .. �

Theorem . If F : (X, τ ) → (Y ,σ ) is an upper superharmonic-continuous surjection and
for each x ∈ X, F(x) is compact relative to Y . If (X, τ ) is superharmonic-compact, then (Y ,σ )
is compact.

Proof Let

{Vi : i ∈ I, Vi ∈ σ }

be a cover of Y ; F(x) is compact relative to Y , for each x ∈ X. Then there exists a finite Io(x)
of I such that []

F(x) ⊆ U
(
Vi : i ∈ Io(x)

)
.

Upper superharmonic-continuity of F shows that there exists W (x) ∈ τ ∗(X, x) such that

F
(
W (x)

) ⊆
⋃

Vi : i ∈ Io(x).

Since (X, τ ) is superharmonic-compact, there exists x, x, . . . , xn such that

X =
⋃(

W (xj) :  ≤ j ≤ n
)
.
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Therefore

Y = F(X) =
⋃(

F
(
W (xj)

)
:  ≤ j ≤ n

) ⊆
⋃

Vi : i ∈ I(Xj)  ≤ j ≤ n.

Hence (Y ,σ ) is compact. �

4 Supra-continuous superharmonic multifunctions and superharmonic-closed
graphs

Definition . A superharmonic multifunction F : (X, τ ) → (Y ,σ ) is said to have a
superharmonic-closed graph if there exists W ∈ τ ∗(X) and H /∈ σ ∗(y) such that

(W × H) ∩ G(F) = φ

for each pair (x, y) /∈ G(F).
A superharmonic multifunction F : (X, τ ) → (Y ,σ ) is point-closed (superharmonic-

closed), if for each x ∈ X, F(x) is closed (superharmonic-closed) in Y .

Proposition . A superharmonic multifunction F : (X, τ ) → (Y ,σ ) has a superharmonic-
closed graph if and only if for each x ∈ X and y ∈ Y such that y /∈ F(x), there exist two
superharmonic-open sets H , W containing x and y, respectively, such that

F(H) ∩ W = φ.

Proof As regards necessity, let x ∈ X and y ∈ Y with y /∈ F(x). Then by the superharmonic-
closed graph of F , there are H ∈ τ ∗(x) and W ∈ σ ∗ containing F(x) such that (HxW ) ∩
G(F) = φ. This implies that for every x ∈ H and y ∈ W where y /∈ F(x) we have F(H) ∩ W =
φ.

As regards sufficiency, let (x, y) /∈ G(F), this means y /∈ F(x); then there are two disjoint
superharmonic-open sets H , W containing x and y, respectively, such that F(H) ∩ W = φ.
This implies that (H × W ) ∩ G(F) = φ, which completes the proof. �

Theorem . If F : (X, τ ) → (Y ,σ ) is an upper superharmonic-continuous and point-
closed superharmonic multifunction, then G(F) is superharmonic-closed if (Y ,σ ) is regular.

Proof Suppose that

(x, y) /∈ G(F).

Then y /∈ F(x). Since Y is regular, there exists disjoint

Vi ∈ σ (i = , )

such that

y ∈ V
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and

F(x) ⊆ V.

Since F is upper superharmonic-continuous at x, there exists

W ∈ τ ∗(x)

such that F(W ) ⊆ V. As V ∩ V = φ, then

⋂

i=

superharmonic-int(Vi) 	= φ

and therefore

x ∈ superharmonic-int(W ) = W ,

y ∈ superharmonic-int(V),

and

(x, y) ∈ W × superharmonic-int(V) ⊆ (X × Y )\G(F).

Thus

(X × Y )\G(F) ∈ τ ∗(X × Y ),

which gives the result. �

Definition . A subset W of a space (X, τ ) is called α-paracompact [] if for every open
cover v of W in (X, τ ) there exists a locally finite open cover ξ of W which refines v.

Theorem . Let F : (X, τ ) → (Y ,σ ) be an upper superharmonic-continuous superhar-
monic multifunction from (X, τ ) into a Hausdorff space (Y ,σ ). If F(x) is α-paracompact
for each x ∈ X, then G(F) is superharmonic-closed.

Proof Let (xo, yo) /∈ G(F), then yo /∈ F(xo). Since (Y ,σ ) is Hausdorff, for each y ∈ F(xo) there
exist Vy ∈ σ (y) and V ∗

y ∈ σ (yo) such that

Vy ∩ V ∗
y = φ.

So the family {Vy : y ∈ F(x)} is an open cover of F(xo). Thus, by α-paracompactness
of F(xo) [], there is a locally finite open cover {Ui : i ∈ I} which refines {Vy : y ∈ F(xo)}.
Therefore, there exists Ho ∈ σ (yo) such that Ho intersects only finitely many members
Ui , Ui , . . . , Uin of h. Choose y, y, . . . , yn in F(xo) such that Uij ⊆ Uyj for each  < j < n, and
the set

H = Ho ∩
(⋃

i∈I

Vyi

)
.
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Then H ∈ σ (yo) such that

H ∩
(⋃

i∈I

Vi

)
= φ.

The upper superharmonic-continuity of F means that there exists W ∈ τ ∗(xo) such that
[]

xo ∈ W ⊆ F+
(⋃

i∈I

Vi

)
.

It follows that (W × H) ∩ G(F) = φ, and hence G(F) is superharmonic-closed. �

Lemma . ([]) The following hold for F : (X, τ ) → (Y ,σ ), A ⊆ X and B ⊆ Y ;
(i)

G+
F (A × B) = A ∩ F+(B);

(ii)

G–
F (A × B) = A ∩ F–(B).

Theorem . For a superharmonic multifunction F : (X, τ ) → (Y ,σ ), if GF is upper
superharmonic-continuous, then F is upper superharmonic-continuous. Proof. Let x ∈ X
and V ∈ σ (F(x)). Since X × V ∈ τ × σ and

GF (x) ⊆ X × V ,

by Theorem ., there exists W ∈ τ ∗(x) such that GF (W ) ⊆ X ×V . Therefore, by Lemma .,
we get

W ⊆ G–
F (X × V ) = X ∩ G+

f (V ) = F+(V )

and so F(W ) ⊆ V . Hence Theorem . shows also that F upper supracontinuous.

Theorem . If the graph GF of a superharmonic multifunction F : (X, τ ) → (Y ,σ ) is lower
superharmonic-continuous, then F is also.

Proof Let x ∈ X and V ∈ σ (F(x)) with F(x) ∩ V 	= φ, also since

X × V ∈ τ × σ ,

then

GF (x) ∩ (X × V ) = x × F(x) ∩ (X × V ) = x × (
F(x) ∩ V

) 	= φ.

Theorem . shows that there exists W ∈ τ ∗(x) such that

GF (w) ⊆ (X × V ) 	= φ
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for each w ∈ W . Hence Lemma . obtains; we have

W ⊆ G–(X × V ) = X ∩ G–(V ) = F–(V ).

Therefore,

F(w) ∩ V 	= φ

for each w ∈ W and Theorem . completes the proof. �
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