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Abstract
By mixing the idea of 2-arrays, continued fractions, and Caputo-Fabrizio fractional
derivative, we introduce a new operator entitled the infinite coefficient-symmetric
Caputo-Fabrizio fractional derivative. We investigate the approximate solutions for
two infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential
problems. Finally, we analyze two examples to confirm our main results.
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1 Introduction
Fractional calculus has many real-world applications in various fields of science and en-
gineering [–]. During the recent years, the researchers started to think how to enlarge
the range of fractional calculus by constructing operators with different nonlocal kernels.
For example, a new nonlocal derivative without singular kernel was introduced in [].
After that, this new fractional operator was utilized to get more information from solv-
ing different fractional differential equations corresponding to complex phenomena (the
reader can see, for example, [–], and the references therein). Let use consider b > 
and x ∈ H(, b) together with α ∈ (, ). For a function x, Caputo and Fabrizio defined
its fractional derivative (CF) of order α as CFCαx(p) = (–α)M(α)

(–α)
∫ p

 exp( –α
–α

(p – w))x′(w) dw,
where t ≥ , and M(α) is such that M() = M() =  []. The corresponding fractional inte-
gral of order α for the function x is CFIαx(p) = (–α)

(–α)M(α) x(p) + α
(–α)M(α)

∫ p
 x(w) dw whenever

 < α <  []. Also, the values of the function M were found as M(α) = 
–α

for all  ≤ α ≤ 
[]. Taking into account the results mentioned, for a given function x, its fractional CF of
order α becomes CFCαx(p) = 

–α

∫ p
 exp(– α

–α
(p – w))x′(w) dw for t ≥  and  < α <  [].

In this way a new type of fractional calculus was established. The aim of the manuscript
is to propose a new operator named the infinite coefficient-symmetric Caputo-Fabrizio
fractional derivative and to study some its properties.
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2 Basic tools and new fractional operators
We further introduce some basic notation.

Lemma . ([]) Let us consider the equation CFCαx(t) = y(t) such that x() = c and  <
α < . The solutions of this equation has the form x(p) = c + aα(y(p) – y()) + bα

∫ p
 y(z) dz,

where aα = (–α)
(–α)M(α) =  – α and bα = α

(–α)M(α) = α.

Let ε > . We consider a metric space (Z, d), a selfmap G on Z, and a mapping α :
Z × Z → [,∞). As a result, we say that G is α-admissible whenever α(t, s) ≥  implies
α(Gt, Gs) ≥  []. An element z ∈ Z is called an ε-fixed point of G if d(Gz, z) ≤ ε. We
say that G possess the approximate fixed point property if G possesses an ε-fixed point for
all ε >  []. Denote by R the set of all continuous mappings j : [,∞) → [,∞) sat-
isfying j(, , , , ) = j(, , , , ) := l ∈ (, ), j(μt,μt,μt,μt,μt) ≤ μj(t, t, t, t, t)
for all (t, t, t, t, t) ∈ [,∞) and μ ≥  and also j(t, t, t, , t) ≤ j(s, s, s, , s) and
j(t, t, t, t, ) ≤ j(s, s, s, s, ) whenever t, . . . , t, s, . . . , s ∈ [,∞) with tk < sk for k =
, , ,  []. Next, we recall that G is called a generalized α-contractive mapping if
there exists j ∈ R such that α(t, s)d(Gt, Gs) ≤ j(d(t, s), d(t, Gt), d(s, Gs), d(t, Gs),
d(s, Gt)) for all t, s ∈ Z []. We need the following key result.

Theorem . ([]) Suppose that there exists t ∈ Z such that α(t, Gt) ≥ . Then G pos-
sesses an approximate fixed point, where (Z, d) is a metric space, α : Z×Z → [,∞) denotes
a mapping, and G represents a generalized α-contractive and α-admissible selfmap on Z.

Let {Li,i}i≥ be a sequence of operators on a set. For reduction and approximation in
large and infinite potential-driven flow networks, there is a method of using -arrays and
continued fractions (see [] and []). In fact, it is sufficient to arrange the operators
{Li,i}i≥ symmetrically on a -array, and by using a continued fraction we make a new
operator LN from the operators Li,i , where N is a natural number (see [] and []).
First, we arrange the operators Li,i on a -array (tree) as in Figure  (see []).

Now, using a finite continued fraction, consider the new operator LN defined by

LN =



L+ 


L+···+ 


LN

+ 
LN

+ 
L+···+ 


LN

+ 
LN

+ 
L+ 


L+···+ 


LNN–

+ 
LNN–

+ 
L+···+ 


LNN–

+ 
LNN

.

Here, we replace symmetrically the operators Lij with CFCα for j odd (the upper branch)
and CFCβ for j even (the lower branch) as in Figure .

Figure 1 An N generation tree network
composed of the operators Li,2i .



Baleanu et al. Boundary Value Problems  (2017) 2017:145 Page 3 of 9

Figure 2 A symmetric generation tree network
composed of the operators CFCα and CFCβ .

Figure 3 A coefficient-symmetric generation
tree composed of the operators CFCα and CFCβ .

Put

CF
C

(α,β)
 =




CFCα + 
CFCβ

, CF
C

(α,β)
 =




CFCα+ 


CFCα
+ 

CFCβ

+ 
CFCβ + 


CFCα

+ 
CFCβ

and

CF
C

(α,β)


=



CFCα+ 


CFCα+ 


CFCα

+ 
CFCβ

+ 
CFCβ + 


CFCα

+ 
CFCβ

+ 
CFCβ + 


CFCα+ 


CFCα

+ 
CFCβ

+ 
CFCβ + 


CFCα

+ 
CFCβ

.

Continuing this process, we can define the new operator CF
C

(α,β)
N . Now, we define the in-

finite symmetric CF fractional derivative by CF
C

(α,β)
∞ = limN→∞ CF

C
(α,β)
N . A simple calcu-

lation shows that CF
C

(α,β)
∞ = (CFCαCFCβ ) 

 . Similarly, we can define the infinite symmetric
CF fractional integral CF

I
(α,β)
∞ by

CF
I

(α,β)
∞ =




CFIα+ 


CFIα+··· + 
CFIβ +···

+ 
CFIβ + 


CFIα+··· + 

CFIβ +···

.

Let μ ≥ , μ �= . Putting μi–CFCα on the upper branch and μi–CFCβ on the lower branch
in the ith stage as in Figure , we can make the infinite coefficient-symmetric CF fractional
derivative as a generalization for last case.

In fact, we define

CF
C

(α,β)
(μ,∞) =




CFCα+ 


μCFCα+··· + 
μCFCβ +···

+ 
CFCβ + 


μCFCα+··· + 

μCFCβ +···

,
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and so

CF
C

(α,α)
(μ,∞) =




CFCα+μCFC(α,α)
(μ,∞)

+ 
CFCα+μCFC(α,α)

(μ,∞)

.

This implies that

(∗) CF
C

(α,β)
(μ,∞) =


 – μ

CFCα .

3 Results
To show our results, we recall below two lemmas [] under the assumption that x, y ∈
H(, ).

Lemma . ([]) If there exists a real number K such that |x(p) – y(p)| ≤ K for all p ∈
[, ], then |CFCαx(p) – CFCαy(p)| ≤ –α

(–α) K for all p ∈ [, ].

Lemma . ([]) Assume that x() = y() and there exists a real number K such that
|x(p) – y(p)| ≤ K for p ∈ [, ]. Then |CFCαx(p) – CFCαy(p)| ≤ 

(–α) K for all p ∈ [, ].

Let x, y ∈ CR[, ].

Lemma . ([]) If there is K ≥  such that |x(p) – y(p)| ≤ K for all p ∈ [, ], then
|CFIαx(p) – CFIαy(p)| ≤ K for p ∈ [, ].

Now we are ready to show our main results. Using Lemmas . and ., we obtain the
next key results.

Lemma . Let x, y ∈ H. If there exists a real number K such that |x(p) – y(p)| ≤ K for
all p ∈ [, ], then |CF

C
(α,α)∞ x(p) – CF

C
(α,α)∞ y(p)| ≤ –α

(–α) K for all p ∈ [, ].

Lemma . Let x, y ∈ H with x() = y() and K ∈ R. If |x(p) – y(p)| ≤ K for p ∈ [, ],
then |CF

C
(α,α)∞ x(p) – CF

C
(α,α)∞ y(p)| ≤ 

(–α) K for all p ∈ [, ].

Using Lemmas . and . and (*), we get the following results.

Lemma . Let x, y ∈ H. If there exists a real number K such that |x(p) – y(p)| ≤ K for
all p ∈ [, ], then |CF

C
(α,α)
(μ,∞)x(p) – CF

C
(α,α)
(μ,∞)y(p)| ≤ (–α)

(–μ)(–α) K for all p ∈ [, ].

Lemma . Let x, y ∈ H with x() = y() and K ∈ R. If |x(p) – y(p)| ≤ K for all p ∈ [, ],
then |CF

C
(α,α)
(μ,∞)x(p) – CF

C
(α,α)
(μ,∞)y(p)| ≤ 

(–μ)(–α) K for all p ∈ [, ].

Lemma . Let x, y ∈ CR[, ]. Let K be a real number such that |x(p) – y(p)| ≤ K for all
p ∈ [, ], then |CF

I
(α,α)∞ x(p) – CF

I
(α,α)∞ y(p)| ≤ K for all p ∈ [, ].

Using Lemma ., we can prove the next key result.

Lemma . Let α ∈ (, ) and c ∈R. The unique solution of the problem

CF
C

(α,α)
∞ x(p) = y(p)

with boundary condition x() = c is given by x(p) = c + aα(y(p) – y()) + bα

∫ t
 y(s) ds.
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Also, using Lemma . and (*), we can prove the next key result.

Lemma . Let α ∈ (, ) and c ∈R. The unique solution of the problem

CF
C

(α,α)
(μ,∞)x(p) = y(p)

with boundary condition x() = c is given by

x(p) = c + aα( – μ)
(
y(p) – y()

)
+ bα( – μ)

∫ p


y(s) ds.

Let I = [, ], and let γ ,λ : [, ] × [, ] → [,∞) be two continuous maps such that
supp∈I | ∫ p

 λ(p, r) dr| < ∞ and supp∈I | ∫ p
 γ (p, r) dr| < ∞. We introduce the following maps

φ and ϕ defined by (φu)(p) =
∫ p

 γ (p, r)u(r) dr and (ϕu)(p) =
∫ p

 λ(p, r)u(r) dr, respectively.
Let us consider γ = sup | ∫ p

 γ (p, r) dr| and λ = sup | ∫ p
 λ(p, r) dr|, respectively. Let η(p) ∈

L∞(I) with η∗ = supp∈I |η(p)|. We further are going to investigate the infinite CF fractional
integro-differential problem, namely

CF
C

(α,α)
∞ u′

(r) = μ
(CF

C
(β ,β)
∞ u′

(r) +CF
C

(γ ,γ )
∞ u′

(r)
)

+ f ′(r, u′
(r),

(
φu′


)
(r),

(
ϕu′


)
(r),CF

I
(θ ,θ )
∞ u′

(r),CF
C

(δ,δ)
∞ u′

(r)
)

()

with u′
() = . Here α,β ,γ , θ , δ ∈ (, ), and μ ≥ .

Theorem . Let f ′ : [, ] ×R
 →R be a continuous function satisfying

∣
∣f ′(r, x, y, w, u, u) – f ′(r, x′

, y′
, w′

, v, v
)∣
∣

≤ η(r)
(∣∣x – x′


∣
∣ +

∣
∣y – y′


∣
∣ +

∣
∣w – w′


∣
∣ + |u – v| + |u – v|

)

for all r ∈ I and x, y, w, x′
, y′

, w′
, u, u, v, v ∈R. If � = [η∗(+γ +λ + 

(–δ) )+μ( 
(–γ ) +


(–β) )] < , then problem () possesses an approximate solution.

Proof Let H be equipped with d(u′
, v′

) = ‖u′
 – v′

‖, where ‖u′
‖ = supt∈I |u′

(t)|. Now, con-
sider the selfmap F : H → H defined by

(
Fu′


)
(r) = aα

[
μ

(CF
C

(β ,β)
∞ u′

(r) +CF
C

(γ ,γ )
∞ u′

(r)
)

+ f ′(r, u′
(r),

(
φu′


)
(r),

(
ϕu′


)
(r),CF

I
(θ ,θ )
∞ u′

(r),CF
C

(δ,δ)
∞ u′

(r)
)]

+ bα

∫ r



[
μ

(CF
C

(β ,β)
∞ u′

(s) +CF
C

(γ ,γ )
∞ u′

(s)
)

+ f ′(s, u′
(s),

(
φu′


)
(s),

(
ϕu′


)
(s),CF

I
(θ ,θ )
∞ u′

(r),CF
C

(δ,δ)
∞ u′

(s)
)]

ds

for all r ∈ I and u′
, v′

 ∈ H, where aα and bα have the meaning given in Lemma .. Now,
utilizing Lemmas . and ., we get

∣
∣
(
Fu′


)
(r) –

(
Fv′


)
(r)

∣
∣

≤ aα

(
μ

∣
∣(CF

C
(β ,β)
∞ u′

(r) +CF
C

(γ ,γ )
∞ u′

(r)
)

–
(CF

C
(β ,β)
∞ v′

(r) +CF
C

(γ ,γ )
∞ v′

(r)
)∣∣
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+
∣
∣f ′(r, u′

(r),
(
φu′


)
(r),

(
ϕu′


)
(r),CF

I
(θ ,θ )
∞ u′

(r),CF
C

(δ,δ)
∞ u′

(r)
)

– f ′(r, v′
(t),

(
φv′


)
(r),

(
ϕv′


)
(r),CF

I
(θ ,θ )
∞ v′

(r),CF
C

(δ,δ)
∞ v′

(r)
)∣∣)

+ bα

∫ r



[
μ

∣
∣
(CF

C
(β ,β)
∞ u′

(s) +CF
C

(γ ,γ )
∞ u′

(s)
)

–
(CF

C
(β ,β)
∞ v′

(s) +CF
C

(γ ,γ )
∞ v′

(s)
)∣
∣

+
∣
∣f ′(s, u′

(r),
(
φu′


)
(s),

(
ϕu′


)
(s),CF

I
(θ ,θ )
∞ u′

(s),CF
C

(δ,δ)
∞ u′

(s)
)

– f ′(s, v′
(s),

(
φv′


)
(s),

(
ϕv′


)
(s),CF

I
(θ ,θ )
∞ v′

(s),CF
C

(δ,δ)
∞ v′

(s)
)∣∣]ds

≤ aαμ
[∣
∣CF

C
(β ,β)
∞

(
u′

(r) – v′
(r)

)∣
∣

+
∣
∣CF

C
(γ ,γ )
∞

(
u′

(r) – v′
(r)

)∣∣] + aα

∣
∣η(r)

∣
∣[

∣
∣u′

(r) – v′
(r)

∣
∣ +

∣
∣(φu′


)
(r) –

(
φv′


)
(r)

∣
∣

+
∣
∣
(
ϕu′


)
(r) –

(
ϕv′


)
(r)

∣
∣ +

∣
∣CF

I
(θ ,θ )
∞ u′

(r) –CF
I

(θ ,θ )
∞ v′

(r)
∣
∣

+
∣
∣CF

C
(δ,δ)
∞ u′

(r) –CF
C

(δ,δ)
∞ v′

(r)
∣
∣]

+ bα

∫ r



[
μ

(∣
∣CF

C
(β ,β)
∞

(
u′

(s) – v′
(s)

)∣
∣ +

∣
∣CF

C
(γ ,γ )
∞

(
u′

(s) – v′
(s)

)∣
∣
)

+
∣
∣η(s)

∣
∣(

∣
∣u′

(s) – v′
(s)

∣
∣

+
∣
∣
(
φu′


)
(s) –

(
φv′


)
(s)

∣
∣ +

∣
∣
(
ϕu′


)
(s) –

(
ϕv′


)
(s)

∣
∣ +

∣
∣CF

I
(θ ,θ )
∞ u′

(s) –CF I(θ ,θ )
∞ v′

(s)
∣
∣

+
∣
∣CF

C
(δ,δ)
∞ u′

(s) –CF
C

(δ,δ)
∞ v′

(s)
∣
∣)]ds

≤
[

η∗
(

 + γ + λ +


( – δ)

)

+ μ

(


( – γ ) +


( – β)

)]

[aα + bα]
∥
∥u′

 – v′

∥
∥

for all r ∈ I and u′
, v′

 ∈ H. Hence,

∥
∥Fu′

 – Fv′

∥
∥ ≤

[

η∗
(

 + γ + λ +


( – δ)

)

+ μ

(


( – γ ) +


( – β)

)]
∥
∥u′

 – v′

∥
∥

for all u′
, v′

 ∈ H. Consider the mappings j : [,∞) → [,∞) and α : H × H → [,∞)
defined by j(t, t, t, t, t) = �t and α(t, s) =  for all t, s ∈ H. We can check that j ∈ R
and F is a generalized α-contraction. From Theorem . we conclude that F possesses an
approximate fixed point, which is an approximate solution for problem (). �

Let c be a real number, and k, s, and q bounded functions on I = [, ] with M =
supp∈I |k(p)| < ∞, M = supp∈I |s(p)| < ∞, and M = supt∈I |q(p)| < ∞. We investigate the
infinite coefficient-symmetric CF fractional integro-differential problem

CF
C

(α,α)
(μ,∞)x(p) = λk(p)CF

C
(δ,δ)
∞ x(p) + ρs(p)CF

I
(θ ,θ )
∞ x(p)

+
∫ p


f
(
w, x(w), (ϕx)(w), q(w)CF

C
(γ ,γ )
(m,∞)x(w)

)
dw ()

with x() = c, where λ,ρ ≥  and α,γ , δ, θ ∈ (, ).

Theorem . Let ξ, ξ, ξ ≥ , and let f : [, ] ×R
 → R be a bounded integrable func-

tion satisfying |f (p, x, y, w) – f (p, x′
, y′

, w′
)| ≤ ξ|x – x′

| + ξ|y – y′
| + ξ|w – w′

| for all
p ∈ I and x, y, w, v, x′

, y′
, w′

 ∈R. If � = |–μ|[λ M
(–δ) +ρM +ξ +ξγ +ξ

M
(–γ )|–m| ] < ,

then problem () admits an approximate solution.
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Proof Let H be equipped with d(x, y) = ‖x – y‖, where ‖x‖ = supt∈I |x(t)|. Now, consider
the selfmap F : H → H defined by

(Fx)(p) = x() + ( – μ)aα

[

(λk(p)CF
C

(δ,δ)
∞ x(p) + ρs(p)CF

I
(θ ,θ )
∞ x(p)

+
∫ p


f
(
w, x(w), (ϕx)(w), q(w)CF

C
(γ ,γ )
(m,∞)x(w)

)
dw

]

+ bα( – μ)
∫ p



[

λk(w)CF
C

(δ,δ)
∞ x(w) + ρs(w)CF

I
(θ ,θ )
∞ x(w) dw

+
∫ w


f
(
r, x(r), (ϕx)(r), q(r)CF

C
(γ ,γ )
(m,∞)x(r)

)
dr

]

dw

for all p ∈ I and x, y ∈ H, where aα and bα are given in Lemma .. As a result, utilizing
Lemmas ., ., and ., we get

∣
∣
∣
∣

[

λk(p)CF
C

(δ,δ)
∞ x(p) + ρs(p)CF

I
(θ ,θ )
∞ x(p) +

∫ p


f
(
w, x(w), (ϕx)(w), q(w)CF

C
(γ ,γ )
(m,∞)x(w)

)
dw

]

–
[

λk(p)CF
C

(δ,δ)
∞ y(p) + ρs(w)CF

I
(θ ,θ )
∞ y(p)

+
∫ p


f
(
w, y(w), (ϕy)(w), q(w)CF

C
(γ ,γ )
(m,∞)y(w)

)
dw

]∣
∣
∣
∣

≤
[

λ
M

( – δ) + ρM

]

‖x – y‖ + ξ‖x – y‖ + ξγ‖x – y‖ + ξ
M

( – γ )| – m| ‖x – y‖

≤
[

λ
M

( – δ) + ρM + ξ + ξγ + ξ
M

( – γ )| – m|
]

‖x – y‖

for all p ∈ I and x, y ∈ H. As a result, we get

∣
∣(Fx)(p) – (Fx)(p)

∣
∣

≤ aα| – μ|
[

λ
M

( – δ) + ρM + ξ + ξγ + ξ
M

( – γ )| – m|
]

‖x – y‖

+ bα| – μ|
∫ p



[

λ
M

( – δ) + ρM + ξ + ξγ + ξ
M

( – γ )| – m|
]

‖x – y‖ds

≤ | – μ|
[

λ
M

( – δ) + ρM + ξ + ξγ + ξ
M

( – γ )| – m|
]

‖x – y‖

for all p ∈ I and x, y ∈ H. Now we consider the mappings j : [,∞) → [,∞) and α :
H ×H → [,∞) defined by α(t, s) =  and j(t, t, t, t, t) = �

 (t +t). We can check that
j ∈ R and F is a generalized α-contraction. With the help of Theorem ., we conclude
that F possesses an approximate fixed point, which represents an approximate solution
for the investigated problem (). �

The next step is to study two applications to describe the reported results.

Example  Let us define η ∈ L∞([, ]) and γ ,λ : [, ] × [, ] → [,∞) by η(p) = π

e(p+) ,
γ (p, s) = ep–s and λ(p, s) = ln(sin(πp–s)). Then, we have η∗ = π

e , γ ≤ e, and λ ≤ ln . Let us
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consider α = 
 , μ = 

 , β = 
 , γ = 

 , θ = 
 , and δ = 

 . Consider the problem

CF
C

( 
 , 

 )
∞ u′

(p) =



(CF

C
( 

 , 
 )

∞ u′
(p) +CF

C
( 

 , 
 )

∞ u′
(p)

)

+ e–π (t+)
[

p + u′
(p) +

∫ p


ep–su′

(s) ds

+
∫ p


ln

(
sin(πp–s))u′

(s) ds +CF
I

( 
 , 

 )
∞ u′

(p) +CF
C

( 
 , 

 )
∞ u′

(p)
]

()

with u′
() = . Considering f (p, x, y, w, u, u) = e–π (p+)(p+x+y+w+u +u), we note that

� = [η∗( + γ + λ + 
(–δ) ) + μ( 

(–γ )(–β) )] < / < . Now, by Theorem . problem
() admits an approximate solution.

Example  Consider the function λ : [, ]×[, ] → [,∞) by λ(p, s) = ep–s

e . Thus, λ ≤ e.
Let us consider μ = , m = 

 , α = 
 , δ = 

 , θ = 
 , γ = 

 , λ = 
 , ρ = 

 , ξ = 
 , ξ = 

 ,
and ξ = 

 . Let k(t) = –p
p+ , s(p) = sin p and q(p) = tan–(p). Then, M = supp∈[,] |k(p)| =

, M = supt∈[,] |s(p)| = , and M = supt∈[,] |q(p)| = π
 . As a next step, we consider the

problem

CF
C

( 
 , 

 )
(μ,∞)x(p) =




k(p)CF
C

( 
 , 

 )
∞ x(p) +




s(p)CF
I

( 
 , 

 )
∞ x(p)

+
∫ p



[



s +




x(s) +




∫ s



es–r

e
x(r) dr

+



tan–(s)CF

C
( 

 , 
 )

(m,∞)x(s)
]

ds ()

with x() = . Considering f (p, x, y, w) = 
 p + ξx + ξy + ξw for all p ∈ I and

x, y, w, v ∈R, we note that

� = | – μ|
[

λ
M

( – δ) + ρM + ξ + ξγ + ξ
M

( – γ )| – m|
]

< . < .

Now, by Theorem ., problem () admits an approximate solution.

4 Conclusion
Fractional derivatives with nonsingular kernels started to be utilized from both theoret-
ical and applied viewpoints. Particularly, the fractional Caputo-Fabrizio derivative was
applied to models possessing memory effect of exponential type. Therefore, new general-
izations of this operator should be investigated and applied to the dynamics of real-world
problems. In this manuscript, we suggested a new operator called the infinite coefficient-
symmetric CF fractional derivative. Besides, its properties were investigated, and two ex-
amples clearly show the advantages of the newly introduced concept.
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