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1 Introduction
The D micropolar fluid model was firstly formulated by Eringen [] and was used to de-
scribe the fluids consisting of randomly oriented particles suspended in a viscous medium.
According to [], the incompressible micropolar fluid motion can be expressed by the fol-
lowing system:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – (ν + νr)�u – νr∇ × ω + (u · ∇)u + ∇p = f ,

∇ · u = ,
∂ω
∂t – (ca + cd)�ω + νrω + (u · ∇)ω – (c + cd – ca)∇(∇ · ω) – νr∇ × u = f̃ ,

where u(x, t) = (u, u, u) represents the velocity, ω(x, t) = (ω,ω,ω) stands for the angu-
lar velocity field of rotation of particles, p is the pressure, f and f̃ represent the external
force and moment, respectively. The positive parameters ν , νr , c, ca, cd are the viscous
coefficients. In fact, ν is the usual Newtonian kinetic viscosity, and νr is the dynamics mi-
crorotation viscosity, and c, ca, cd denote the angular viscosity (see []). From [, ] we see
that these equations express the balance of momentum, mass, and moment of momentum,
accordingly. When microrotation effects are neglected (i.e., ω = ), the equations reduce
to the incompressible Navier-Stokes equations. Therefore, the equations of micropolar
fluid flows can be regarded as a generalization of the Navier-Stokes equations in the sense
that they take into account the microstructure of the fluid. For physical background, we
refer, for example, to [, ].

Due to their wide applications, the micropolar fluid flows have drawn much attention
from mathematicians and physicists and have been well studied. For the theories on the
existence and uniqueness of solutions of the micropolar fluid flows, we refer to [–].
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At the same time, the long-time behavior of solutions for the micropolar fluid flows has
been investigated from various aspects. Chen et al. proved the existence of H-compact
global attractors in a bounded domain [] and verified the existence of uniform attractors
in nonsmooth domains []. Lukaszewicz [] established the existence of H-pullback
attractor for nonautonomous micropolar fluid flows in a bounded domain. As for the long-
time behavior of solutions for the micropolar fluid flows on unbounded domains, Dong
and Chen [] discussed the existence and regularity of the global attractors. Later, they
[] obtained the L time decay rate for global solutions of the D micropolar equations via
the Fourier splitting method. Chen and Price [] obtained the L time decay rate for small
solutions of the D micropolar equations via Kato’s method. Zhao et al. [] showed the
existence of an H-uniform attractor and so on. For more theories about the micropolar
fluid flows, we refer to [–].

There are also some efforts focused on the D micropolar equations with partial dissipa-
tion. Dong and Zhang [] examined the microrotation viscosity, namely ca + cd = . The
global regularity problem for this partial dissipation case is not trivial due to the presence
of the term ∇ × ω in the velocity equation. Dong and Zhang overcame the difficulty by
making full use of the quantity ∇ × u – νr

ν+νr
ω, which obeys a transport-diffusion equation.

When the parameters ν =  and νr �= ca + cd , the global well-posedness of the micropolar
fluid equations were obtained in the framework of Besov spaces []. More recently, Dong
et al. [] studied the global regularity and large-time behavior of solutions to the D mi-
cropolar equations with only angular viscosity dissipation, in which they established the
well-posedness of the solutions by fully exploiting the structure of the system and con-
trolling the vorticity via the evolution equation of a combined quantity of the vorticity
and the microrotation angular velocity; they also obtained suitable decay rates of the so-
lution by combining diagonalization process with uniformly bounded estimates for the
first derivatives of the solutions.

In this paper, we consider the special situation where the velocity component in the x-
direction is zero and the axes of rotation of particles are parallel to the x-axis, that is,
u = (u, u, ),ω = (, ,ω), f = (f, f, ), and f̃ = (, , f̃). Let � ⊂ R

 be a bounded open
domain with smooth boundary ∂� such that the following Poincaré inequality holds:

There exists λ >  such that λ‖ϕ‖
L(�) ≤ ‖∇ϕ‖

L(�), ∀ϕ ∈ H
(�). (.)

Then, we discuss the following D non-autonomous incompressible micropolar fluid
flows with infinite delays in �:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t – (ν + νr)�u – νr∇ × ω + (u · ∇)u + ∇p

= f (t, x) + g(t, ut), t > τ , x ∈ �,
∂ω
∂t – α�ω + νrω – νr∇ × u + (u · ∇)ω

= f̃ (t, x) + g̃(t,ωt), t > τ , x ∈ �,

∇ · u = , in (τ , +∞) × �,

u = , ω = , on (τ , +∞) × ∂�,

(u(τ + s, x),ω(τ + s, x)) = φ(s, x), s ∈ (–∞, ], τ ∈ R, x ∈ �,

(.)

where x = (x, x) ∈ � and α = ca + cd . The vector functions g = (g, g, ) and g̃ = (, , g̃)
are additional external forces containing some hereditary characteristics ut and ωt , which
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are defined on (–∞, ] as follows:

ut = ut(·) := u(t + ·), ωt = ωt(·) := ω(t + ·), t ≥ τ . (.)

In addition, φ(s, x) = (uτ ,ωτ ) = (u(τ + s, x),ω(τ + s, x)) is the initial datum in the interval of
delay time (–∞, ], and

∇ × u :=
∂u

∂x
–

∂u

∂x
and ∇ × ω :=

(
∂ω

∂x
, –

∂ω

∂x

)

.

In the real world, delay terms appear naturally, for instance, as effects in wind tunnel
experiments. Also, the delay situations may occur when we want to control the system
via applying a force that considers not only the present state but also the history state
of the system. However, so far, to our knowledge, there is no references discussing the
micropolar fluid flows with delay in addition to [], where the author established the
global well-posedness and pullback attractors for a D impressible micropolar flows with
infinite delays.

The main purpose of this work is to establish the H-boundedness of the pullback at-
tractor Â = {A(t) | t ∈ R} obtained in []. Before stating the main results of this paper,
we give some assumptions:

(A) (I) A mapping G : [τ , T] × Cγ (Ĥ) �→ (L(�)) satisfies:
(i) For any ξ ∈ Cγ (Ĥ), the mapping [τ , T] 
 t �→ G(t, ξ ) ∈ (L(�)) is

measurable;
(ii) G(·, ) = (, , );

(iii) There exists a constant LG >  such that, for any t ∈ [τ , T] and
ξ ,η ∈ Cγ (Ĥ),

∥
∥G(t, ξ ) – G(t,η)

∥
∥ ≤ LG‖ξ – η‖γ .

(II) F(t, x) ∈ L
loc(R; Ĥ), LG < δλ < γ , and

∫ t

τ

e(δλ–LG)(r–τ )∥∥F(r)
∥
∥ dr < +∞, ∀τ ∈R, t ≥ τ .

(A) (I) dG
dt := (G(t, ξ ))′ : [τ , T] × Cγ (Ĥ) �→ (L(�)) satisfies:

(i) For any ξ (t), ξ ′(t) ∈ Cγ (Ĥ), the mapping t �→ (G(t, ξ ))′ is measurable;
(ii) (G(·, ))′ = (, , );

(iii) There exists a constant L̃G >  such that, for any t ∈ [τ , T],
ξ ′(t),η′(t) ∈ Cγ (Ĥ),

∥
∥
(
G(t, ξ )

)′ –
(
G(t,η)

)′∥∥ ≤ L̃G
∥
∥ξ ′ – η′∥∥

γ
.

(II) F(t, x) ∈ W ,
loc (R; Ĥ), L̃G < δλ < γ , and

∫ t

τ

e(δλ–L̃G)(r–τ )∥∥F ′(r)
∥
∥ dr < +∞, ∀τ ∈R, t ≥ τ .
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Under the above assumptions, we have

Theorem . Assume that (A) and (A) hold.
() For any bounded set B ⊂ Cγ (Ĥ) and any τ ∈R, ε > , t ≥ τ + ε, the set

⋃
s∈[τ+ε,t] U(s, τ )B is bounded in D(A) = V̂ ∩ (H(�)).

() LetÂ = {A(t) | t ∈R} be the pullback attractor of system (.). Then, for any
T, T ∈ R with T < T, the set

⋃
t∈[T,T] A(t) is bounded in D(A) = V̂ ∩ (H(�)).

We remark that García-Luengo et al. [] proved the existence of the pullback attractor
and investigated its tempered behavior for Navier-Stokes equations in bounded domains.
Further, they discussed the H-boundedness of the pullback attractors of the Navier-
Stokes equations in []. Recently, Zhao and Sun [] established the existence of pullback
attractors for D nonautonomous micropolar fluid flows with infinite delays. Motivated
by [] and following its main idea, we generalize their results to the micropolar fluid
flows with infinite delays. Compared with the Navier-Stokes equations (ω = ,νr = ), the
micropolar fluid flow consists of the angular velocity field ω, which leads to a different
nonlinear term B(u, w) and an additional term N(u) in the abstract equation. In addition,
the time-delay term considered in this work also increases the difficulty. Therefore, we
have to obtain more delicate estimates and analysis for the solutions.

The paper is organized as follows. In Section , we make some preliminaries. That is, we
introduce some notations and recall some known results. In Section , we concentrate on
showing the H-boundedness of the pullback attractor Â. To this end, we first make some
estimates for the Galerkin approximation solutions by mainly using the energy method.
Then, we obtain a general result about V̂ ∩ (H(�))-boundedness of invariant sets for the
associate evolution process. Further, we have the boundedness of the pullback attractor in
V̂ ∩ (H(�)).

2 Preliminaries
In this section, we make some necessary preliminaries by introducing some notation and
key operators. Then, we rewrite equations (.) in an abstract form. Finally, we recall some
known results.

We denote by Lp(�) and W m,p(�) the usual Lebesgue and Sobolev spaces (see [])
endowed with norms ‖ · ‖p and ‖ · ‖m,p, respectively:

‖ϕ‖p :=
(∫

�

|ϕ|p dx
)/p

and ‖ϕ‖m,p :=
( ∑

|β|≤m

∫

�

∣
∣Dβϕ

∣
∣p dx

)/p

.

In particular, we denote Hm(�) := W m,(�) and by H
(�) the closure of C∞

 (�) with re-
spect to the H(�) norm.

V :=
{
ϕ ∈ C∞

 (�) × C∞
 (�) | ϕ = (ϕ,ϕ),∇ · ϕ = 

}
,

H := closure of V in L(�) × L(�) with norm ‖ · ‖H and dual spaceH∗,

V := closure of V in H(�) × H(�) with norm ‖ · ‖V and dual space V ∗,

Ĥ := H × L(�) with norm ‖ · ‖Ĥ and dual space Ĥ∗,

V̂ := V × H
(�) with norm ‖ · ‖V̂ and dual space V̂ ∗,



Zhou et al. Boundary Value Problems  (2017) 2017:133 Page 5 of 16

where ‖ · ‖H , ‖ · ‖V , ‖ · ‖Ĥ , and ‖ · ‖V̂ are defined by

∥
∥(u, v)

∥
∥

H :=
(‖u‖

 + ‖v‖

)/,

∥
∥(u, v)

∥
∥

V :=
(‖u‖

H + ‖v‖
H

)/,
∥
∥(u, v, w)

∥
∥

Ĥ :=
(∥
∥(u, v)

∥
∥

H + ‖w‖

)/,

∥
∥(u, v, w)

∥
∥

V̂ :=
(∥
∥(u, v)

∥
∥

V + ‖w‖
H

)/;

(·, ·) is the inner product in L(�), H , or Ĥ , and 〈·, ·〉 is the dual pairing between V and V ∗

or between V̂ and V̂ ∗. Throughout this article, we simplify the notations ‖ · ‖, ‖ · ‖H , and
‖ · ‖Ĥ by the same notation ‖ · ‖ if there is no confusion. Furthermore, we denote

Cγ (Ĥ) :=
{
ϕ ∈ C

(
(–∞, ]; Ĥ

) | ∃ lim
s→–∞ eγ sϕ(s) ∈ Ĥ

}
with some suitable γ > ,

which is a Banach space with the norm

‖ϕ‖γ := sup
s∈(–∞,]

eγ s∥∥ϕ(s)
∥
∥;

Lp(I; X) := space of strongly measurable functions on the closed interval I

with values in a Banach space X, endowed with norm

‖ϕ‖Lp(I;X) :=
(∫

I
‖ϕ‖p

X dt
)/p

for  ≤ p < ∞,

C(I; X) := space of continuous functions on the interval I with values

in the Banach space X, endowed with the usual norm,

L
loc(I; Ĥ) := space of locally integrable functions from the interval I to Ĥ ,

distM(X, Y ) is the Hausdorff semidistance between X ⊆ M and Y ⊆ M defined by

distM(X, Y ) = sup
x∈X

inf
y∈Y

distM(x, y).

Now, we introduce three operators:

〈Aw,ϕ〉 := (ν + νr)(∇u,∇�) + α(∇ω,∇ψ), ∀w = (u,ω) ∈ V̂ ,∀ϕ = (� ,ψ) ∈ V̂ ,
〈
B(u, w),ϕ

〉
:=

(
(u · ∇)w,ϕ

)
, ∀u ∈ V , w ∈ V̂ ,∀ϕ ∈ V̂ ,

N(w) := (–νr∇ × ω, –νr∇ × u + νrω), ∀w = (u,ω) ∈ V̂ .

There are some useful estimations for the operators A, B(·, ·), and N(·) established in [,
, ].

Lemma .
() The operator A is linear continuous both from V̂ to V̂ ∗ and from

D(A) = V̂ ∩ (H(�)) to Ĥ . Moreover, there are two positive constants c and c such
that

c〈Aw, w〉 ≤ ‖w‖
V̂ ≤ c〈Aw, w〉, ∀w ∈ V̂ . (.)
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In addition, for any w ∈ D(A), we have

δ‖∇w‖ ≤ 〈Aw, w〉 ≤ ‖w‖‖Aw‖ ≤ λ
– 


 ‖∇w‖‖Aw‖, (.)

where δ = min{ν + νr ,α}, and λ is the constant from (.).
() The operator B(·, ·) is continuous from V × V̂ to V̂ ∗ and satisfies the following

properties:
(i) For any u ∈ V and w ∈ V̂ , we have

〈
B(u, w),ϕ

〉
= –

〈
B(u,ϕ), w

〉
, ∀ϕ ∈ V̂ . (.)

In particular,

〈
B(u, w), w

〉
= , ∀u ∈ V , w ∈ V̂ . (.)

(ii) There exists a positive constant λ, which depends only on �, such that for any
(u,ψ ,ϕ) ∈ V × V̂ × V̂ , we have

∣
∣
〈
B(u,ψ),ϕ

〉∣
∣ ≤

⎧
⎨

⎩

λ‖u‖ 
 ‖∇u‖ 

 ‖ϕ‖ 
 ‖∇ϕ‖ 

 ‖∇ψ‖,

λ‖u‖ 
 ‖∇u‖ 

 ‖ψ‖ 
 ‖∇ψ‖ 

 ‖∇ϕ‖.
(.)

Moreover, if (u,ψ ,ϕ) ∈ V × D(A) × D(A), then

∣
∣
〈
B(u,ψ), Aϕ

〉∣
∣ ≤ λ‖u‖ 

 ‖∇u‖ 
 ‖∇ψ‖ 

 ‖Aψ‖ 
 ‖Aϕ‖. (.)

() The operator N(·) is continuous from V̂ to Ĥ . Moreover, there exists a positive
constant c(νr) such that

∥
∥N(ψ)

∥
∥ ≤ c(νr)‖ψ‖V̂ , ∀ψ ∈ V̂ . (.)

In addition,

–
〈
N(ψ), Aψ

〉 ≤ 


‖Aψ‖ + c(νr)‖ψ‖
V̂ , ∀ψ ∈ D(A), (.)

δ‖ψ‖
V̂ ≤ 〈Aψ ,ψ〉 +

〈
N(ψ),ψ

〉
, ∀ψ ∈ V̂ ; (.)

hereinafter δ := min{ν,α}.

According to the previous notation, we can formulate a weak version of system (.) as
follows:

⎧
⎨

⎩

∂w
∂t + Aw + B(u, w) + N(w) = F(t, x) + G(t, wt), t > τ ,

w|t=τ = wτ = (uτ , wτ ) = (u(τ + s),ω(τ + s)) := φ(s), s ∈ (–∞, ],
(.)

where w = (u,ω), F(t) = F(t, x) := (f (t, x), f̃ (t, x)), and G(t, wt) := (g(t, ut), g̃(t,ωt)).
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We say that a function w ∈ C((–∞, T]; Ĥ) ∩ L(τ , T ; V̂ ) with wτ = φ(s) ∈ Cγ (Ĥ) is a weak
solution of system (.) in the interval (–∞, T] if, for all T > τ and ϕ ∈ V̂ , the following
equation holds in the distribution sense of D′(τ , T):

d
dt

(w,ϕ) + 〈Aw,ϕ〉 +
〈
B(u, w),ϕ

〉
+

〈
N(w),ϕ

〉
=

〈
F(t),ϕ

〉
+

(
G(t, wt),ϕ

)
.

Lemma . (see []) Assume that (A) holds. Then for any given initial datum wτ :=
φ(s) ∈ Cγ (Ĥ) and any T > τ , there exists a unique stable weak solution

w ∈ C
(
(–∞, T); Ĥ

) ∩ L(τ , T ; V̂ ), w′ ∈ L(τ , T ; V̂ ∗).

Moreover, for any t ∈ [τ , T],

‖wt‖
γ ≤ e(–δλ+LG)(t–τ )∥∥φ(s)

∥
∥

γ
+


δ

∫ t

τ

e(–δλ+LG)(t–θ )∥∥F(θ )
∥
∥ dθ , (.)

δ

∫ t

τ

∥
∥w(θ )

∥
∥

V̂ dθ ≤ eδλ(t–τ )∥∥w(τ )
∥
∥ +


δ

eLGt–δλτ
∫ t

τ

e(δλ–LG)θ∥∥F(θ )
∥
∥ dθ

+

δ

e–δλτ
∫ t

τ

eδλθ
∥
∥F(θ )

∥
∥ dθ + eLG(t–τ )∥∥φ(s)

∥
∥

γ
. (.)

In addition, if wτ ∈ V̂ , then the weak solution w ∈ C((–∞, T); V̂ ) ∩ L(τ , T ; D(A)).

Based on Lemma ., we can define the map

U(t, τ ) : wτ (·) := φ(s) �→ U(t, τ ; wτ ) = U(t, τ )φ(s) = wt(·), t ≥ τ , s ∈ (–∞, ], (.)

which generates a continuous process in Cγ (Ĥ) satisfying:
• U(s, s) = identity,
• U(t, r)U(r, s) = U(t, s) for any s ≤ r ≤ t,

where w is the solution of system (.) corresponding to the initial datum φ(s) ∈ Cγ (Ĥ),
and wt(s) is defined as in (.).

Lemma . Under assumption (A), there exists a pullback attractor Â = {A(t) | t ∈ R}
for the process {U(t, τ )}t≥τ that satisfies the following properties:

• Compactness: for any t ∈R, A(t) is a nonempty compact subset of Cγ (Ĥ);
• Invariance: U(t, τ )A(τ ) = A(t), ∀t ≥ τ ;
• Pullback attracting: for any bounded set B of Cγ (Ĥ), we have

lim
τ→–∞ distCγ (Ĥ)

(
U(t, τ )B,A(t)

)
= , ∀t ∈R.

Now, we end this section with the following lemma, which plays an important role in the
proof of higher regularity of the pullback attractors.

Lemma . (see [, ]) Let X, Y be Banach spaces such that X is reflexive and the inclu-
sion X ⊂ Y is continuous. Assume that {wn}n≥ is a bounded sequence in L∞(τ , t; X) such
that wn ⇀ w weakly in Lq(τ , t; X) for some q ∈ [, +∞) and w ∈ C([τ , t]; Y ). Then w(t) ∈ X,
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and

∥
∥w(s)

∥
∥

X ≤ lim inf
n→+∞

∥
∥wn(s)

∥
∥

L∞(τ ,t;X), ∀s ∈ [τ , t].

3 H2-boundedness of the pullback attractor
In this section, we concentrate on proving the H-boundedness of the pullback attrac-
tor Â.

To begin with, let us recall some properties of the operator A. According to the classical
spectral theory of elliptic operators (see []), there exists a sequence {λn}∞n= satisfying

 < λ ≤ λ ≤ · · · ≤ λn ≤ · · · , λn → +∞ as n → ∞,

and a sequence of elements {vn}∞n= ⊆ D(A) forming a Hilbert basis of Ĥ and such that the
span of {v, v, . . . , vn, . . .} is dense in V̂ and

Avn = λnvn, ∀n ∈ N. (.)

For each T > τ , denote by w(m)(t) = w(m)(t; τ , wτ ) :=
∑m

j= βm,j(t)vj the Galerkin approxima-
tion solutions of the solution w(t) of system (.), which is the solution of the following
ordinary differential equations:

d
dt

(
w(m)(t), vj

)
+

〈
Aw(m)(t), vj

〉
+

〈
B
(
u(m)(t), w(m)(t)

)
, vj

〉
+

〈
N

(
w(m)(t)

)
, vj

〉

=
〈
F(t), vj

〉
+

(
G

(
t, w(m)

t
)
, vj

)
,  ≤ j ≤ m, t ∈ (τ , T), (.)

w(m)
τ (s) = w(m)(τ + s) = Pmφ(s), s ∈ (–∞, ]. (.)

Now, we verify the following results about the Galerkin approximation solutions.

Lemma . Assume that (A) holds. Then, for any bounded subset B of Cγ (Ĥ) and any
ε > , τ ∈ R, t > τ + ε, we have that

(i) the set {w(m)(θ ; τ , wτ ) | θ ∈ [τ + ε, t], wτ := φ(s) ∈ B} is bounded in V̂ ,
(ii) the set {w(m)(·; τ , wτ ) | wτ ∈ B} is bounded in L(τ + ε, t; D(A)), and

(iii) the set {w(m)′ (·; τ , wτ ) | wτ ∈ B} is bounded in L(τ + ε, t; Ĥ), where w(m)′ (θ ) = dwm(θ )
dθ

.

Proof For any fixed bounded set B ⊂ Cγ (Ĥ), τ ∈ R, ε > , t > τ + ε, and wτ = φ(s) ∈ Cγ (Ĥ)
multiplying (.) by βm,j(t), summing up for j from  to m, and then using (.) and (.),
we obtain




d
dθ

∥
∥w(m)(θ )

∥
∥ + δ

∥
∥w(m)(θ )

∥
∥

V̂

≤ 


d
dθ

∥
∥w(m)(θ )

∥
∥ +

〈
Aw(m)(θ ), w(m)(θ )

〉
+

〈
N

(
w(m)), w(m)(θ )

〉

=
(
F(θ ), w(m)(θ )

)
+

(
G

(
t, w(m)

θ

)
, w(m))

≤ ∥
∥F(θ )

∥
∥
∥
∥w(m)(θ )

∥
∥ + LG

∥
∥w(m)

θ

∥
∥

γ

∥
∥w(m)(θ )

∥
∥

≤ δ


∥
∥w(m)(θ )

∥
∥

V̂ +


δ

∥
∥F(θ )

∥
∥ + LG

∥
∥w(m)

θ

∥
∥

γ
,
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where we also used assumption (A), the Cauchy-Schwarz inequality, the Young inequal-
ity, and the facts

∥
∥w(m)(θ )

∥
∥ ≤ ∥

∥w(m)(θ )
∥
∥

V̂ and
∥
∥w(m)(θ )

∥
∥ ≤ sup

s≤
eγ s∥∥w(m)(θ + s)

∥
∥ =

∥
∥w(m)

θ

∥
∥

γ
. (.)

Consequently,

d
dθ

∥
∥w(m)(θ )

∥
∥ + δ

∥
∥w(m)(θ )

∥
∥

V̂ ≤ 
δ

∥
∥F(θ )

∥
∥ + LG

∥
∥w(m)

θ

∥
∥

γ
. (.)

Integrating this inequality from τ to t, for any t ≥ τ , we have

∥
∥w(m)(t)

∥
∥ + δ

∫ t

τ

∥
∥w(m)(θ )

∥
∥

V̂ dθ

≤ ∥
∥w(m)(τ )

∥
∥ +


δ

∫ t

τ

∥
∥F(θ )

∥
∥ dθ + LG

∫ t

τ

∥
∥w(m)

θ

∥
∥

γ
dθ . (.)

Multiplying (.) by λjvj, where λj is the eigenvalue associated with the eigenvector vj, and
summing from j =  to m, we have

d
dθ

〈
Aw(m)(θ ), w(m)(θ )

〉
+

∥
∥Aw(m)(θ )

∥
∥ +

〈
B
(
u(m), w(m)), Aw(m)(θ )

〉

+
〈
N

(
w(m)(θ )

)
, Aw(m)(θ )

〉

=
(
F(θ ), Aw(m)(θ )

)
+

(
G

(
θ , w(m)

θ

)
, Aw(m)(θ )

)
, θ ∈ (τ , t]. (.)

On one hand, from (.), (.), Young’s inequality, and the facts ‖∇u(m)‖ ≤ ‖∇w(m)‖ and
‖u(m)‖ ≤ ‖w(m)‖ it follows that

∣
∣
〈
B
(
u(m)(θ ), w(m)(θ )

)
, Aw(m)(θ )

〉∣
∣

≤ λ
∥
∥u(m)∥∥



∥
∥∇u(m)∥∥



∥
∥∇w(m)∥∥



∥
∥Aw(m)∥∥



∥
∥Aw(m)∥∥

≤ λ
∥
∥w(m)∥∥



∥
∥w(m)∥∥

V̂

∥
∥Aw(m)∥∥




≤ 


∥
∥Aw(m)(θ )

∥
∥ +

λ


∥
∥w(m)(θ )

∥
∥∥∥w(m)(θ )

∥
∥

V̂ (.)

and

∣
∣
〈
N

(
w(m)(θ )

)
, Aw(m)(θ )

〉∣
∣ ≤ 


∥
∥Aw(m)(θ )

∥
∥ + c(νr)

∥
∥w(m)(θ )

∥
∥

V̂ . (.)

On the other hand,

(
F(θ ), Aw(m)(θ )

) ≤ ∥
∥F(θ )

∥
∥
∥
∥Aw(m)(θ )

∥
∥ ≤ 

∥
∥F(θ )

∥
∥ +



∥
∥Aw(m)(θ )

∥
∥ (.)

and

(
G

(
θ , w(m)

θ

)
, Aw(m)(θ )

) ≤ ∥
∥G

(
θ , w(m)

θ

)∥
∥
∥
∥Aw(m)(θ )

∥
∥ ≤ LG

∥
∥w(m)

θ

∥
∥

γ

∥
∥Aw(m)(θ )

∥
∥

≤ L
G
∥
∥w(m)

θ

∥
∥

γ
+



∥
∥Aw(m)(θ )

∥
∥. (.)
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Substituting (.)-(.) into (.) and using (.), we get


d

dθ

〈
Aw(m)(θ ), w(m)(θ )

〉
+



∥
∥Aw(m)(θ )

∥
∥

≤ λ


∥
∥w(m)(θ )

∥
∥∥∥w(m)(θ )

∥
∥

V̂

+ c(νr)
∥
∥w(m)(θ )

∥
∥

V̂ + 
∥
∥F(θ )

∥
∥ + L

G
∥
∥w(m)

θ

∥
∥

γ

≤
(

cλ



∥
∥w(m)(θ )

∥
∥∥∥w(m)(θ )

∥
∥

V̂ + cc(νr)
)

〈
Aw(m)(θ ), w(m)(θ )

〉

+ 
∥
∥F(θ )

∥
∥ + L

G
∥
∥w(m)

θ

∥
∥

γ
. (.)

Set

Hm(θ ) := 
〈
Aw(m)(θ ), w(m)(θ )

〉
,

I(θ ) := 
∥
∥F(θ )

∥
∥ + L

G
∥
∥w(m)

θ

∥
∥

γ
,

Km(θ ) :=
cλ




∥
∥w(m)(θ )

∥
∥∥∥w(m)(θ )

∥
∥

V̂ + cc(νr).

Then, (.) yields that

d
dθ

Hm(θ ) ≤ Km(θ )Hm(θ ) + I(θ ). (.)

Applying the Gronwall inequality to (.), for τ ≤ r̃ ≤ s ≤ t, we have

Hm(s) ≤
(

Hm(r̃) +
∫ t

τ

I(θ ) dθ

)

exp

{∫ t

τ

Km(θ ) dθ

}

. (.)

Integrating this inequality for r̃ from τ to s, we obtain

(s – τ )Hm(s) ≤
(∫ s

τ

Hm(r̃) dr + (s – τ )
∫ t

τ

I(θ ) dθ

)

exp

{∫ t

τ

Km(θ ) dθ

}

.

In particular, for any τ + ε ≤ s ≤ t, n ≥ , we have

Hm(s) ≤
(


ε

∫ t

τ

Hm(r̃) dr +
∫ t

τ

I(θ ) dθ

)

exp

{∫ t

τ

Km(θ ) dθ

}

. (.)

By (.) we have

∫ t

τ

Km(θ ) dθ =
∫ t

τ

(
cλ




∥
∥w(m)(θ )

∥
∥∥∥w(m)(θ )

∥
∥

V̂ + cc(νr)
)

dθ

≤ cλ



sup

θ∈[τ ,t]

∥
∥w(m)(θ )

∥
∥

∫ t

τ

∥
∥w(m)(θ )

∥
∥

V̂ dθ + cc(νr)(t – τ )

≤ cλ


δ

(
∥
∥w(m)(τ )

∥
∥ +


δ

∫ t

τ

∥
∥F(θ )

∥
∥ dθ + LG

∫ t

τ

∥
∥w(m)

θ

∥
∥

γ
dθ

)

+ cc(νr)(t – τ ). (.)
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From (.) and (.) it follows that

∫ t

τ

Hm(r̃) dr̃ = 
∫ t

τ

〈
Aw(m)(r̃), w(m)(r̃)

〉
dr̃ ≤ c–



∫ t

τ

∥
∥w(m)(r̃)

∥
∥

V̂ dr̃

≤ c–
 δ–


∥
∥w(m)(τ )

∥
∥ + c–

 δ–


∫ t

τ

∥
∥F(θ )

∥
∥ dθ

+ c–
 δ–

 LG

∫ t

τ

∥
∥w(m)

θ

∥
∥

γ
dθ . (.)

In addition,

(t – τ )
∫ t

τ

I(θ ) dθ = (t – τ )
∫ t

τ

∥
∥F(θ )

∥
∥ dθ + L

G(t – τ )
∫ t

τ

∥
∥w(m)

θ

∥
∥

γ
dθ . (.)

Similarly to (.), we have

∥
∥w(m)

θ

∥
∥

γ
≤ e–(δλ–LG)(θ–τ )∥∥φ(s)

∥
∥

γ
+


δ

∫ θ

τ

e–(δλ–LG)(θ–r)∥∥F(r)
∥
∥ dr. (.)

Thus,

∫ t

τ

∥
∥w(m)

θ

∥
∥

γ
dθ ≤ 

δ(δλ – LG)

∫ t

τ

[
e(δλ–LG)(r–τ ) – e(δλ–LG)(r–t)]∥∥F(r)

∥
∥ dr

+
 – e–(δλ–LG)(t–τ )

δλ – LG

∥
∥φ(s)

∥
∥

γ
. (.)

Taking (.), (.)-(.), and (.) into account, we complete the proof of assertion (i).
Now integrating (.) for θ between τ + ε and t, we get

∫ t

τ+ε

∥
∥Aw(m)(θ )

∥
∥ dθ

≤ c–


∥
∥w(m)(τ + ε)

∥
∥

V̂ + λ
∫ t

τ+ε

∥
∥w(m)(θ )

∥
∥∥∥w(m)(θ )

∥
∥

V̂ dθ

+ c(νr)
∫ t

τ+ε

∥
∥w(m)(θ )

∥
∥

V̂ dθ + 
∫ t

τ+ε

∥
∥F(θ )

∥
∥ dθ + L

G

∫ t

τ+ε

∥
∥w(m)

θ

∥
∥

γ
dθ ,

which, together with assertion (i), (.), and (.), implies assertion (ii).
Finally, multiplying (.) by β ′

m,j(t), summing them from j =  to n, and replacing the
variable t with θ , we obtain

∥
∥w(m)′ (θ )

∥
∥ +




d
dθ

〈
Aw(m)(θ ), w(m)(θ )

〉
+

〈
B
(
u(m)(θ ), w(m)(θ )

)
, w(m)′ (θ )

〉

+
〈
N

(
w(m)(θ )

)
, w(m)′ (θ )

〉

=
(
F(θ , x), w(m)′ (θ )

)
+

(
G

(
θ , w(m)

θ

)
, w(m)′ (θ )

)
. (.)
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Observe that
(
F(θ , x), w(m)′ (θ )

)
+

(
G

(
θ , w(m)

θ

)
, w(m)′ (θ )

)

≤ (∥
∥F(θ )

∥
∥ +

∥
∥G

(
θ , w(m)

θ

)∥
∥
)∥
∥w(m)′ (θ )

∥
∥

≤ 
∥
∥F(θ )

∥
∥ + L

G
∥
∥w(m)

θ

∥
∥

γ
+




∥
∥w(m)′ (θ )

∥
∥. (.)

By Lemma . we deduce that

∣
∣
〈
B
(
u(m)(θ ), w(m)(θ )

)
, w(m)′ (θ )

〉∣
∣

≤ λ
∥
∥u(m)(θ )

∥
∥



∥
∥∇u(m)(θ )

∥
∥



∥
∥∇w(m)(θ )

∥
∥



∥
∥Aw(m)(θ )

∥
∥



∥
∥w(m)′ (θ )

∥
∥

≤ λ
∥
∥w(m)(θ )

∥
∥



∥
∥w(m)(θ )

∥
∥

V̂

∥
∥Aw(m)(θ )

∥
∥



∥
∥w(m)′ (θ )

∥
∥

≤ λ∥∥w(m)(θ )
∥
∥
∥
∥w(m)(θ )

∥
∥

V̂

∥
∥Aw(m)(θ )

∥
∥ +




∥
∥w(m)′ (θ )

∥
∥ (.)

and

∣
∣
〈
N

(
w(m)(θ )

)
, w(m)′ (θ )

〉∣
∣ ≤ c(νr)

∥
∥w(m)(θ )

∥
∥

V̂ +



∥
∥w(m)′ (θ )

∥
∥. (.)

It follows from (.)-(.) that

∥
∥w(m)′ (θ )

∥
∥ +




d
dθ

〈
Aw(m)(θ ), w(m)(θ )

〉

= –
〈
B
(
u(m)(θ ), w(m)(θ )

)
, w(m)′ (θ )

〉
–

〈
N

(
w(m)(θ )

)
, w(m)′ (θ )

〉

+
(
F(θ , x), w(m)′ (θ )

)
+

(
G

(
θ , w(m)

θ

)
, w(m)′ (θ )

)

≤ 


∥
∥w(m)′ (θ )

∥
∥ + 

∥
∥F(θ )

∥
∥ + L

G
∥
∥w(m)

θ

∥
∥

γ
+ λ∥∥w(m)(θ )

∥
∥
∥
∥w(m)(θ )

∥
∥

V̂

∥
∥Aw(m)(θ )

∥
∥

+ c(νr)
∥
∥w(m)(θ )

∥
∥

V̂ .

Thus,

∥
∥w(m)′ (θ )

∥
∥ + 

d
dθ

〈
Aw(m)(θ ), w(m)(θ )

〉

≤ 
∥
∥F(θ )

∥
∥ + L

G
∥
∥w(m)

θ

∥
∥

γ
+ λ∥∥w(m)(θ )

∥
∥

V̂

∥
∥Aw(m)(θ )

∥
∥ + c(νr)

∥
∥w(m)(θ )

∥
∥

V̂ .

Integrating this inequality and using (.), we get that

∫ t

τ+ε

∥
∥w(m)′ (θ )

∥
∥ dθ ≤ c–


∥
∥w(m)(τ + ε)

∥
∥ + 

∫ t

τ+ε

∥
∥F(θ )

∥
∥ dθ + L

G

∫ t

τ+ε

∥
∥w(m)

θ

∥
∥

γ
dθ

+ λ sup
θ∈[τ+ε,t]

∥
∥w(m)(θ )

∥
∥

V̂

∫ t

τ+ε

(∥
∥w(m)(θ )

∥
∥

V̂ +
∥
∥Aw(m)(θ )

∥
∥)dθ

+ c(νr)
∫ t

τ+ε

∥
∥w(m)(θ )

∥
∥

V̂ dθ ,

which, together with (.), (.), and assertions (i)-(ii), gives assertion (iii). The proof is
complete. �
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Corollary . Under the conditions of Lemma ., for any bounded set B ⊂ Cγ (Ĥ) and any
τ ∈R, ε > , t ≥ τ + ε, the set

⋃
s∈[τ+ε,t] U(s, τ )B is bounded in V̂ .

Proof In [], the authors proved that, for any wτ = φ(s) ∈ Cγ (Ĥ), the Galerkin ap-
proximation solutions {w(m)(·; τ , wτ )}m≥ converge weakly to w(·; τ , wτ ) in L(τ , t; V̂ ) and
w(·; τ , wτ ) ∈ C([τ , t]; Ĥ). So Corollary . is a straightforward consequence of Lemma .
and Lemma .(i). �

By increasing the regularity of F(t, x) and G(t, wt) properly we can improve the results
of Lemma ..

Lemma . Assume that (A) and (A) hold. Then, for any bounded set B ⊂ Cγ (Ĥ) and
any τ ∈R, ε > , t ≥ τ + ε, the following properties are fulfilled:

(iv) the set {w(m)′ (s; τ , wτ ) | s ∈ [τ + ε, t], wτ = φ(s) ∈ B} is bounded in Ĥ ;
(v) the set {w(m)(s; τ , wτ ) | s ∈ [τ + ε, t], wτ = φ(s) ∈ B} is bounded in D(A) = V̂ ∩ (H).

Proof Without loss of generality, we consider a fixed bounded set B ⊂ Cγ (Ĥ). Differenti-
ating equation (.) with respect to time and multiplying the resulting equation by β ′

m,j(t)
and summing them from j =  to m, we have




d
dt

∥
∥w(m)′ (t)

∥
∥ +

〈
Aw(m)′ (t), w(m)′ (t)

〉
+

〈(
B
(
u(m)(t), w(m)(t)

))′, w(m)′ (t)
〉

+
(
N

(
w(m)′ (t)

)
, w(m)′ (t)

)

=
(
F ′(t), w(m)′ (t)

)
+

((
G(t, wt)

)′, w(m)′ (t)
)
. (.)

In the following, we make a more detailed estimate for each term in (.). First, from
Lemma . and the Cauchy-Schwarz inequality it is easy to see that

δ
∥
∥w(m)′ (t)

∥
∥

V̂ ≤ 〈
Aw(m)′ (t), w(m)′ (t)

〉
+

〈
N

(
w(m)′ (t)

)
, w(m)′ (t)

〉
(.)

and

∣
∣
〈(

B
(
u(m)(t), w(m)(t)

))′, w(m)′ (t)
〉∣
∣

=
∣
∣
〈
B
(
u(m)′ (t), w(m)(t)

)
, w(m)′ (t)

〉∣
∣

≤ λ
∥
∥u(m)′ (t)

∥
∥



∥
∥∇u(m)′ (t)

∥
∥



∥
∥w(m)′ (t)

∥
∥



∥
∥∇w(m)′ (t)

∥
∥



∥
∥∇w(m)(t)

∥
∥

≤ λ
∥
∥w(m)′ (t)

∥
∥
∥
∥w(m)(t)

∥
∥

V̂

∥
∥w(m)′ (t)

∥
∥

V̂

≤ δ–
 λ∥∥w(m)′ (t)

∥
∥∥∥w(m)(t)

∥
∥

V̂ +
δ


∥
∥w(m)′ (t)

∥
∥

V̂ . (.)

Then, under assumption (A)(I) and (.), we have

(
F ′(t), w(m)′ (t)

)
+

((
G(t, wt)

)′, w(m)′ (t)
)

≤ δ–


∥
∥F ′(t)

∥
∥ + δ–

 L̃
G
∥
∥w(m)′

t
∥
∥

γ
+

δ


∥
∥w(m)′ (t)

∥
∥

V̂ . (.)
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Now, taking (.)-(.) into account, we obtain

d
dt

∥
∥w(m)′ (t)

∥
∥ + δ

∥
∥w(m)′ (t)

∥
∥

V̂

≤ δ–
 λ∥∥w(m)′ (t)

∥
∥∥∥w(m)(t)

∥
∥

V̂ + δ–


∥
∥F ′(t)

∥
∥ + δ–

 L̃
G
∥
∥w(m)′

t
∥
∥

γ
.

Replacing the variable t with θ and integrating it between r and s, we see that, for all
τ ≤ r ≤ s ≤ t,

∥
∥w(m)′ (s)

∥
∥ + δ

∫ s

r

∥
∥w(m)′ (θ )

∥
∥

V̂ dθ

≤ ∥
∥w(m)′ (r)

∥
∥ + δ–

 λ
∫ t

r

∥
∥w(m)′ (θ )

∥
∥∥∥w(m)(θ )

∥
∥

V̂ dθ

+ δ–


∫ t

r

∥
∥F ′(θ )

∥
∥ dθ + δ–

 L̃
G

∫ t

r

∥
∥w(m)′

θ

∥
∥

γ
dθ . (.)

Particularly, for all τ + ε ≤ r + ε ≤ s ≤ t, we have

∥
∥w(m)′ (s)

∥
∥ ≤ ∥

∥w(m)′ (r)
∥
∥ + δ–

 λ sup
θ∈[τ+ε,t]

∥
∥w(m)(θ )

∥
∥

V̂

∫ t

τ+ε

∥
∥w(m)′ (θ )

∥
∥ dθ

+ δ–


∫ t

τ+ε

∥
∥F ′(θ )

∥
∥ dθ + δ–

 L̃
G

∫ t

τ+ε

∥
∥w(m)′

θ

∥
∥

γ
dθ . (.)

Integrating this inequality with respect to r between τ + ε and s, we have

∥
∥w(m)′ (s)

∥
∥ ≤ 

s – τ – ε

∫ t

τ+ε

∥
∥w(m)′ (r)

∥
∥ dr

+
λ

δ
sup

θ∈[τ+ε,t]

∥
∥w(m)(θ )

∥
∥

V̂

∫ t

τ+ε

∥
∥w(m)′ (θ )

∥
∥ dθ

+ δ–


∫ t

τ+ε

∥
∥F ′(θ )

∥
∥ dθ + δ–

 L̃
G

∫ t

τ+ε

∥
∥w(m)′

θ

∥
∥

γ
dθ (.)

for all τ + ε ≤ r + ε ≤ s ≤ t. Then, it is not difficult to get that, by using the same proof as
(.) in [],

∥
∥w(m)′

θ

∥
∥

γ
≤ e–δλ(θ–τ )∥∥φ′(s)

∥
∥

γ
+


δ

∫ θ

τ

e–(δλ–L̃G)(θ–r)∥∥F ′(r)
∥
∥ dr. (.)

Thus, we deduce that

∫ t

τ

∥
∥w(m)′

θ

∥
∥

γ
dθ ≤ 

δ(δλ – L̃G)

∫ t

τ

[
e(δλ–L̃G)(r–τ ) – e(δλ–L̃G)(r–t)]∥∥F ′(r)

∥
∥ dr

+
 – e–δλ(t–τ )

δλ

∥
∥φ′(s)

∥
∥

γ
, (.)

which, combined with assumption (A)(II), yields the boundedness of
∫ t
τ
‖w(m)′

θ ‖
γ dθ .

Consequently, property (iv) follows from (.), (.), assumption (A), and Lemma ..
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Next, we prove property (v). Multiplying (.) by λjβm,j(t) and summing the resulting
equation from j =  to m, we obtain

(
w(m)′ (θ ), Aw(m)(θ )

)
+

∥
∥Aw(m)(θ )

∥
∥ +

〈
B
(
u(m), w(m)), Aw(m)(θ )

〉
+

〈
N

(
w(m)), Aw(m)(θ )

〉

=
(
F(θ ), Aw(m)(θ )

)
+

(
G

(
θ , w(m)

θ

)
, Aw(m)(θ )

)
. (.)

Observe that

(
w(m)′ (θ ), Aw(m)(θ )

) ≤ 
∥
∥w(m)′ (θ )

∥
∥ +



∥
∥Aw(m)(θ )

∥
∥, (.)

which, together with (.)-(.) and (.), gives that, for any θ > τ ,

∥
∥Aw(m)(θ )

∥
∥ ≤ λ∥∥w(m)(θ )

∥
∥∥∥w(m)(θ )

∥
∥

V̂ + c(νr)
∥
∥w(m)(θ )

∥
∥

V̂ + 
∥
∥w(m)′ (θ )

∥
∥

+ 
∥
∥F(θ )

∥
∥ + L

G
∥
∥w(m)

θ

∥
∥

γ
. (.)

Since W ,
loc (R; Ĥ) ↪→ C(R; Ĥ) and f ∈ W ,

loc (R; Ĥ), so f ∈ C(R; Ĥ), which, together with
(.), (.), Lemmas .(i) and .(iv), implies property (v). The proof is complete. �

At this state, we give the proof of the main results of this paper.

Proof of Theorem . () According to Lemma ., following the standard diagonal proce-
dure, there exists a function w(·) such that (by extracting a subsequence if necessary)

w(m)(·) ⇀∗ w(·) weakly star in L∞(τ + ε, t; V̂ ), (.)

w(m)(·) ⇀ w(·) weakly in L(τ + ε, t; D(A)
)
, (.)

w(m)′ (·) ⇀ w′(·) weakly in L(τ + ε, t; Ĥ). (.)

Furthermore, w(·) ∈ C([t +ε, t]; V̂ ). It follows from the uniqueness of the limit function that
w(·) is a weak solution of system (.). Then, part () of Theorem . is a consequence of
Lemmas . and ..

() It is not difficult to see that if τ < T –  is fixed, then

⋃

t∈[T,T]

A(t) ⊂
⋃

t∈[τ+,T]

U(t, τ )A(τ ).

Consequently, combining Lemma . and part (), we obtain the boundedness result of
part (). The proof is complete. �
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