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1 Introduction

The equation

ou

?u [Py E [
—_— R + JE— JR—
Pop ax

2 2
0“u
d =0, 1.1
n L), x) (@)

ox?

presented by Kirchhoff [1] in 1883, is an extension of the classical d’Alembert’s wave equa-
tion by considering the changes in the length of the string during vibrations. In (1.1), L
is the length of string, % is the area of the cross section, E is the Young modulus of the
material, o is the mass density, and Py is the initial tension. The stationary form of type

(1.1) is taken in the form of

—k< / |Vul|* dx) Au=f(x,u), inQ 1.2)
Q

which may be used for modeling several physical and biological systems, where « describes
a process which depends on the average of itself, for example, the population density [2].
If k( [, IVu|? dx) is replaced by k(f;, |u|* dx), then the equation

—k(/ u|? dx) Au=f(xu), inQ (1.3)
Q

arises in numerous physical models such as systems of particles in thermodynamical equi-
librium via gravitational potential, thermal runaway in ohmic heating and shear bands in

metal deformed under high strain rates [3].

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1186/s13661-017-0865-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-017-0865-y&domain=pdf
mailto:wushujun@upc.edu.cn

Wu Boundary Value Problems (2017) 2017:131 Page 2 of 13

Ricceri [4] discussed Kirchhoff equations in the form of

: k([ IV ul? d) At = hf (e, 1) + pg(x, ), in 2, 4

u=0, on 0L2.

The existence of solutions was established by the critical point theorem due to Ricceri [5].
Chen [6] investigated p-Kirchhoff equations in the whole space RN:

(15)

{M(fRN IVulP + V(x)|ul? dx)(=2pu + V(x)|ulP~2u) = f (v, u) + g(x), in RN,
u—0, as x| — oo,
where M(¢) = tX, k > 0 and V (x) is a continuous function satisfying the condition that there
exists by > 0 such that V(x) > by for x € RN, V(x) — oo as |x| — co. The solutions were
obtained by the mountain pass theorem, Ekeland’s variational principle and Krasnoselskii’s
genus theory. Also Chen [7] considered (1.5) with M(t) = a + bt* (a >0, b> 0, k > 0),
f,u) = My (x) |72 u + hy(x)|u)~2u + h3(x) and g(x) = 0. Two nontrivial solutions were
established by the mountain pass theorem and Ekeland’s variational principle.

There often arise the equations involving nonhomogeneous operators and nonlineari-
ties, for instance, in the fields of electrorheological fluids (sometimes referred to as ‘smart
fluids’), nonlinear elasticity and plasticity. The natural setting for this approach is Orlicz-
Sobolev spaces.

In this article, we investigate Kirchhoff elliptic equations with nonlinearity in R" in the
Orlicz-Sobolev setting:

: —k(Pp () (div(a(|Vul) Vi) — a(|ul)u) = Af (x, u) + pg(x,u), in RN, (L6)

u—0, as |x| = oo,

where k : [0, 00) — [0, 00) is nondecreasing and continuous, a(£)¢ is strictly increasing and
continuous on [0, 00), such that lim;_, o+ a(£)t = 0, lim;_,» a(£)¢ = 00, A, ; are nonnegative
real numbers, f and g are Carathéodory functions, and py; is defined in Section 2.

Using the ideas and techniques developed in the research of Orlicz spaces, we prove
the existence of at least three solutions of (1.6) but get rid of the restriction that M(+/%) is
convex on [0, 00) in [8-13].

To our knowledge, this is the first contribution to investigate (1.6) in the whole space RN
in the Orlicz-Sobolev setting. For multivalued problems, please see [14]. For problems in
variable exponent, please see [15-17]. For hyperbolic Kirchhoff systems, please see [18, 19].

2 Preliminaries
M is called an Orlicz function provided that

Isl
M(s) :/ pt)dt, VseR,
0

where p is nondecreasing, right-continuous with p(0) = 0, p(¢) > 0 (V£ > 0) and
lim;_, » p(£) = co. Its complementary function M is defined as

2]
M(t) =/(; p(s)ds, VteR,

where p(s) = sup{t > 0: p(¢) <s}. Then M is also an Orlicz function (see [20]).
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Young’s inequality holds true
st <M(s) + M(t), Vs,t>0,

and equation holds if and only if ¢ = p(s) or s = p(¢).
M is said to satisfy A,-condition (in short, M € A,) provided that there exists a positive
number C > 0 such that

M(2t) < CM(t), Vt>0.

We use M € V, to stand for M € A,.
Denote

tp(t) tp(t) Ndy NDy,
dy:=1inf —— Dy = -_—, dr = s D%, = .
“toM@ MR M) M= N dy M= N~ Dy

For a measurable function u: RN — R, denoted as u € L, we define
o) = [ M) s, (0 = pa() + (1)

The Orlicz space Ly (RN) (in short Ly;) is defined by
Lu(RY) = {u eL:3x>0,pp(u) < oo}

endowed with the Luxemburg norm

. u
2l ay, v = 12l any =1Hf{)» > 01,0M(X> =< 1},

or with the Orlicz norm
el prpn = llllar = SUP{/ u(x)v(x) dx :/ M(v(x)) dx < 1}.
RN RN

Then (Las, || - ) and (Lag, || - 1ar) form Banach spaces (see [20, 21]).
For u € Ly, v € Lj;, the Holder inequality holds (see [20])

/ w(x)v(x) dx < Vil G
RN

The Sobolev conjugate M, of M is defined by

prov1dedf N+1 ) dt < o0, ou Nﬂ L dt = oo (see [22]).
t N

An Orlicz-Sobolev space WlM (RN) (in short WM) is defined by

WM (RN) = {u € Ly (RY) : D*u € Ly (RY), || <1}
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endowed with
. ~ (u
llaell = loell yrm =1nf{k > O:pM<X> < 1}.

Then (WLy, || - |l wir,,) forms a Banach space (refer to [22]).

If M € Ay N Vy, then Ly and WLy, are separable and reflexive Banach spaces (refer to
[22]).

Let Wy (RN) (in short Wy™™) be the closure of C®°(RN), that is, the set of all functions
which are differentiable for any order and with compact supportin W (RN), Wé’M(RN )=
WIM(RN)Y (refer to [22]).

3 Main results
In this section, we firstly give the main result of this paper. Secondly, we prove some lem-
mas for the main result. Finally, we establish the existence of at least three solutions in
Orlicz-Sobolev spaces applying the variation principle.
For convenience, we set several conditions.
k(0):  k(t) = Ct¥, Yt € (0,8), for some C >0,5>0, y € (0, it —1).
k(00): k(t) > Ct",Vt >4, forsome C>0,8>0,y >0.
Hi:  |f(x 1) < a(x)p(|t|) + B(x), Y(x,t) € RN x R, for some nonnegative functions a(x) €
L®RN)N LDM"”M (RN), B(x) € Liz(RN) N L™(RN).
H,: lim supHO 151( ()) < 00, uniformly x € RN,

Hs: fRN(f (x,s) ds) dx > 0 for some uy € Wy

In the following, we always assume that & : [0, 00) — [0, 00) is nondecreasing and k(¢) > 0
(Vt > 0).
For u € Wg™, we define

o ()
1((1/[) = /p k(s) dS,
0

u(x)
Flu) = ,8)ds | dx = F(x, dax,
(u) ./RN</0 flx,s) s) x /RN (xu(x)) x
u(x)
g(u)szN (/0 g(x,s)ds) dx.

Definition 3.1 u € W&M is called a weak solution of problem (1.6) if, for all v € Wé’M,

k(Pu(w) /

[a(|Vu|)Vu-Vv+a(|u|)uv]dx=A/f(x,u)vdx+u/g(x,u)vdx.
Q Q Q

The main result of this paper is as follows.

Theorem 3.1 Let1<dy <Dpy <N and Dy < dy,. Assume that k satisfies k(0) and k(oo),
f satisfies Hy, Hy, H3 and g satisfies Hy. Then, for all [a, b] C (0, 00), there exists o > 0 such
that for each ) € [a, D] there exists § > 0 such that for each u € [0, 8], the problem

—k(Pp () (div(a(|Vul) Vi) — a(lul)u) = Af (x, u) + pg(x,u), in RN,

(1.6)
u—0, as |x| = oo
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has at least three solutions whose norms are less than o in an Orlicz-Sobolev space Wy™

for a strictly convex and smooth Orlicz function M(t) = |, g

o a(t)rdr.

4 Proof of the main results

In the proof of Lemmas 4.1 and 4.2, we get rid of the restriction that M(+/%) is convex on
[0,00) as in [8, Theorem 3.1], [9, Lemma 3.2], [10, Lemma 5], [12, Lemma 2.4], in which
by this condition a Clarkson-type inequality was established in order to show that a se-
quence strongly converges. Here, we get the convergent sequence by using the ideas and

techniques developed in Orlicz spaces research without the help of Clarkson-type inequal-

ity.

Lemma 4.1 Given that M is strictly convex and M € A,. For {u,}, a sequence weakly con-
verging to u in WLy, and lim,,_, oo K(u,) = K(u), we have that {u,} strongly converges to u
in WLy

Proof Since u, — u weakly and M € A,, by [9, Lemma 2.3], we assume lim,,_, o 0p1(14,) =

d > 0, if necessary passing to a subsequence. By lim,,_, o K(1,) = K(u) and fot k(s)ds is
strictly increasing with respect to ¢ > 0, we obtain

i By (a4,,) = paa (), (4.1)

and py(*5%) < M — pm(u). Therefore, limsup,,_, o, om(*5™) < pp(u).

By the convexity of M and [23, Theorem 25.20], K is sequentially weakly lower semicon-

Un+U

2
K (u). Consequently, liminf,_, o, pa(*5™) > ppr(u), and thus

tinuous. Since u,, — u weakly, it follows that — u weakly and liminf,_, o K (””T”‘) >

n—00

lim 5M<“”2+ ”) = Pulw). (4.2)

If u = 6 (thatis, 8(x) = 0, u-a.e.x € RN), thanks to M € A,, (4.1) implies lim,,_, oo par(t4,) =
0 =1limy_, oo ||yl
If u #0, then pp() >0 and | u,|| > 0.

Claim {u,} converges to u in measure.

Otherwise, we suppose that for some & > 0, 0o > 0, there exists a subsequence {u,,}
such that u{x e RN : |14, (x) — u(x)| > 00} > €9 > 0. Set ¢ = M‘l(é’%o(”)) > 0, we get that

om(u) = /1;1\1 [M(u(x)) + M(!Vu(x)‘)] dx > /RN M(u(x)) dx

>/ M(u(x)) dx > M(c)u{x € RN : [u(x)| > c}
[u(x)>c

= @u{xeRN: |u(x)| >c}.
0

The above inequality yields p{x € RN : |u(x)| > ¢} < <,
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From (4.1), there exists jo, for all j > jo,

27n(0) = )= || M)z [ bl ) s

65M(u)u{xeRN: |u,,/.(x)| > c}.

zM(c),u{xeRN: |u,,/.(x)| > c} =

Consequently, for all j > jo, we obtain that j{x € RN : 177 @) >c} <.
Since
{x eRV: |unl.(x) - u(x)| > ao}

C {xeRN: |u(x)| >c}

U {x eRN: ‘unj(x)’ > c}

U {x e RY: [u, (%) — u(0)| = 00, [u®)] < ¢, |uy, ()| < ¢},
one has
HE := pu{x € RV : 1, (%) — ()| = 00, [u(®)] < ¢, |y, ()] < c}
Ze- -3 (43)

Since M(¢) is strictly convex, from [24, Proposition 1.4], there exists § > 0 such that

M(t) + M(¢") (4.4)

t+t"
M =Q-8)——F—
2 2

forall || <¢, |[t'| <cand |t' —¢t"| > 0¢. By (4.3) and (4.4),
_ <u + u> S / 1y M )+ M) / M, () + M)
2 E 2 RN\E 2

PM
M(IViy (x)]) + M(|Vu(x)])
dx

+
/RN 2

- /7M(Mnj)+5M(u) _SM 90 8_0'
- 2 2)3

Letting j — 00, by (4.1) and (4.2) we obtain py(u) < EM(”)EEM(") - SM(%)5 < pm(u),

which is a contradiction.
Replacing u,, u by Vu,, Vu, respectively, we deduce that {Vu,} converges to Vu in

measure.
By the Riesz theorem, there exists a subsequence, still denoted by {u,}, such that

Uy (%) = u(x), Vit (x) > Vu(x) ae. in RY, so [V, (x)| — [Vu(x)| ae. in RN. Applying
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the Fatou lemma and (4.1), we get that

om(u) = [M(u(x)) +M(|Vu(x)|)]dx
RN
/ . [M(un,(x)) + M(u(x)) (un,(x) - u(x))
= lim -M
RN

+M(|Vun,-(x)|)+M(|Vu(x)|) _M(IVun,-(x)—Vu(x)l)]dx
2 2
- hminf/ [M(un,-(x))+M(u(x)) _M(un,-(x)—u(x)>
j—>oo  JpN 2 2
. M(IVun,(x)|)2+M(|Vu(x)|) _M(IVun,(x)z— Vu(x)l)]dx

() — Vit (x) = V
ZEM(M)_h?_l)iBP/RN[M(u/(x)z M(x)>+M(| u/(x)z u(x)|)i|dx

" . ~ [ Un— U
=pm(u) - limsup pM( )

Jj—o0 2

Up.—U
’2 ) > 0, we see that

Hence, limsup;_, EM(uné_u) < 0. Combining liminfj_, o P (
U=l

lim;_, o pp(—5—) = 0. From M € A,, we obtain lim;_, 4y, — ull = 0. Arguing by con-

tradiction, we deduce that lim,,_, o ||#, — || = 0. O

Lemma 4.2 Given that k is continuous, M is a strictly convex smooth Orlicz function and
Me AyNVy. Then (K')7': (W&‘M)* — W&’M is continuous.

Proof For u,v e Wy, by [25, Lemma 3.4], we obtain

Vu-Vvy uv

(K’(u),v) = k(pm(w)) /RN |:p(|Vu|) Vil +p(|ul) —i| dx, (4.5)

|24

K : WM — (Wy™)* and K e CH(Wy™, R).
Next, we show that K is strictly monotone.
For uj,uy € Wé’M with u; # u,, it follows that pA := u{x € RN : uy(x) # us(x)} > 0.

Since M is strictly convex, we get that

/M<M1(x)+uz(x)>dx</M(ul(x))+M(M2(x)) dx,
4 4

2 2
/ |:M(M1(x))+M(u2(x)) _M(”l(x“m(x))]dxzo,
RN\A 2 2

and

/ [M(Wul(x)l) + M(|Vuy(x)]) _M<w>] dx>0
RN 2 > o

The above inequalities yield o (“5*2) < ‘7’”(“1);5’”(”2). By [23, Theorem 25.8 ], we get that

K’ is strictly monotone.
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By (4.5), we deduce that K’ is coercive and hemi-continuous. In view of [23, Theo-
rem 26.A], (K')™': (Wé'M ) — Wé’M is strictly monotone, bounded and demi-continuous.

Finally, we show that (K’)™! is continuous on (WS’M )~

For {7,} C (WéM)*, TE€E (Wé’M)*, if ||z, — || = 0, we will prove that ||u,, — u|]| — 0, where
= (K')(z), u = (K')(2).

Since (K’)™' is demi-continuous, it follows that (K'(u,) — K'(u),u, — u) = (1, — T,
u, —u) — 0. By K'(u) € (W}La)*, it follows that

K'(u), u, — u) — 0, (4.6)
( )

(K’(un), Uy — u) = <K’(u,,) -K'(u),u, - u) + (K’(u), Uy — u) — 0. (4.7)
Claim py(u,) = pai(u), as n — oo.
Since M is an Orlicz function, by (4.5) we obtain

(K/(u),u,, - u)
Vu-V(u, —u)

- k(P()) /R ) [p(wm)T +p(|u|)W}dx

< k(P (W) /R [p(vul) (1Vatal = 19u1) + p(1a) (1] = 1) v

< k(B () (B (wa) = Pra(w)), (4.8)

/

(K (), thy — ui)

= k(D)) f )

R

Vit - V(ty — (g,
[p(|wn|)”|+”|”) +p(|un|)w} dx

|2t

> k(pwm(un)) /N [p(1IVual ) (IVatn] = 1V ul) + p(1t8]) (] = uel) ] dx

R

> k(Bm () (B (1) — Bwa()). (4.9)

If u = 6, then py(u) = 0. (4.7) and (4.9) yield 0 < k(Ppr(t4x)) oar (t8n) < (K'(t4), uy) — O.
Because of the positivity of k(¢), we obtain pa(u,) — 0 = par(u).

If u # 0, then py(u) > 0. From (4.6) and (4.8), we deduce that py(u,) — par(u) >
%. Letting n — 00, one has liminf,,_, o (0 (u4,) — Pa()) > 0. Combining (4.7) and
(4.9), we deduce that there exists #g, for all n > ng,

(K" (), uy — 1) < (K (t4), th, — )|
SOYIC) . (O

o (tn) — ppr(e) <

e

Thus, we have limsup,,_, . (Opm(u,) — pa(#)) < 0. Consequently, limy,_, oo Opr(4) = Ppr(us).
Moreover, lim,_, oo K(u,) = K(#). By Lemma 4.1, we obtain ||, — u|| — 0. O

Dy
Lemma 4.3 Given that M € Ay NV, with Dy < N, f satisfies Hy and a(x) € LPwum (RN),
Then Dy < dy; implies that F' is compact.
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Proof Using the same arguments as those in [25, Lemma 3.4], we get that

(F'@),v) = / )@ d:

R

F WM — (wyMys, F e CH W™, R).

For {u,} a bounded sequence in W&LM, by the Alaoglu-Banach theorem, there exists a
subsequence {t;} such that Uy, — U weakly. We will show that {F'(u,)} admits a subse-
quence strongly converging to F'(u).

By M € A, and the Hélder inequality, for any measurable subset Q C RV, it holds uni-
formly for all v e WS’M with ||v] <1,

/Q[a(x)p(|u(x)|) +2B(x)v(x) dx
< |lap(lul) + 28| 5 o IVIane < [ep(lul) + 28] 5 o (4.10)

Aa(x)p(lun,(x)l)V(x) dx < [|ap(lun )| 51.0- (4.11)
By (4.10), for & > 0, there exists r* > 0, Q* := {x € RN : |x| > r*} such that
/Q* [a(x)p(|u(x)|) + Zﬁ(x)]v(x) dx <e. (4.12)

Due to M, M € A,, by [24, Theorem 1.13], it follows that p,p € A,. We deduce that

M(ae)p(un()]))
< a(@)p (|, @) |) B @)p (|t ®)])) < o @)p([14, )] )B(llt oo (|18 (%))
< a@)p(|un,))) P2l lloo (p (|t (%)]) - (x)))
= cia(x)p(|un,(x)|)}5(p(|un,(x)|) —e(x))

< a@)p( | (x)]) |y (%) | < G @)M(2]uy (%)|) < cro(@)M (|1, (x)

), (4.13)

where €(x) > 0 is taken small enough for Up; (x) #0, e(x) = 0 for Uy (x)=0.
By (4.13), Dy < dj; and [26, Lemma 2.1, Lemma 2.2],

/l " 1Z\N/I(ot(x)p(|14,,/.(9c)|))dx

561/ a(x)M(‘u,,j(x)Ddxfcl/ a(x)M(l)’u,,j(x)|dM dx
|Mn/-(x)\§1 |14n/-(

x)|<1
ok D} -dp dy
*DiM - Dy DE -
< ClM(l)(/ o (x) Puim dx) M (f ‘un,»(x)|dM'dM dx) M
|”n/(x)\§1 \Mn/-(x)|§1

am

1 Dy
<aM@)llel (/ M, (|, (%) dx) <dcllall o
Dy ey ()] <1 M. (1) (’ nj |) 2 Dy

1 D 1 D



Wu Boundary Value Problems (2017) 2017:131 Page 10 0f 13

Using the same arguments, we obtain
/ M(a(x (|u,, x)\)) dx < ||| Cay
oty (3)1>1 i

Combining the above inequalities, taking » > r*, Q, = {x € RN : |x| > r}, we deduce that
erM(oz(x)p(|u,,/.(x)|)) dx<e,j=1,2,....
By [26, Lemma 2.5] and (4.11),

dy-1
/ a@)p (| |)v(0) dx < |ap(lun )| 7o, <26 D, j=12,.... (4.14)
Q2
By Hj, (4.12) and (4.14), we deduce that it holds uniformly for all v € WS’M with ||v] <1

[ 0y 09) = ) o

< / [o@)p (|t (%)]) + @)p(|ux)]) +2Bx)]|v(x)| dx

dpyg-1

<2 ye, j=1,2,.... (4.15)

For B, = RN \ @, = {x € RV : |x| < r}, combining u, — u weakly, we get
|2, — 1ella1),8, — 0. By applying the Lebesgue dominated convergence theorem, we deduce
fBr ]\~4(f(x, Up; (%)) — f (%, u(x))) dx — 0. By1\~/1 € A,, there exists jo, for all j > jo,

|V(x, Up;) —flx,u) HIVLBV <e. (4.16)
In view of (4.15) and (4.16), we complete the proof. O

Lemma 4.4 Given that duy < N and Dy < djyy, k satisfies k(0) and k(co), f satisfies Hy, H.
Then limsup,,_, o 1<( <0, limsupy o K((u)) 0.

Proof Given § in Condition k(00). For |lu|| > 1+, so pp(u) >1+38.
By H;, the Holder inequality and k(oco),

Fu) _ Jen [ @)M(|u(x)]) + B(x)|u(x)|] dx
K(u) ~ JPM k() dis
)

lotllooae) + 1B lleall _Clerloo + 11615 Poa 2
= B - ) T L () - 60

which implies lim supy -, o % <0.

By H,, for some positive constants §p € (0,1), c; > 0, one has F(x,£) < c;M,(t) for all
|t| < 8o. Due to WaLa(RN) < Ly, (RN) there exists Cy > 0 such that ||u||(u,) < Cy|lu|| for
all u € WLy (RN). For ||u|| < min{1, & 28’} (where &' is of in k(0)), by [26, Lemma 2.2], we
obtain pu, (1) <l < CEH fuf .

By Das < dj; and Condition k(0), we get that

fu w)1<so £ u(x))dx c1om, (1) - c1CfX4(y +1)
K(u) N yfl(ﬁM(M))“l B C

| ~Pu@*) 0. (4.17)
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Since M is an Orlicz function, combining [26, Lemma 2.2], there exists c; > 0 such that

/ F(x, u(x)) dx < ¢ / ()| M . (4.18)
lu(x)|=80

[u(x)[=80

By 1> fRN Mu(x))dx > M(So)ufx € RN : |u(x)| > 80}, we obtain u{x € RN : |lu(x)| > 8o} <
M(a 5 < 00. From [22 Theorem 8.12] and % < yIh (1 M (¢), Vt > 1, there exists ¢3 > 0 such
that, for all v € L% ({Ju(x)| > 8o}),

vl e, = asllvll ) giumizsor < c3CsllvIl. (4.19)

M ({|u(x)|=280})

Combining k(0) and (4.18)-(4.19), we have

Juwizn Foo u)dx e | e ()| dlx

K(w) = S Py
- Cz(C3C*)CM(y +1) (]| P 4D (4.20)
By (4.17) and (4.20), it follows that limsup; ;¢ % <0. O

Lemma 4.5 ([5]) Let X be a separable and reflexive real Banach space; let  : X — R be
a coercive, sequentially weakly lower semi-continuous C* functional, belonging to Wy (if
{u,} is a sequence in X converging weakly to u and liminf,,_, oo ®(u,,) < O(u), then {u,} has
a subsequence converging strongly to u), bounded on each bounded subset of X and whose
derivative admits a continuous inverse on X*; let ] : X — R be a C* functional with compact
derivative. Assume that ® has a local minimum xo with ®(xy) = J(x¢) = 0. Finally, setting

o= max{O lim sup /) ,limsu &}
lel— 00 @) xoxg D(x)
_ J(x)
P ey O

assume that a < B.
Then, for each compact interval [a,b] C (%, é) (with the conventions % = +00, ﬁ =0),

there exists r > 0 with the following property: for each ) € [a, b] and every C' functional ¥
with compact derivative, there exists § > 0 such that, for each € [0,8], the equation

@' (x) = A (x) + ¥ (x)
has at least three solutions whose norms are less than r.

Now, we give the proof of the main result.

Proof Let p(t) = a(t)t, V¢t > 0, and M(s) = ‘Slp(t) dt, Vs € R. Then M is a strictly convex
smooth Orlicz function.

Applying Lemmas 4.1 and 4.2, we deduce that K is sequentially weakly lower semi-
continuous belonging to the class WWéM and (K’)7! is continuous. In view of Lemma 4.3,



Wu Boundary Value Problems (2017) 2017:131 Page 12 0f 13

we deduce that F,G € Cl(W/é’M,R) with compact derivatives. From the definitions of K
and F, we see that K(0) = F(0) = 0 and K() > O for all # # 6. By Lemma 4.4 and Hs, it
follows that 8 > «.

Summarily, the critical points theorem in Lemma 4.5 guarantees that

K'(u) = A F' (u) + uG' (u)
has at least three solutions, which implies that Problem (1.6) has at least three solutions. [

5 Corollaries and examples
By Theorem 3.1, we get the following.

Corollary 5.1 Let1<dy <Dy <N and Dy < d};. Assume that k satisfies k(0) and k(co),
f satisfies Hy, H}, Hs

. Xt .
H, : limsup f(D* )2 < oo, uniformly x € RN,
=0 t|t|"m”

and g satisfies Hy. Then, for all [a, b] C (0, 00), there exists o > 0 such that for each A € [a, b]
there exists 8 > O such that for each |v € [0, 8], the problem

—k(Pp(w))(div(a(|Vu|)Vu) — a(|u))u) = Af (x, u) + pg(x, u), in RN, 16)

u—0, as |x| - oo ’
has at least three solutions whose norms are less than o in an Orlicz-Sobolev space Wy™
for a strictly convex and smooth Orlicz function M(t) = Olt\ a(t)tdr.

The following example shows that Theorem 3.1 is a substantial improvement, where the
function M listed below satisfies the conditions of Theorem 3.1 but it does not satisfy those
of [8, Theorem 3.1], [9, Lemma 3.2], [10, Lemma 5], [12, Lemma 2.4].

Example 5.2 For p € (1,2),

M(t) := |¢]P.
Then M satisfies all the assumptions in Theorem 3.1. However, the function M(+/£) = t5
is not convex w.r.t. t € [0,00) due to % < %’ <1.

6 Conclusion

We prove the existence of three solutions for the Kirchhoff elliptic problem (1.6) using the
ideas developed in Orlicz spaces and the technique of variation principle. We point out
that the convexity of the Orlicz function M(+/t), which is required in [8-10, 12], is unneces-
sary during the proof of strong convergence. We also notice that the result in Theorem 3.1
extends the result for bounded domains.
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