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Abstract
This paper is concerned with the improved L2 decay for solutions of a class of the
third-grade non-Newtonian fluid flows in R

3. By developing the classic Fourier
splitting methods, we prove the non-uniform decay of solutions when u0 ∈ L2(R3)
and improve algebraic decay rates of solutions as (1 + t)–

3
2 (

1
r –

1
2 )–

1
2 when the initial data

satisfy some moment condition. The results extend the previous result by Zhao
(Nonlinear Anal., Real World Appl. 15:229-238, 2014).
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1 Introduction
Mathematical models for fluid dynamics have been attracting more and more attention
in theoretical and computational studies. Naiver-Stokes equations [] are generally ac-
cepted as proving an accurate model for the incompressible motion of viscous fluids in
many practical situations, where the constitutive relation is linear due to the Stokes hy-
potheses. However, in industrial application, some fluids which exhibit the nonlinear con-
stitutive relation, such as liquid crystals, some polymers, some oils and so on (refer to [,
]), cannot be modeled by the classic Navier-Stokes equations. In order to explain a lot
of non-standard features such as normal stress effects, rod climbing, shear-thinning and
shear-thickening, Rivlin and Ericksen [] introduced a class of n-grade non-Newtonian
fluid flows where the stress tensor is a polynomial of degree n. The basic constitutive re-
lation is given by

T = –pI + F(A, A, A, ..., An). (.)

T is the Cauchy stress tensor, p is the indeterminate part of the stress and F is an isotropic
polynomial of degree n. A, A, A, ..., An are the first n Rivlin-Erickson tensors defined
recursively by

A = A = D, Ak+ =
d
dt

Ak + LtAk + AkL,

where

d
dt

= ∂t + u · ∇u
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denotes the material derivative and

L = (∂jui)i,j, Lt = (∂iuj)i,j, D =



(∂iuj + ∂jui)i,j.

In this study, we consider the case of third-grade non-Newtonian fluid flows where the
constitutive law is given

T = –pI + μA + αA + αA
 + β|A|A, (.)

where μ is the viscosity, α,α,β are material constants. These coefficients satisfy the fol-
lowing restriction conditions (for a more detailed thermodynamic analysis of model (.),
one can refer to [–]):

μ ≥ , α ≥ , β ≥  and |α + α| ≤ μβ . (.)

In particular, when

μ > , α = , β >  and α = α with |α| ≤ μβ , (.)

the constitutive relation (.), together with the equation of motions

d
dt

u = divT ,

yields the following third-grade non-Newtonian fluid flows:

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + u · ∇u – μ�u + J(u) + K(u) + ∇p = ,

div u = ,

u(x, ) = u,

(.)

where

J(u) = –α div
(
A(u)),

K(u) = –β div
(∣
∣A(u)

∣
∣A(u)

)

and

A(u) = (∂iuj + ∂jui)i,j.

When J(u) = K(u) = , the third-grade non-Newtonian fluid flows (.) reduce the classic
Navier-Stokes equations

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + u · ∇u – μ�u + ∇p = ,

div u = ,

u(x, ) = u.

(.)
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For the classic Navier-Stokes equations, it should be mentioned that the problem on the
regularity or finite time singularity for the weak solution still remains unsolved. However,
the third-grade non-Newtonian fluid flows (.) considered here can be viewed as a singu-
lar perturbation of the Navier-Stokes equations. The presence of the nonlinear dissipation
K(u) in (.) more or less decreases the singularity of system (.). Hamza and Paicu []
actually proved the existence and uniqueness of the weak solution of Cauchy problem
of (.).

Proposition . (Hamza and Paicu []) Let u ∈ L(R) and |α| <
√

μβ , then the third-
grade non-Newtonian fluid flows (.) has a unique global weak solution such that

u ∈ L∞(
,∞; L(

R
)) ∩ L(,∞; H(

R
)) ∩ L(,∞; W ,(

R
)), ∀T >  (.)

and

∥
∥u(t)

∥
∥

L + C
∫ t



∥
∥∇u(s)

∥
∥

L ds + C
∫ t



∥
∥∇u(s)

∥
∥

L ds ≤ ‖u‖
L for t > . (.)

The aim of this study is to investigate the algebraic L decay for the solutions of the
third-grade non-Newtonian fluid flows (.). When the initial velocity u ∈ L(R), we first
investigate that the L norm of the weak solution tends to zero but not uniformly, that is,
there are solutions with arbitrarily slow decay. When u ∈ L(R)∩Lr(R) for  ≤ r <  and
satisfies

∫

R |xu(x)|r dx < ∞, we prove the improved algebraic L decay rates of the weak
solutions as ( + t)– 

 ( 
r – 

 )– 
 . Compared with the time decay problem of the classic Navier-

Stokes equations [–], on the one hand, the additional difficulty on the decay estimates
of the third-grade non-Newtonian fluid flows (.) is to investigate the Lp – Lq estimates of
the heat semigroup acting on the nonlinear terms. One may also refer to some interesting
time decay results of some non-Newtonian flows by several authors [, ] and [].

Let us end this Introduction by the notations. Throughout this paper, C stands for a
generic positive constant which may vary from line to line. Lp(R) with  ≤ p ≤ ∞ denotes
the usual Lebesgue space of all Lp integral functions associated with the norm

‖f ‖Lp(R) =

⎧
⎨

⎩

(
∫

R |f (x)|p dx)/p,  ≤ p < ∞,

ess supx∈R |f (x)|, p = ∞,

and Hs(R) with s ∈R the fractional Sobolev space with

‖f ‖Hs =
(∫

R
|ξ |s|f̂ | dξ

)/

,

where f̂ or F[f ] denotes the Fourier transformation of f (x).

2 Non-uniform L2 decay of weak solutions
In this section, we plan to investigate the non-uniform L decay of weak solutions of the
zero-forced third-grade non-Newtonian fluid flows (.) when the initial data only lie in
L. More precisely, we will show the following results.
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Theorem . Suppose that u(x, t) is a weak solution of the zero-forced third-grade non-
Newtonian fluid flows (.) with the initial data u ∈ L(R), then the solution u(x, t) has
the following non-uniform asymptotic behavior:

∥
∥u(t)

∥
∥

 → , as t → ∞. (.)

Remark . Our result here shows that the weak solutions of non-Newtonian fluid flows
(.) decay arbitrarily slowly. Just like the classic Navier-Stokes equations [], the solution
in Theorem . also exhibits a special asymptotic behavior for this sort of non-Newtonian
flows (.). However, compared with the Navier-Stokes equations, the additional difficulty
here is that some more explicit estimates for nonlinear terms should be done.

Proof of Theorem . Since the third-grade non-Newtonian fluid flows (.) have a
uniquely strong solution and the weak solutions are regular, we can deal with our problem
directly by weak solutions although some regular derivation for solutions is required.

Multiplying both sides of the third-grade non-Newtonian fluid flows (.) by u and in-
tegrating on R

, we have




d
dt

‖u‖
 + μ‖∇u‖

 – β

∫

R
div

(∣
∣A(u)

∣
∣A(u)

)
u dx = α

∫

R
div

(
A(u))u dx, (.)

where we used the following properties:

∫

R
(u · ∇u)u dx = .

Since

–β

∫

R
div

(∣
∣A(u)

∣
∣A(u)

)
u dx =

β



∫

R

∣
∣A(u)

∣
∣ dx

and
∣
∣
∣
∣α

∫

R
div

(
A(u))u dx

∣
∣
∣
∣ ≤ α

∣
∣
∣
∣

∫

R

(
A(u))∇u dx

∣
∣
∣
∣ ≤ α

∥
∥A(u)

∥
∥

‖∇u‖,

where we used Hölder’s inequality in the last line.
Noting that

ε =  –

√
α

μβ
> ,

and applying Young’s inequality, we have

∣
∣
∣
∣α

∫

R
div

(
A(u))u dx

∣
∣
∣
∣ ≤ μ( – ε)‖∇u‖

 +
β( – ε)


∥
∥A(u)

∥
∥

.

We now rewrite (.) as




d
dt

‖u‖
 + με‖∇u‖

 +
βε


∥
∥A(u)

∥
∥

 ≤ 
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or

d
dt

∥
∥u(t)

∥
∥

 + με
∥
∥∇u(t)

∥
∥

 ≤ . (.)

Applying the Plancherel theorem to (.) gives

d
dt

∥
∥̂u(t)

∥
∥

 + με

∫

R
|ξ |∣∣̂u(t)

∣
∣ dξ ≤ . (.)

Letting

B(t) =
{
ξ ||ξ | ≤ g– 

 (t)
}

,

where the smooth function g(t) will be chosen later, we have

με

∫

R
|ξ |∣∣̂u(t)

∣
∣ dξ

= με

∫

B(t)
|ξ |∣∣̂u(t)

∣
∣ dξ + με

∫

B(t)c
|ξ |∣∣̂u(t)

∣
∣ dξ

≥ με

∫

B(t)c
|ξ |∣∣̂u(t)

∣
∣ dξ

≥ μεg–(t)
∫

B(t)c

∣
∣̂u(t)

∣
∣ dξ

≥ μεg–(t)‖̂u‖
 – μεg–(t)

∫

B(t)

∣
∣̂u(t)

∣
∣ dξ .

The substitution of the above inequality into (.) gives

d
dt

∥
∥̂u(t)

∥
∥

 + μεg–(t)
∥
∥̂u(t)

∥
∥

 ≤ μεg–(t)
∫

B(t)

∣
∣̂u(ξ , t)

∣
∣ dξ . (.)

Now we need to estimate the right-hand side of (.). To do so, taking the Fourier trans-
form of the third-grade non-Newtonian fluid flows (.) yields

∂̂tu + μ|ξ |û = G(ξ , t), (.)

where

G(ξ , t) = –û · ∇u – Ĵ(u) – K̂(u) – iξ P̂.

We need to estimate G(ξ , t) one by one. By integrating by parts, we have

|û · ∇u| =

∣
∣
∣
∣
∣

∫

R

∑

j=

∂xj (uju)e–iξ ·x dx

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

R

∑

j=

ujuξje–iξ ·x dx

∣
∣
∣
∣
∣
≤ C|ξ |‖u‖
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and

∣
∣Ĵ(u)

∣
∣ =

∣
∣α ̂div

(
A(u)

)∣
∣ ≤ C|ξ |∥∥A(u)

∥
∥

 ≤ C|ξ |‖∇u‖
.

For K(u), similarly,

∣
∣–βK̂(u)

∣
∣ =

∣
∣β

̂
div

(∣
∣A(u)

∣
∣A(u)

)∣
∣ ≤ C|ξ |∥∥A(u)

∥
∥



≤ C|ξ |(‖∇u‖
 + ‖∇u‖


)
,

where we have used the interpolation inequality.
In order to estimate the pressure term in G(ξ , t), taking the divergence of (.) yields

–�P = div(u · ∇u) – α div div
(
A(u)

)
– β div div

(∣
∣A(u)

∣
∣A(u)

)
, (.)

and applying the Fourier transform to (.) and Young’s inequality gives

|ξ |P̂ ≤ C|ξ |(‖u‖
 + α

∥
∥A(u)

∥
∥

 + β
∥
∥A(u)

∥
∥



)

≤ C|ξ |(‖u‖
 + α

∥
∥A(u)

∥
∥

 + β
∥
∥A(u)

∥
∥

 + β
∥
∥A(u)

∥
∥



)

≤ C|ξ |(‖u‖
 + ‖∇u‖

 + ‖∇u‖

)

or

|̂P| ≤ C
(‖u‖

 + ‖∇u‖
 + ‖∇u‖


)
.

Then we have

G(ξ , t) ≤ C|ξ |(‖u‖
 + ‖∇u‖

 + ‖∇u‖

)
.

The solution of (.) is given by

û(ξ , t) = e–μ|ξ |t û(ξ ) +
∫ t


e–μ|ξ |(t–s)G(ξ , s) ds,

so we have

∣
∣̂u(ξ , t)

∣
∣ ≤ ∣

∣e–μ|ξ |tû(ξ )
∣
∣ + C|ξ |

∫ t



(‖u‖
 + ‖∇u‖

 + ‖∇u‖

)

ds.

Thanks to (.), we have

∫ ∞


‖∇u‖

 ds +
∫ ∞


‖∇u‖

 ds < C.

Hence we rewrite the estimation |̂u(ξ , t)| as

∣
∣̂u(ξ , t)

∣
∣ ≤ C

∣
∣e–μ|ξ |t û(ξ )

∣
∣ + C|ξ |

(∫ t


‖u‖

 ds + 
)

.
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Thus we have
∫

B(t)

∣
∣̂u(ξ , t)

∣
∣ dξ

≤ C
∫

B(t)

∣
∣e–μ|ξ |t û(ξ )

∣
∣ dξ + C

∫

B(t)
|ξ |

(∫ t


‖u‖

 ds
)

dξ + C
∫

B(t)
|ξ | dξ

≤ C
∥
∥eμ�tu

∥
∥

 + C
∫ g– 

 (t)


r

(∫ t


‖u‖

 ds
)

dr + Cg– 
 (t)

≤ C
∥
∥eμ�tu

∥
∥

 + Cg– 
 (t)

(∫ t


‖u‖

 ds
)

+ Cg– 
 (t).

Plugging the above inequality into (.) gives

d
dt

∥
∥̂u(t)

∥
∥ + μεg–(t)‖̂u‖



≤ Cg–(t)
∥
∥eμ�tu

∥
∥

 + Cg– 
 (t)

(∫ t


‖u‖

 ds
)

+ Cg– 
 (t).

Now choosing

g(t) =
με(t + )

m
, m > 

and multiplying both sides above by (t + )m gives

d
dt

(
(t + )m∥

∥̂u(t)
∥
∥



)

≤ C(t + )m–∥∥eμ�tu
∥
∥

 + C(t + )m– 


(∫ t


‖u‖

 ds
)

+ C(t + )m– 
 . (.)

Integrating with respect to time and applying the Plancherel theorem leads to

∥
∥u(t)

∥
∥

 ≤ C(t + )–m
∫ t


(s + )m–∥∥eμ�su

∥
∥

 ds

+ C(t + )–m
∫ t


(s + )m– 



(∫ s


‖u‖

 dτ

)

ds + C(t + )– 
 . (.)

Thanks to Proposition .,

∥
∥u(t)

∥
∥

 ≤ ‖u‖
, t ≥ .

Then we have from (.) and the Plancherel theorem

∥
∥̂u(ξ , t)

∥
∥

 ≤ C(t + )–m
∫ t


(s + )m–∥∥eμ�su

∥
∥

 ds + C(t + )– 
 + C(t + )– 

 . (.)

Since

∥
∥eμ�tu

∥
∥

 → , t → ∞,



Jia et al. Boundary Value Problems  (2017) 2017:132 Page 8 of 10

which implies

(t + )–m
∫ t


(s + )m–∥∥eμ�su

∥
∥

 ds → , t → ∞.

Thus we conclude from (.) that

∥
∥u(t)

∥
∥

 → , t → ∞,

which completes the proof of Theorem .. �

3 Improved L2 decay of weak solutions
In this section, under the non-uniform decay in the previous section, we will further inves-
tigate an improved L decay of weak solutions under some additional moment condition
on the initial data. More precisely, we will show the following more explicit decay rate.

Theorem . Under the same condition in Theorem . together with u ∈ L(R)∩Lr(R)
for some  ≤ r <  and

∫

R

∣
∣xu(x)

∣
∣r dx < ∞,

then the solution u(x, t) has the following uniform algebraic L decay rates:

∥
∥u(t)

∥
∥

 ≤ C( + t)– 
 ( 

r – 
 )– 

 for t > . (.)

Remark . It should be mentioned that Zhao et al. [] (see also [, ]) have proved the
time decay rate of solutions to the third-grade non-Newtonian fluid flows (.)

∥
∥u(t)

∥
∥

 ≤ C( + t)– 
 for t > 

with the initial data u ∈ L(R) ∩ L(R). Our results here are obviously more explicit and
extend the previous results.

Proof of Theorem . We first recall the well-known (Lr , Lq) estimates of heat equation in
a three-dimensional whole space.

Lemma . (Fujigaki and Miyakawa []) Suppose  ≤ r ≤ q ≤ ∞, k ≥  and f ∈ L(R)∩
Lr(R), then we have the following Lr – Lq estimate of D linear heat equation:

∥
∥∇keμ�t f

∥
∥

q ≤ Ct– k
 – 

 ( 
r – 

q )‖f ‖r , (.)

and the modified Lr – Lq estimate

∥
∥∇keμ�tu

∥
∥

q ≤ Ct– k
 – 

 ( 
r – 

q )– 


(∫

R

∣
∣xu(x)

∣
∣r dx

) 
r
. (.)
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By the same argument as that in (.), we have

‖u‖
 ≤ C(t + )–m

∫ t


(s + )m–∥∥eμ�su

∥
∥

 ds

+ C(t + )–m
∫ t


(s + )m– 



(∫ s


‖u‖

 dτ

)

ds + C(t + )– 
 (.)

and apply Lemma . and ‖u(t)‖L ≤ ‖u‖L . Using the same argument as that in (.), we
have

‖u‖
 ≤ C(t + )–m

∫ t


(s + )m–s–( 

r – 
 )– ds + C(t + )– 

 + C(t + )– 


≤ C(t + )–( 
r – 

 )– + C(t + )– 
 + C(t + )– 



≤ C(t + )– 
 , t > . (.)

Inserting the estimate of (.) into the second term on the right-hand of (.) again, we
have

‖u‖
 ≤ C(t + )–m

∫ t


(s + )m–s–( 

r – 
 )– ds

+ C(t + )–m
∫ t


(s + )m– 



(∫ s


(τ + )– 

 dτ

)

ds + C(t + )– 


≤ C(t + )–( 
r – 

 )– + C(t + )– 
 + C(t + )– 



≤ C(t + )–( 
r – 

 )– + C(t + )– 
 for t > .

When 
 ≤ r < , then


(


r

–



)

+  ≤ 


,

then

∥
∥u(t)

∥
∥

 ≤ C(t + )– 
 ( 

r – 
 )– 

 for t > ,

which derives the result of Theorem ..
When  ≤ r < 

 , then

∥
∥u(t)

∥
∥

 ≤ C(t + )– 
 for t > ,

which implies

∫ s


‖u‖

 dτ ≤
∫ ∞


‖u‖

 dτ =
∫ 


‖u‖

 dτ + C
∫ ∞


(τ + )– 

 dτ ≤ ‖u‖
 + C ≤ C.

Thus we repeat the same action from (.) to derive

‖u‖
 ≤ C(t + )–m

∫ t


(s + )m–∥∥eμ�su

∥
∥

 ds
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+ C(t + )–m
∫ t


(s + )m– 

 ds + C(t + )– 


≤ C(t + )–( 
r – 

 )– + C(t + )– 


≤ C(t + )–( 
r – 

 )–, t > . (.)

Hence the proof of Theorem . is completed. �
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