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Abstract
We prove global Lorentz estimates for variable power of the gradient of weak solution
to linear elliptic obstacle problems with small partially BMO coefficients over a
bounded nonsmooth domain. Here, we assume that the leading coefficients are
measurable in one variable and have small BMO semi-norms in the other variables,
variable exponents p(x) satisfy log-Hölder continuity, and the boundaries of domains
are so-called Reifenberg flat. This is a natural outgrowth of the classical
Calderón-Zygmund estimates to a variable power of the gradient of weak solutions in
the scale of Lorentz spaces for such variational inequalities beyond the Lipschitz
domain.
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1 Introduction
The main purpose of this present article is to attain a possibility of global estimates of vari-
able exponent power of the gradient in the framework of Lorentz spaces to weak solutions
for the following variational inequalities. Let � be a bounded domain in R

d for d ≥ , with
its rough boundary ∂� beyond the Lipschitz category specified later. For given ψ obstacle
function with

ψ ∈ W ,(�) and ψ ≤  a.e. on ∂�,

we define an admissible set A by

A =
{
φ ∈ W ,

 (�) : φ ≥ ψ a.e. in �
}

.

Note that A is nonempty due to ψ+ ∈A. Here we are interested in elliptic obstacle prob-
lems by minimizing the energy functional J [u] =

´
�

(A(x)∇u · ∇u + f · ∇u) dx in the
Sobolev spaces u ∈ W ,

 (�) satisfying the admissible condition u ∈ A. This leads to the
following variational inequalities in the weak sense that for the functions u ∈ W ,

 (�) lying
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in A such that
ˆ

�

A(x)Du · D(φ – u) dx ≥
ˆ

�

f · D(φ – u) dx for all φ ∈A, (.)

where the coefficient A(x) is a d × d matrix satisfying uniform ellipticity, and the non-
homogeneous term f ∈ L(�,Rd). Such a function u ∈ A is called a weak solution if it
satisfies the variational inequalities (.). In the context, we mainly focus on the Calderón-
Zygmund type estimates of |Du|p(x) in the scale of Lorentz spaces L(γ ,q) to weak solutions
of variational inequalities (.) by imposing optimal regular conditions on the leading co-
efficients A(x) and the boundaries of domains ∂�, which implies that

|Dψ |p(x), |f|p(x) ∈ L(γ ,q)(�) �⇒ |Du|p(x) ∈ L(γ ,q)(�) (.)

for every real-valued function p(x) with locally log-Hölder continuity in �, γ ∈ [,∞) and
q ∈ (,∞].

An optimal regularity is always important for mathematics and physics in the classical
functional frame with minimal regular given datum, for example, in the Lebesgue spaces
Lp and Sobolev spaces W ,p with p as a fixed constant in (,∞). In recent decades, many
extensive studies have been made in the field of variable exponent Lebesgue and Sobolev
spaces, Lp(·) and W k,p(·) with k ≥  (cf. [–]) since the pioneering work of Zhikov in [].
Indeed, for some materials with inhomogeneities, such as electrorheological fluids, this is
not enough for energy with constant exponent, but rather the exponent p should be able
to vary. These variable exponent Lebesgue, Sobolev and Lorentz spaces rather than the
classical Sobolev spaces and Lorentz spaces are involved in the area of non-Newtonian
fluids, as the underlying integral energy is naturally arising in the modeling of electrorhe-
ological fluids []. Other areas of application of variable exponent spaces include elastic
mechanics [], porous medium [], and image restoration []. Generally speaking, vari-
ous physical phenomena with strong anisotropy are well described by variable exponent
spaces. This leads us to the study of partial differential equations in the setting of variable
exponent Lebesgue, Sobolev and Lorentz spaces.

Nowadays the classical Calderón-Zygmund theory with constant exponent for elliptic
obstacle problems has been widely studied, for instance, we can refer to Byun et al.’s papers
[, ] and the references therein for the global Lp regularity to various irregular obstacle
problems over a nonsmooth domain. Furthermore, Lorentz spaces are a two-parameter
scale of spaces which refine Lebesgue spaces (cf. []), and there is a large body of literature
on the topic of Lorentz regularity, see [–]. Baroni [, ] obtained Lorentz estimates
for evolutionary p-Laplacian systems and obstacle parabolic p-Laplacian respectively by
using the large-M-inequality principle introduced by Acerbi and Mingione []. Mean-
while, Mengesha and Phuc [] established the gradient estimates in weighted Lorentz
spaces for quasilinear p-Laplacian based on a rather different geometrical approach. Later,
Zhang and Zhou [] extended the result of [] to quasilinear elliptic p(x)-Laplacian
equations also by using a geometrical argument; Adimurthil and Phuc [] proved global
Lorentz and Lorentz-Morrey estimates below the natural exponent for quasilinear equa-
tions; and Zhang and Zheng [, ] studied Lorentz estimates for fully nonlinear parabolic
and elliptic equations with small BMO nonlinearities and weighted Lorentz estimates of
the Hessian of strong solution for nondivergent linear elliptic equations with partially
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BMO coefficients. Our aim of this paper is inspired by two aspects. One is that recently
more attention has been paid to a systematic study on the regularity estimates in variable
exponent Sobolev spaces for divergent and nondivergent elliptic problems, see [, ].
Another is that the new definition is available to our aim for Lorentz spaces with variable
exponent powers proposed by Kempka and Vybíral in [].

Motivated by these recent papers mentioned above, we are interested in minimizing
regular requirements to the variational inequalities (.) imposed on the coefficients and
the boundary of domain, under which the gradient of weak solution is integrable as the in-
homogeneous term and the gradient of obstacle functions in the setting of the generalized
Lorentz spaces with variable exponent powers p(x). Our investigation aim is to attain an
optimal natural extension of such elliptic variational inequalities (.) from Lp-regularity
or L(p,q)-regularity with constant exponents to the setting of variable exponents. It is an
obvious observation that a uniform ellipticity on the coefficients is not enough to ensure
the kind of regularity we mentioned above. To this end, it is necessary to impose some
suitable minimal regular assumptions on the coefficients A(x) and geometric restriction
on the boundary of the domain under the assumption that the given variable exponent
p(x) has log-Hölder continuity. A recent notable achievement is that Kim and Krylov []
got a unified approach to consider the Lp solvability to linear elliptic and parabolic prob-
lems with partially VMO coefficients. Later, these results were generalized to linear elliptic
and parabolic equations/systems in divergence form with (variably) partially BMO/VMO
coefficients by Dong and Kim [–]. Also, Byun et al. in [] attained a global Calderón-
Zygmund estimate to linear elliptic obstacle problems with small partially BMO coeffi-
cients over nonsmooth domain by way of rather different geometrical approaches. More
precisely, in this article we consider the variational inequalities (.) over the Reifenberg
flat domain with the leading coefficients being only measurable in one variable, which al-
lows quite arbitrary discontinuities in that direction, while being small BMO with respect
to the remaining (d – )-variables. In fact, this is a typical situation closely related to the
equation of linear elastic laminates [] and composite materials [] which have been
widely applied to various fields. In addition, we suppose that the boundary of nonsmooth
domain is flat in the sense of Reifenberg introduced in [], which is well approximated by
the two hyperplanes at each point at each scale. As we know, the class of Reifenberg flat
domains contains the domains with rough fractal boundaries. To the best knowledge of
the authors of this paper, this is the first time to consider the regularity in the category of
the Lorentz spaces with variable exponents for the weak solution of variational inequali-
ties (.) under minimal regular assumptions on the leading coefficients and the boundary
of domain. We would like to mention that if the leading coefficients A(x) are only measur-
able, then there could not exist a unique solution to linear elliptic problems even in a very
generalized sense. In , Meyers’ counterexample in [] demonstrates that the gradi-
ent of weak solutions to elliptic equations corresponding to highly oscillatory coefficients
cannot be expected to have higher integrability irrespective of the regularity of the data
f (x). Therefore, requiring the coefficients to satisfy a small partially BMO condition not
only is necessary to achieve higher integrability, but also is the weakest condition so far
even in the Lebesgue spaces Lp with constant exponents.

Note that the variational inequalities (.) are concerned with the Lorentz space with
variable exponent powers p(x) of the gradient of weak solution, so that the techniques from
harmonic analysis, like the Calderón-Zygmund operator, the maximal function operator
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and the sharp maximal function operator, might not be suitable for our estimates. Instead,
we would like to point out that a key ingredient in our argument is the order p(·) being a
variable function, which is highly influenced for variable exponent Sobolev spaces by Byun
et al.’s works [, , ]. This argument is motivated by the so-called maximal function-free
technique in []. To this end, an important point of our approach is to make use of the
modified Vitali type covering argument on the upper-level set

{
x ∈ BR(x) ∩ � : |Du|

p(x)
inf{p(x):x∈BR(x)∩�} > λ

}

with an increasing level for λ sufficiently large, for each point x ∈ � and for some size R
sufficiently small, to derive its proper power decay estimate, see Lemma . in []. This
present paper focuses on considering the estimate of variable exponent powers p(x) for
the gradient of weak solution in the scale of Lorentz spaces to the obstacle problems (.).
Therefore, another key ingredient in the generalized Lorentz spaces is to make use of the
modified version of the classic Hardy inequality and the reverse Hölder inequality, see
Lemmas . and . in [].

Finally, we would like to remark that the obstacle problems provide a basic analysis tool
in the study of variational inequalities and free boundary problems [] for various PDEs,
which are deeply involved in various geometric and potential theory problems such as
capacities of sets or minimal surfaces. In addition, these also arise naturally in the classical
elasticity theory, see [, ]. Therefore, our problem also provides a natural extension of
Byun et al.’s works in [, ] which only studied elliptic equations without obstacles in the
framework of classical Sobolev and variable Sobolev spaces, respectively.

The rest of this paper is organized as follows. In Section  we introduce some related
notations and basic facts. By imposing optimal assumptions on p(·), A(x) and the boundary
of domain �, we finally state our main results. Section  is devoted to establishing some
technical tools and auxiliary results. Finally, the main result is proved in Section .

2 Notations and main result
The section is devoted to introducing some basic notations, facts and stating our main re-
sult concerning the variational inequalities (.). First of all, let us recall some well-known
notations concerning the Lorentz spaces and log-Hölder continuity of p(x). Lorentz spaces
were introduced as a refined generalization of classical Lebesgue spaces.

Definition . Let D be an open subset in R
d . The Lorentz space L(γ ,q)(D) with γ ∈

[, +∞) and q ∈ (, +∞) is the set of measurable functions g : D →R such that

‖g‖L(γ ,q)(D) :=
(

γ

ˆ ∞



(
λγ

∣∣{x ∈D :
∣∣g(x)

∣∣ > λ
}∣∣)

q
γ

dλ

λ

) 
q

< +∞.

For q = ∞, the space L(γ ,∞)(D) is set to be the usual Marcinkiewicz space with quasinorm

‖g‖L(γ ,∞)(D) := sup
λ>

(
λγ

∣∣{x ∈D :
∣∣g(x)

∣∣ > λ
}∣∣)


γ < +∞.
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We remark that if γ = q then the Lorentz space L(γ ,γ )(D) is nothing but the classical
Lebesgue space Lγ (D), which is equivalently defined by

‖g‖Lγ (D) =
(ˆ

D

∣∣g(x)
∣∣γ dx

) 
γ

< +∞.

We would like to mention that Baroni in [, ] studied a local Lorentz regularity of the
gradient for weak solutions of nonlinear elliptic and parabolic problems with small BMO
coefficients based on the approach of the large-M-inequality principle [].

Note that the main point in this paper is that the exponent p(x) is a variable function.
The basic regularity assumption on the variable exponent p(·) is the so-called log-Hölder
continuity, which ensures the most basic operation available. Indeed, Sharapudinov []
was the first person to consider the regularity of the exponent function p(x) with a local
log-Hölder continuity, and from then it is the usual hypothesis for harmonic analysis and
theory of PDEs. Let D be a measurable set of Rd and p(x) : D → [,∞) be a bounded
measurable function.

Definition . We say that p(x) is locally log-Hölder continuous, denote it by p(x) ∈
LH(D), if there exist constants C and δ >  such that, for all x, y ∈ D with |x – y| < δ,
one has

∣∣p(x) – p(y)
∣∣ ≤ C

– log(|x – y|) .

The p(x) is said to be so-called log-Hölder continuous at infinity, denoted by p(x) ∈
LH∞(D), if there exist constants C∞ and p∞ such that, for all x ∈D,

∣∣p(x) – p∞
∣∣ ≤ C∞

log(e + |x|) .

If p(x) is log-Hölder continuous at local point and at infinity also, we denote it by writing
p(x) ∈ LH(D).

It is also worth to mention that log-Hölder continuity in variable exponent is unavoidable
if we want to treat the regularity results in the generalized Lorentz spaces with variable ex-
ponent for elliptic and parabolic problems, see [–, , ] and the references therein. In
what follows, we assume that p(x) : D → R is any log-Hölder continuous function, which
implies that there exist positive constants γ and γ such that

 < γ ≤ p(x) ≤ γ < ∞ ∀x ∈D (.)

and

∣∣p(x) – p(y)
∣∣ ≤ ω

(|x – y|) ∀x, y ∈D, (.)

where ω : [,∞) → [,∞) is a modulus of continuity of p(x). Without loss of gener-
ality, we suppose that ω is a nondecreasing continuous function with ω() = , and
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lim supr→ ω(r) log( 
r ) < ∞. With the above assumptions in hand, it is clear that p(x) ∈

LH(D), and there exists a positive number A such that

ω(r) log

(

r

)
≤ A ⇐⇒ r–ω(r) ≤ eA ∀r ∈ (, ). (.)

It is rather important and ubiquitous in the context for the log-Hölder continuity condition
(.) involved regularity of the exponent function to study various variable exponent prob-
lems. Generally speaking, the log-Hölder condition plays a central role in harmonic anal-
ysis on variable Lebesgue and Sobolev spaces, which ensures that the Hardy-Littlewood
maximal operator is still bounded within the framework of the generalized Lebesgue
spaces, a mollification argument is working, variable Sobolev embedding theorem and
Poincaré inequalities are available. In addition, a key ingredient in the main proof concern-
ing variable exponent problems is usually the so-called perturbation approach by various
local comparisons with these problems of constant local maximal and minimal exponents
p+ and p–, which also leads to an indispensable constant controlled by the log-Hölder
condition (.), for more details, see the main proof in Section .

Now, we suppose that the coefficient matrix A(x) = (aij(x)) : � → R
d×d is uniformly

bounded and elliptic, which means that there exist  < ν ≤ � < ∞ such that

ν|ξ | ≤ A(x)ξ · ξ ≤ �|ξ | ∀x ∈ �, ξ ∈ R
d. (.)

We are in a position to introduce our principal assumptions on the coefficients A(x) and
the geometric structure of the boundary ∂� of domain. To this end, let us recall some
useful notations later. For any fixed point x = (x, . . . , xd) = (x, x′) ∈R

d with x′ = (x, . . . , xd),
we set

Br(x) =
{

y ∈R
d : |x – y| < r

}
, B′

r
(
x′) =

{
y′ ∈R

d– :
∣∣x′ – y′∣∣ < r

}

and

Qr(x) = (x – r, x + r) × B′
r
(
x′).

For convenience, in the context we write Br = Br(), B′
r = B′

r(). We denote the average of
f on Qr with r >  by

f̄Qr =
 

Qr

f (x) dx =


|Qr|
ˆ

Qr

f (x) dx,

where |Qr| is d-dimensional Lebesgue measure of Qr ; and also we denote the (d – )-
dimensional average only with respect to x′ by

f̄B′
r (x) =

 

B′
r

f
(
x, x′)dx′ =


|B′

r|
ˆ

B′
r

f
(
x, x′)dx′,

where |B′
r| is (d – )-dimensional Lebesgue measure of B′

r .
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Assumption . We say that (A,�) with A(x) = (aij(x)) for all i, j = , , . . . , d, is (δ, R)-
vanishing of codimension one if for any x ∈ � and for every number r ∈ (, R] with

dist(x, ∂�) = min
z∈∂�

dist(x, z) >
√

r,

there exists a coordinate system depending on x and r, whose variables are still denoted
by x = (x, x′), such that in the new coordinate system x is the origin and

 

Qr (x)

∣∣A(x) – ĀB′
r (x′

)(x)
∣∣ dx ≤ δ. (.)

While, for any x ∈ � and for every number r ∈ (, R] with

dist(x, ∂�) = min
z∈∂�

dist(x, z) = dist(x, z) ≤ √
r

for some z ∈ ∂�, there exists a coordinate system depending on x and r, whose variables
are still denoted by x = (x, x′), such that in the new coordinate system z is the origin,

Br(z) ∩ {x ≥ δr} ⊂ Br(z) ∩ � ⊂ Br(z) ∩ {x ≥ –δr} (.)

and
 

Qr (z)

∣∣A(x) – ĀB′
r (z′

)(x)
∣∣ dx ≤ δ, (.)

where A(x) is a zero-extension from Qr ∩ � to Qr , the parameters δ >  and R will be
specified later.

Remark . We say that � is (δ, R)-Reifenberg flat if (.) holds in the new coordinate
system. It is worth noticing that if � is (δ, R)-Reifenberg flat, we obtain the following
measure density condition:

sup
<r≤R

sup
x∈∂�

|Br(x)|
|� ∩ Br(x)| ≤

(


 – δ

)d

,

A
∣∣Br(x)

∣∣ ≤ ∣∣Br(x) ∩ �
∣∣ ≤ ( – A)

∣∣Br(x)
∣∣ ∀x ∈ ∂�.

(.)

This implies that the boundary ∂� satisfies the so-called A-type domain, namely, for the
ball Br(x) of radius r centered at x, there exists a positive constant A ∈ (, ) such that the
Lebesgue measure of Br(x) ∩� is comparable to that of Br(x). As a consequence, A-type
domain guarantees a quantified higher integrability of the gradient of weak solutions of the
variational inequalities (.) near the boundary based on the Gehring-Giaquinta-Modica
lemma, see [, , ].

We would like to point out that at each point y and scale r, the coefficient A(x) is allowed
to be merely measurable in one variable, depending on the point and the scale, but it has
a small oscillation in all the other (d – ) variables. Moreover, A(x) has a small mean oscil-
lation in the flat direction near the boundary. Indeed, the δ-Reifenberg flat domain is so
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irregular that its boundary might be fractal and it goes beyond the Lipschitz one, which
is meaningful in the area of geometric measure theory only if δ is small enough. We here
point out that R >  can be selected in an arbitrary way due to the scaling invariant of
Lemma . below. Moreover, δ can be selected later in our main proof in a universal way
so that it depends only on the basic structural constants like d, ν , �, γ, γ and ω(·).

Finally, we are ready to present the main result in this paper.

Theorem . Let p(x) be a variable exponent with range  < γ = inf� p(x) ≤ γ =
sup� p(x) < ∞, q be a constant exponent defined in (,∞] and R > . Then there ex-
ists a positive constant δ such that if for all (A(x),�) is (δ, R)-vanishing of codimension
one shown as Assumption ., for all p(x) satisfying log-Hölder continuity, |Dψ |p(x) and
|f|p(x) belonging to L(γ ,q)(�), then each weak solution u ∈A of variational inequalities (.)
satisfies |Du|p(x) ∈ L(γ ,q)(�) with the estimate

∥∥|Du|p(x)∥∥
L(γ ,q)(�) ≤ C

(∥∥|f|p(x)∥∥
L(γ ,q)(�) +

∥∥|Dψ |p(x)∥∥
L(γ ,q)(�) + 

) γ
γ , (.)

where C = C(d,ν,�,ω(·),γ , q,γ,γ, δ, R, |�|), γ ∈ [,∞) and q ∈ (,∞].

3 Preliminaries
Throughout the paper, we denote by Ci(d,ν,�, . . .) for i = , , . . . , a universal constant
depending only on prescribed quantities and possibly varying from line to line. First, let us
collect some preliminary results, which are useful in our main proof, see [], Section .,
and [], Proposition ..

Proposition . Let D be a bounded measurable subset of Rd . Then the following hold:
() If  < q, q ≤ ∞ and  ≤ γ < γ < ∞, then L(γ,q)(D) ⊂ L(γ,q)(D) with the estimate

‖g‖L(γ,q)(D) ≤ C
(
γ,γ, q, q, |D|)‖g‖L(γ,q)(D). (.)

() If  ≤ γ < ∞ and  < q < q ≤ ∞, then L(γ ,q)(D) ⊂ L(γ ,q)(D) ⊂ L(γ ,∞)(D) with the
estimate

‖g‖L(γ ,q)(D) ≤ C(γ , q, q)‖g‖L(γ ,q)(D). (.)

() If for some  < σ < ∞, |g|σ ∈ L(γ ,q)(D), then g ∈ L(σγ ,σq)(D) with the estimate

∥∥|g|σ ∥∥
L(γ ,q)(D) = ‖g‖σ

L(σγ ,σq)(D). (.)

() If f , g ∈ L(γ ,q)(D), then f + g ∈ L(γ ,q)(D) with the estimate

‖f + g‖L(γ ,q)(D) ≤ C(γ , q)
(‖f ‖L(γ ,q)(D) + ‖g‖L(γ ,q)(D)

)
. (.)

In what follows, we shall show some technical tools. The first inequality we need is a vari-
ant of the classical Hardy inequality, whose proof can be found in [].
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Lemma . Let f : [, +∞) → [, +∞) be a measurable function such that

ˆ ∞


f (α) dα < ∞,

then, for any σ ≥  and for any τ > , there holds

ˆ ∞


ατ

(ˆ ∞

α

f (β) dβ

)σ dα

α
≤ C

ˆ ∞


ατ

(
αf (α)

)σ dα

α
, (.)

where C = C(σ , τ ).

The following reverse Hölder inequality is also a classical consequence that originated
from the famous Gehring-Giaquinta-Modica lemma, also see []. More precisely, we have
the following.

Lemma . Let h : [, +∞) → [, +∞) be a nonincreasing measurable function, σ ≤ σ ≤
∞ and τ > . If σ < ∞, then

(ˆ ∞

α

(
βτ h(β)

)σ dβ

β

) 
σ ≤ εατ h(α) + C

(ˆ ∞

α

(
βτ h(β)

)σ dβ

β

) 
σ

(.)

for every ε ∈ (, ) and for any α ≥ , where C = C(τ , ε,σ,σ). If σ = ∞, then

sup
β>α

βτ h(β) ≤ Cατ h(α) + C
(ˆ ∞

α

(
βτ h(β)

)σ dβ

β

) 
σ

, (.)

where C = C(τ ,σ).

In the process of the main proof, we also make use of the following iterating lemma, which
can be found in [].

Lemma . Let φ be a bounded nonnegative function on [r, r]. Suppose that, for any s,
s with  < r ≤ s ≤ s ≤ r,

φ(s) ≤ θφ(s) +
P

(s – s)θ
+ P, (.)

where the constants P, P ≥ ,  < θ <  and θ > . Then there holds

φ(s) ≤ C
(

P

(s – s)θ
+ P

)

for some positive constant C = C(θ, θ).

According to the classical L solvability to the variational inequalities (.) in line with
the Lax-Milgram theory, there exists a unique weak solution u ∈ A of (.) such that the
following lemma holds, for details also see [].
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Lemma . There is a unique weak solution u ∈A to the variational inequalities (.) such
that we have the estimate

‖Du‖L(�) ≤ C
(‖f‖L(�) + ‖Dψ‖L(�)

)
, (.)

where C = C(d,ν,�).

Now, let us employ the fact that the obstacle problem here considered is invariant under
scaling and normalization. Then the following property is an immediate consequence by
straightforward computations, see Lemma . in [].

Lemma . Fix M >  and  < ρ < , we define

Ã(x) = A(ρx), ũ(x) =
u(ρx)
Mρ

, ψ̃(x) =
ψ(ρx)

Mρ
, f̃(x) =

f(ρx)
M

and the set �̃ = {x/ρ : x ∈ �}. Then we have the following:
() If u ∈A is a weak solution to the variational inequalities (.) in �, then

ũ ∈ Ã =
{
φ ∈ W ,

 (�̃) : φ ≥ ψ̃ , a.e. in �̃
}

is a weak solution to the variational inequalities

ˆ

�̃

Ã(x)Dũ · D(φ̃ – ũ) dx ≥
ˆ

�̃

f̃ · D(φ̃ – ũ) dx, ∀φ̃ ∈ Ã. (.)

() Ã(x) satisfies the basic condition (.) with the same constants ν and �. Moreover,
the regularity Assumption . is invariant with the dilated scale R/ρ .

Finally, we end this section with presenting a necessary auxiliary result concerning a
higher integrability result for (.) in the interior and the boundary version, see []. This
relies on the generalized reverse Hölder inequality first originated from the Gehring-
Giaquinta-Modica lemma, and the boundary setting by using the A-condition of (δ, R)-
Reifenberg flat domain, see Remark .. For the setting of any boundary point, we set

�r := Br ∩ � and ∂w�r := Br ∩ ∂� for any r > .

Lemma .
() Let u ∈A be a weak solution of (.) in Qr ⊂ � for any r > . Suppose |f| and

|Dψ | ∈ Lγ (Qr) for some γ > , then there exists a small positive constant σ such
that, for all σ ≤ σ,

 

Qr

|Du|(+σ ) dx

≤ C
(( 

Qr

|Du| dx
)(+σ )

+
 

Qr

(|F| + |Dψ |)(+σ ) dx
)

(.)

for some positive constant C = C(d,ν,�,γ ).
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() Suppose that � is a (δ, R)-Reifenberg flat domain. Let u ∈A be a weak solution of
(.) in �r and u =  on ∂w�r with

Q+
r ⊂ �r ⊂ Qr ∩ {x > –δr}

for any  < r < R. If |f|, |Dψ | ∈ Lγ (�r) for some γ > , then there exists a small
positive constant σ such that, for all σ ≤ σ,

 

�r

|Du|(+σ ) dx

≤ C
(( 

�r

|Du| dx
)(+σ )

+
 

�r

(|F| + |Dψ |)(+σ ) dx
)

(.)

for some positive constant C = C(d,ν,�,γ , δ, R).

4 Proof of the main result
In this section, we focus on the proof of main Theorem .. First, let us begin this sec-
tion with the a priori assumption that the unique weak solution u ∈ A of the variational
inequalities (.) satisfies

∥∥|Du|p(x)∥∥
L(γ ,q)(�) < ∞. (.)

We also assume that (A(x),�) is (δ, R)-vanishing of codimension one, where R ≤  is a
given number, while δ is to be determined later. Let R ∈ (, R/(|�| + )) and x ∈ � be
fixed, we localize our interest in the region �R(x) and write

 < γ ≤ p– = inf
�R(x)

p(x) ≤ p+ = sup
�R(x)

p(x) ≤ γ < ∞ (.)

and

λ =
 

�R(x)
|Du|

p(x)
p– dx +


δ

( 

�R(x)

(|f|
p(x)

p– + |Dψ |
p(x)

p– + 
)η dx

) 
η

> , (.)

where η > , and small δ >  will be specified later. We would like to remark that the δ-
flatness Reifenberg condition (.) for the boundary of domain is meaningful in the area
of geometric measure theory only if δ is small enough, see []. For any τ, τ with  ≤ τ <
τ ≤ , we denote an upper-level set by

E(λ) =
{

x ∈ �τR(x) : |Du|
p(x)

p– > λ
}

,

where λ is large enough such that

λ >
(




)d( 
τ – τ

)d

λ. (.)

We observe from the upper-level set that

�r(y) ⊂ �R(x), ∀y ∈ E(λ) and  < r ≤ (τ – τ)R.
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Fix any point y ∈ E(λ), we consider a continuous function �y(r) defined by

�y(r) =
 

�r (y)
|Du|

p(x)
p– dx

+

δ

( 

�r (y)

(|f|
p(x)

p– + |Dψ |
p(x)

p– )η dx
) 

η

,  < r ≤ (τ – τ)R. (.)

The Lebesgue differentiation theorem implies that

lim
r→

�y(r) > λ for almost every y ∈ E(λ).

On the other hand, if (τ – τ)R/ ≤ r ≤ (τ – τ)R, then by using the fact that η >  and
the Reifenberg flat boundary satisfies the measure density condition, see Remark ., we
have

�y(r) ≤ |�R(x)|
|�r(y)|

 

�R(x)
|Du|

p(x)
p– dx

+
( |�R(x)|

|�r(y)|
) 

η 
δ

( 

�R(x)

(|f|
p(x)

p– + |Dψ |
p(x)

p– )η dx
) 

η

≤ |�R(x)|
|�r(y)|

( 

�R(x)
|Du|

p(x)
p– dx +


δ

( 

�R(x)

(|f|
p(x)

p– + |Dψ |
p(x)

p– )η dx
) 

η
)

≤ |Br(y)|
|� ∩ Br(y)|

|BR(x)|
|Br(y)| λ

≤
(


 – δ

)d( 
τ – τ

)d

λ

≤
(




)d( 
τ – τ

)d

λ.

Putting the above formula into assumption (.) yields

�y(r) < λ, ∀y ∈ E(λ) and ∀r ∈ [
(τ – τ)R/, (τ – τ)R

]
.

Consequently, we conclude that for almost every y ∈ E(λ), there exists ry = r(y) ∈ (,
(τ – τ)R/) such that

�y(ry) = λ and �y(r) < λ ∀r ∈ (
ry, (τ – τ)R

]
. (.)

Then we infer the following lemma from the well-known Vitali covering lemma due to the
property of ry.

Lemma . Let λ satisfy (.). Then there exists a disjoint family {�ryi
(yi)}∞i= with yi ∈ E(λ)

and ryi ∈ (, (τ – τ)R/) such that

�yi (ryi ) = λ and �yi (r) < λ for all r ∈ (
ryi , (τ – τ)R

]
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and

E(λ) ⊂
∞⋃

i=

�ryi
(yi).

Lemma . Under the same hypothesis as in Lemma ., we have

∣∣�ryi
(yi)

∣∣ ≤ C
(∣∣�ryi

(yi) ∩ E(λ/)
∣∣ +


(ςλ)η

ˆ ∞

ςλ

μη
∣∣{x ∈ �ryi

(yi) : |f|
p(x)

p– > μ
}∣∣dμ

μ

+


(ςλ)η

ˆ ∞

ςλ

μη
∣∣{x ∈ �ryi

(yi) : |Dψ |
p(x)

p– > μ
}∣∣dμ

μ

)
,

where ς = δ/ and C = C(d,ν,�).

Proof With Lemma . in hand, we then have that one of the following results must hold:

 

�ryi (yi)
|Du|

p(x)
p– dx ≥ λ


,

 

�ryi (yi)
|f|

p(x)
p– η dx ≥

(
δλ



)η

and

 

�ryi (yi)
|Dψ |

p(x)
p– η dx ≥

(
δλ



)η

.

For the first setting, let us take any

 < ε < min

{
γ( + σ)
γ + ω(R)

– ,
γ p–


– 

}
, (.)

where σ = min{σ,σ} is the same as in Lemma . which is concerned with the higher
integrability of Du, and γ ∈ [,∞). It yields the following inequality:

p(x)
p– ( + ε) =

(
 +

p(x) – p–

p–

)
( + ε) ≤

(
 +

ω(R)
γ

)
( + ε) <  + σ ≤ γ.

Then, by an additivity of the integral with respect to the domain and Hölder’s inequality,
we get

λ


∣∣�ryi

(yi)
∣∣ ≤

ˆ

�ryi (yi)∩E(λ/)
|Du|

p(x)
p– dx +

ˆ

�ryi (yi)\E(λ/)
|Du|

p(x)
p– dx

≤ ∣∣�ryi
(yi) ∩ E(λ/)

∣∣– 
+ε

(ˆ

�ryi (yi)∩E(λ/)
|Du|

p(x)
p– (+ε) dx

) 
+ε

+
λ


∣∣�ryi

(yi)
∣∣,

which yields

λ
∣∣�ryi

(yi)
∣∣– 

+ε ≤ C
∣∣�ryi

(yi) ∩ E(λ/)
∣∣– 

+ε

( 

�ryi (yi)
|Du|

p(x)
p– (+ε) dx

) 
+ε

. (.)
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Furthermore, on the basis of higher integrability of the gradient to weak solutions for the
variational inequalities (.) in lines with Lemma ., we obtain

( 

�ryi (yi)
|Du|

p(x)
p– (+ε) dx

) 
+ε

≤ C

( 

�ryi (yi)
|Du|

p(x)
p– dx +

( 

�ryi (yi)

(|f|
p(x)

p– + |Dψ |
p(x)

p– )(+ε) dx
) 

+ε
)

.

Now we take η =  + ε, using Lemma . yields

( 

�ryi (yi)
|Du|

p(x)
p– (+ε) dx

) 
+ε ≤ Cλ.

Putting the above formula into (.), we have

∣∣�ryi
(yi)

∣∣ ≤ C
∣∣�ryi

(yi) ∩ E(λ/)
∣∣. (.)

For the second setting, we have

(
δλ



)η∣∣�ryi
(yi)

∣∣ ≤
ˆ

�ryi (yi)
|f|

p(x)
p– η dx

= η

ˆ ∞


μη

∣∣{x ∈ �ryi
(yi) : |f|

p(x)
p– > μ

}∣∣dμ

μ

≤ (ςλ)η
∣∣�ryi

(yi)
∣∣ + η

ˆ ∞

ςλ

μη
∣∣{x ∈ �ryi

(yi) : |f|
p(x)

p– > μ
}∣∣dμ

μ
.

Taking ς = δ/, we get

∣∣�ryi
(yi)

∣∣ ≤ C

(ςλ)η

ˆ ∞

ςλ

μη
∣∣{x ∈ �ryi

(yi) : |f|
p(x)

p– > μ
}∣∣dμ

μ
. (.)

We now estimate the third setting in a similar way, just as doing it in the second setting,
and conclude that

∣∣�ryi
(yi)

∣∣ ≤ C

(ςλ)η

ˆ ∞

ςλ

μη
∣∣{x ∈ �ryi

(yi) : |Dψ |
p(x)

p– > μ
}∣∣dμ

μ
. (.)

Finally, putting the three cases (.), (.) and (.) together completes the proof of
Lemma .. �

For any fixed point yi and scale ryi , there are now two possible cases. One is the interior
case that Bryi

(yi) ⊆ �. The other is the boundary case that Bryi
(yi) � �. We first look

at the interior case. Since A(x) is (δ, R)-vanishing of codimension one, we assume that in
a new coordinate system (x, . . . , xd), the origin is yi and

 

Qryi (yi)

∣
∣A(x) – ĀB′

ryi
(y′

i)
(x)

∣∣ dx ≤ δ. (.)
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For convenience, we write

p–
i = inf

x∈Qryi (yi)
p(x) and p+

i = sup
x∈Qryi (yi)

p(x).

From Lemma . and the definition of �yi (ryi ), we have

 

Qryi (yi)
|Du|

p(x)
p– dx ≤ λ and

( 

Qryi (yi)

(|f|
p(x)

p– + |Dψ |
p(x)

p– )η dx
) 

η

≤ δλ. (.)

By the re-scaling transformation and perturbation approach based on a local comparison,
we obtain

 

Qryi (yi)
|Du| dx ≤ Cλ

p–
p+

i and
 

Qryi (yi)

(|f| + |Dψ |)dx ≤ Cλ
p–
p+

i δ
γ
γ (.)

for some constant C ≥  independent of i, and γ, γ shown as in (.). In fact, let A =
‖|f|p(x)‖L(γ ,q)(�) + ‖|Dψ |p(x)‖L(γ ,q)(�) +  ≥ . A direct computation yields that

( 

Qryi (yi)
|Du| dx

)p+
i –p–

i
=

(


|Qryi
(yi)|

)p+
i –p–

i
(ˆ

Qryi (yi)
|Du| dx

)p+
i –p–

i

≤ C

(


ryi

)dω(ryi )(ˆ

�

|Du| dx
)p+

i –p–
i

≤ C

(ˆ

�

|Du| dx
)p+

i –p–
i
, (.)

where we used (.) based on the log-Hölder condition in the last inequality. On the other
hand, by making use of the standard L estimates from Lemma . and Proposition .
due to γ γ

 >  for γ ∈ [,∞) and q ∈ (,∞], we obtain

ˆ

�

|Du| dx ≤ C

(ˆ

�

|f| dx +
ˆ

�

|Dψ | dx
)

≤ C

(ˆ

�

|f| p(x)
γ dx +

ˆ

�

|Dψ | p(x)
γ dx + |�|

)

≤ C
(∥∥|f| p(x)

γ
∥∥

L( γ γ
 , qγ

 )(�)
+

∥∥|Dψ | p(x)
γ

∥∥
L( γ γ

 , qγ
 )(�)

+ |�|)

= C
(∥∥|f|p(x)∥∥


γ
L(γ ,q)(�) +

∥∥|Dψ |p(x)∥∥

γ
L(γ ,q)(�) + |�|),

which leads to
ˆ

�

|Du| dx ≤ CA
(
 + |�|).

Then we conclude

( 

Qryi (yi)
|Du| dx

)p+
i –p–

i ≤ C
(
CA

(
 + |�|))p+

i –p–
i .
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Recalling (|�| + ) < R
R ≤ 

R ≤ 
ryi

and (.) yields

( 

Qryi (yi)
|Du| dx

)p+
i –p–

i ≤ CAp+
i –p–

i


(


ryi

)ω(ryi )

≤ CAp+
i –p–

i
 ,

which follows from A ≥  that

( 

Qryi (yi)
|Du| dx

) p+
i –p–

i
p+

i ≤ CA
p+

i –p–
i

p+
i

 ≤ CA. (.)

Using (.) and Jensen’s inequality yields

 

Qryi (yi)
|Du| dx =

( 

Qryi (yi)
|Du| dx

) p+
i –p–

i
p+

i
( 

Qryi (yi)
|Du| dx

) p–
i

p+
i

≤ CA

( 

Qryi (yi)
|Du| dx

) p–
i

p+
i

≤ CA

( 

Qryi (yi)
|Du|

p–
i

p– dx
) p–

p+
i

≤ CA

( 

Qryi (yi)
|Du|

p(x)
p– dx + 

) p–
p+

i .

Since λ > , by (.) we get the first desired inequality in (.) by taking C = CA.
Likewise, we derive that

 

Qryi (yi)

(|f| + |Dψ |)dx ≤ C

( 

Qryi (yi)

(|f|
p(x)

p– + |Dψ |
p(x)

p– )
dx + 

) p–
p+

i

≤ C

(( 

Qryi (yi)

(|f|
p(x)

p– + |Dψ |
p(x)

p– )η dx
) 

η

+ 
) p–

p+
i

≤ C(δλ + δλ)
p–
p+

i ≤ Cλ
p–
p+

i δ
γ
γ ,

where we also employ (.) in the third inequality.
Define

ũi(x) =
u(ryi x)

ryi

√

Cλ
p–
p+

i

, ψ̃i(x) =
ψ(ryi x)

ryi

√

Cλ
p–
p+

i

,

f̃i(x) =
f(ryi x)
√

Cλ
p–
p+

i

, Ãi(x) = A(ryi x).

By using Lemma ., we get that ũi(x) ∈ Ãi := {φi ∈ W ,(Q) : φi ≥ ψ̃i, a.e. in Q} is a weak
solution of

ˆ

Q

Ãi(x)DũiD(φ̃i – ũi) dx ≥
ˆ

Q

f̃iD(φ̃i – ũi) dx for all φ̃i ∈ Ãi.
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Moreover, using (.) and (.), by a straightforward computation, we have

 

Q

∣∣A(x) – ĀB′

(x)

∣∣ ≤ δ,
 

Q

|Dũ| dx ≤  and
 

Q

(|f̃| + |Dψ̃ |)dx ≤ δ
γ
γ .

Thus, by Lemmas . and . in [], we find that for any ε > , there exist a constant δ > 
and a function ṽi ∈ W ,(Q) to be a weak solution of

div
(
ÃiB′


(x)Dṽi

)
=  in Q,

such that
 

Q

∣∣D(ũi – ṽi)
∣∣ dx ≤ ε and ‖Dṽi‖

L∞(Q) ≤ N

with a constant N being independent of i. Scaling back and denoting vi by the translated
function of

ṽi(x) =
vi(ryi x)

ryi

√

Cλ
p–
p+

i

,

we conclude that

 

Qryi (yi)

∣∣D(u – vi)
∣∣ dx ≤ Cλ

p–
p+

i ε and ‖Dvi‖
L∞(Qryi

(yi)) ≤ Nλ
p–
p+

i (.)

for some constant N = NC ≥ , being independent of i.
We next consider the boundary case that dist{yi, ∂�} = |yi – y| ≤ ryi for y ∈ ∂�.

Let us recall that ryi < (τ – τ)R/ < R/ and the geometry (.) of the boundary of
Reifenberg flat domain, we have the following property: for any point y on the bound-
ary of �, there exists a coordinate system {x, . . . , xd} with the origin lining somewhere in
�ryi δ

(y) such that in this new coordinate system one has

Q+
ryi

⊂ �ryi
⊂ Qryi

∩ {x > –ryiδ}

and
 

Qryi

∣∣A(x) – ĀB′
ryi

(x)
∣∣ dx ≤ δ.

Let us now select δ so small such that  < δ < 
 , which yields |yi| < ( + )ryi = ryi and

�ryi
(yi) ⊂ �ryi

⊂ �ryi
⊂ �ryi

(yi). (.)

We write

p–
i = inf

x∈�ryi
(yi)

p(x) and p+
i = sup

x∈�ryi
(yi)

p(x).
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By Lemma ., we derive that

 

�ryi

|Du|
p(x)

p– dx ≤ |�ryi
(yi)|

|�ryi
|

 

�ryi
(yi)

|Du|
p(x)

p– dx ≤ Cλ

and

( 

�ryi

(|f|
p(x)

p– + |Dψ |
p(x)

p– )η dx
) 

η

≤
( |�ryi

(yi)|
|�ryi

|
) 

η
( 

�ryi
(yi)

(|f|
p(x)

p– + |Dψ |
p(x)

p– )η dx
) 

η

≤ Cδλ,

where the constant C depends only on d. Once we have the above uniform bounds, one
can find in the same sprit as in the interior case that

 

�ryi

|Du| dx ≤ Cλ
p–
p+

i and
 

�ryi

(|f| + |Dψ |)dx ≤ Cλ
p–
p+

i δ
γ
γ

for some constant C = CA ≥ , being independent of i. In a similar way that we have
used for the interior case, also see Lemma . in [], for any ε ∈ (, ), there exist a small
positive number δ and a function vi ∈ W ,(Q+

ryi
) such that

 

�ryi

∣∣D(u – v̄i)
∣∣ dx ≤ Cλ

p–
p+

i ε and ‖Dv̄i‖
L∞(�ryi

) ≤ Nλ
p–
p+

i (.)

for the constant N ≥  only dependent of C. Here we have extended vi by zero from
Q+

ryi
to Qryi

and also denote it by v̄i. Let us write N = max{N, N} being large enough,
which is independent of the index i. For convenience, we also write

A = (N)
γ
γ > , B =

(



)d( 
τ – τ

)d

. (.)

Lemma . Let R > . For any fixed  < ε < , we can find a small constant δ >  such that
if (A(x),�) is (δ, R)-vanishing codimension one and u ∈ A is a weak solution of (.), then
for any  ≤ τ < τ ≤  we have

∣∣E(Aλ)
∣∣ ≤ Cε

(∣∣�τR(x) ∩ E(λ/)
∣∣

+


(ςλ)η

ˆ ∞

ςλ

μη
∣∣{x ∈ �τR(x) : |f|

p(x)
p– > μ

}∣∣dμ

μ

+


(ςλ)η

ˆ ∞

ςλ

μη
∣∣{x ∈ �τR(x) : |Dψ |

p(x)
p– > μ

}∣∣dμ

μ

)

for all λ > Bλ, ς = δ/ and C = C(d,ν,�,ω(·),γ,γ, R).
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Proof By Lemma . and the fact that E(Aλ) ⊂ E(λ) for A >  as mentioned in (.), we
obtain that {�ryi

(yi)} cover almost all E(Aλ). Thus,

∣∣E(Aλ)
∣∣ =

∣∣{x ∈ �τR(x) : |Du|
p(x)

p– > Aλ
}∣∣

≤
∞∑

i=

∣∣{x ∈ �ryi
(yi) : |Du| > (Aλ)

p–
p(x)

}∣∣

≤
∑

i: interior case

∣∣{x ∈ �ryi
(yi) : |Du| > (Aλ)

p–
p(x)

}∣∣

+
∑

i: boundary case

∣∣{x ∈ �ryi
(yi) : |Du| > (Aλ)

p–
p(x)

}∣∣. (.)

For the interior estimate, using the fact that |Du| ≤ |D(u – vi)| + |Dvi|, �ryi
(yi) =

Qryi
(yi) and Eq. (.), we find that

∣∣{x ∈ Qryi
(yi) : |Du| > (Aλ)

p–
p(x)

}∣∣

≤ ∣∣{x ∈ Qryi
(yi) :

∣∣D(u – vi)
∣∣ > Nλ

p–
p+

i
}∣∣ +

∣∣{x ∈ Qryi
(yi) : |Dvi| > Nλ

p–
p+

i
}∣∣

≤ 

Nλ
p–
p+

i

ˆ

Qryi (yi)

∣∣D(u – vi)
∣∣ dx

≤ Cλ
p–
p+

i ε|Qryi
(yi)|

NCλ
p–
p+

i

≤ Cε
∣∣Qryi

(yi)
∣∣,

which implies

∣∣{x ∈ �ryi
(yi) : |Du| > (Aλ)

p–
p(x)

}∣∣ ≤ Cε
∣∣Qryi

(yi)
∣∣. (.)

For the boundary case, we carry out the same procedure as in (.) with Eq. (.) to
discover that

∣∣{x ∈ �ryi
: |Du| > (Aλ)

p–
p(x)

}∣∣ ≤ Cε|�ryi
|.

Then, using the measure density condition (.) and the geometry of Reifenberg flatness
(.), we conclude that

∣∣{x ∈ �ryi
(yi) : |Du| > (Aλ)

p–
p(x)

}∣∣ ≤ Cε
∣∣�ryi

(yi)
∣∣. (.)

Inserting (.) and (.) into (.), we get

∣∣E(Aλ)
∣∣ ≤ Cε

∞∑

i=

∣∣�ryi
(yi)

∣∣,
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where C = max{C, C}. Furthermore, by using Lemma ., we obtain

∣∣E(Aλ)
∣∣ ≤ Cε

∞∑

i=

(∣∣�ryi
(yi) ∩ E(λ/)

∣∣

+


(ςλ)η

ˆ ∞

ςλ

μη
∣∣{x ∈ �ryi

(yi) : |f|
p(x)

p– > μ
}∣∣dμ

μ

+


(ςλ)η

ˆ ∞

ςλ

μη
∣∣{x ∈ �ryi

(yi) : |Dψ |
p(x)

p– > μ
}∣∣dμ

μ

)

for all λ > Bλ and ς = δ/. Note that {�ryi
(yi)} are non-overlapping in �τR(x), then the

required result follows. �

Proof of Theorem . We divide it into two steps: we first attain the estimate under the
assumption of (.); then we prove assumption (.).

Step . Let us first establish a global estimate to the variational inequalities (.) under
the a priori assumption (.). In the case  < q < ∞, thanks to (.) in Proposition . in
hand, we have

∥∥|Du|p(x)∥∥q
L(γ ,q)(�τR(x)) =

∥∥|Du| p(x)
p–

∥∥
p–
 q

L( γ p–
 , qp–

 )(�τR(x))

=
γ p–



ˆ ∞



(
α

γ p–


∣∣{x ∈ �τR(x) : |Du|
p(x)

p– > α
}∣∣)

q
γ

dα

α
.

By using the change of variables, a direct calculation shows that

∥∥|Du|p(x)∥∥q
L(γ ,q)(�τR(x))

=
γ p–


A

qp–


ˆ ∞


λ

qp–


∣∣{x ∈ �τR(x) : |Du| p(x)
p– > Aλ

}∣∣
q
γ

dλ

λ

=
γ p–


A

qp–


ˆ Bλ


λ

qp–


∣∣E(Aλ)
∣∣

q
γ

dλ

λ
+

γ p–


A

qp–


ˆ ∞

Bλ

λ
qp–


∣∣E(Aλ)

∣∣
q
γ

dλ

λ

:= I + I. (.)

To estimate I, inserting A and B into (.) yields

I ≤ C
∣∣�R(x)

∣∣
q
γ (ABλ)

qp–
 ≤ C

|�R(x)| q
γ

(τ – τ)
dqγ


(λ)

qp–
 .

For the estimate of I, using Lemma ., for any  < ε <  we have

I ≤ Cε
q
γ

ˆ ∞

Bλ

λ
qp–



(∣∣�τR(x) ∩ E(λ/)
∣∣

+


(ςλ)η

ˆ ∞

ςλ

μη
∣∣{x ∈ �τR(x) : |f|

p(x)
p– > μ

}∣∣dμ

μ

+


(ςλ)η

ˆ ∞

ςλ

μη
∣∣{x ∈ �τR(x) : |Dψ |

p(x)
p– > μ

}∣∣dμ

μ

) q
γ dλ

λ
.
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Note that

(A + A + A)m ≤ max
{

m–, 
}(

Am
 + Am

 + Am

)

for any Ai > , i = , , , and m > , therefore we obtain

I ≤ Cε
q
γ

(ˆ ∞

Bλ

λ
qp–


∣∣�τR(x) ∩ E(λ/)

∣∣
q
γ

dλ

λ

+
ˆ ∞

Bλ

λ
qp–



(


(ςλ)η

ˆ ∞

ςλ

μη
∣∣{x ∈ �τR(x) : |f|

p(x)
p– > μ

}∣∣dμ

μ

) q
γ dλ

λ

+
ˆ ∞

Bλ

λ
qp–



(


(ςλ)η

ˆ ∞

ςλ

μη
∣∣{x ∈ �τR(x) : |Dψ |

p(x)
p– > μ

}∣∣dμ

μ

) q
γ dλ

λ

)

:= Cε
q
γ (I + I + I). (.)

To estimate I, a simple computation yields

I ≤
ˆ ∞


λ

qp–


∣∣�τR(x) ∩ E(λ/)
∣∣

q
γ

dλ

λ

≤ C
∥∥|Du|p(x)∥∥q

L(γ ,q)(�τR(x)).

To estimate I, we examine it in two cases.
Case . If q ≥ γ , by using Hardy’s inequality showed in Lemma . and the change of

variables, we get

I ≤ C

ˆ ∞


λ

qp–


(


(ςλ)η
(ςλ)η

∣∣{x ∈ �τR(x) : |f|
p(x)

p– > ςλ
}∣∣

) q
γ dλ

λ

= C

ˆ ∞


λ

qp–


∣∣{x ∈ �τR(x) : |f|
p(x)

p– > ςλ
}∣∣

q
γ

dλ

λ

≤ C
∥∥|f|p(x)∥∥q

L(γ ,q)(�τR(x)).

Case .  < q < γ , we use the reverse Hölder inequality in Lemma . and get

(ˆ ∞

ςλ

μη
∣∣{x ∈ �τR(x) : |f|

p(x)
p– > μ

}∣∣dμ

μ

) q
γ

≤ (
(ςλ)η

∣∣{x ∈ �τR(x) : |f|
p(x)

p– > ςλ
}∣∣)

q
γ

+ C

ˆ ∞

ςλ

(
μη

∣∣{x ∈ �τR(x) : |f|
p(x)

p– > μ
}∣∣)

q
γ

dμ

μ
,

which yields

I ≤
ˆ ∞


λ

qp–


(


(ςλ)η
(ςλ)η

∣∣{x ∈ �τR(x) : |f|
p(x)

p– > ςλ
}∣∣

) q
γ dλ

λ

+ C

ˆ ∞


λ

qp–


(


(ςλ)η

) q
γ
ˆ ∞

ςλ

(
μη

∣∣{x ∈ �τR(x) : |f|
p(x)

p– > μ
}∣∣)

q
γ

dμ

μ

dλ

λ
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≤ C

ˆ ∞


λ

qp–


∣∣{x ∈ �τR(x) : |f|
p(x)

p– > ςλ
}∣∣

q
γ

dλ

λ

≤ C
∥∥|f|p(x)∥∥q

L(γ ,q)(�τR(x)),

where we also employ Hardy’s inequality of Lemma . in the second inequality. For the
estimate of I, using the same way as for the estimate I above, we obtain

I ≤ C
∥∥|Dψ |p(x)∥∥q

L(γ ,q)(�τR(x)).

Putting I, I, I into (.) implies

I ≤ Cε
q
γ
(∥∥|Du|p(x)∥∥q

L(γ ,q)(�τR(x)) +
∥∥|f|p(x)∥∥q

L(γ ,q)(�τR(x)) +
∥∥|Dψ |p(x)∥∥q

L(γ ,q)(�τR(x))

)
.

Putting the estimates I and I into (.), we deduce that

∥∥|Du|p(x)∥∥q
L(γ ,q)(�τR(x))

≤ Cε
q
γ
∥∥|Du|p(x)∥∥q

L(γ ,q)(�τR(x)) + C
|�R(x)| q

γ

(τ – τ)
dqγ


(λ)

qp–


+ C
(∥∥|f|p(x)∥∥q

L(γ ,q)(�τR(x)) +
∥∥|Dψ |p(x)∥∥q

L(γ ,q)(�τR(x))

)
.

Set �(τi) = ‖|Du|p(x)‖q
L(γ ,q)(�τiR(x)) for i = , . Let δ be sufficiently small in Lemma ., and

we now select sufficiently small ε >  such that

 < Cε
q
γ <




,

which yields

�(τ) ≤ 

�(τ) + C

|�R(x)| q
γ

(τ – τ)
dqγ


(λ)

qp–


+ C
(∥∥|f|p(x)∥∥q

L(γ ,q)(�τR(x)) +
∥∥|Dψ |p(x)∥∥q

L(γ ,q)(�τR(x))

)

for any τ, τ with  ≤ τ < τ ≤ . We then apply the iterating Lemma . and derive

∥∥|Du|p(x)∥∥q
L(γ ,q)(�R(x))

≤ C
∣∣�R(x)

∣∣
q
γ (λ)

qp–


+ C
(∥∥|f|p(x)∥∥q

L(γ ,q)(�R(x)) +
∥∥|Dψ |p(x)∥∥q

L(γ ,q)(�R(x))

)
.

Now, we recall the definition of λ in (.) and obtain

∥∥|Du|p(x)∥∥q
L(γ ,q)(�R(x))

≤ C
∣∣�R(x)

∣∣
q
γ

( 

�R(x)
|Du|

p(x)
p– dx
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+

δ

( 

�R(x)

(|f|
p(x)

p– + |Dψ |
p(x)

p– + 
)η dx

) 
η
) qp–



+ C
(∥∥|f|p(x)∥∥q

L(γ ,q)(�R(x)) +
∥∥|Dψ |p(x)∥∥q

L(γ ,q)(�R(x))

)
. (.)

To estimate the first item on the right-hand side of (.), notice that

p+

p– = 
(

 +
p+ – p–

p–

)

≤ 
(

 +
ω(R)

γ

)

< ( + σ)

≤ γ γ

≤ γ p–, (.)

where σ = min{σ,σ} is the same as Lemma . for γ ∈ [,∞). Then it yields

( 

�R(x)
|Du|

p(x)
p– dx

) qp–


≤
( 

�R(x)
|Du| p+

p– dx + 
) qp–



≤ C

(( 

�R(x)
|Du| dx

) p+
p–

+
 

�R(x)

(|f| + |Dψ |)
p+
p– dx + 

) qp–


, (.)

where we have employed the reverse Hölder inequality in the last inequality. By using
the standard L estimate as Lemma ., and the embedding inequality due to γ γ

 >  for
γ ∈ [,∞) and q ∈ (,∞],we have

(( 

�R(x)
|Du| dx

) p+
p– ) qp–



≤
(


|�R(x)|

) qp+


(ˆ

�

|Du| dx
) qp+



≤ C

(


|�R(x)|
) qp+


(ˆ

�

|f| dx +
ˆ

�

|Dψ | dx
) qp+



≤ C

(


|�R(x)|
) qp+


(ˆ

�

|f| p(x)
γ dx +

ˆ

�

|Dψ | p(x)
γ dx + |�|

) qp+


≤ C

(


|�R(x)|
) qp+

 (∥∥|f| p(x)
γ

∥∥
L( γ γ

 , qγ
 )(�)

+
∥∥|Dψ | p(x)

γ
∥∥

L( γ γ
 , qγ

 )(�)
+ 

) qp+


= C

(


|�R(x)|
) qp+

 (∥∥|f|p(x)∥∥

γ
L(γ ,q)(�) +

∥∥|Dψ |p(x)∥∥

γ
L(γ ,q)(�) + 

) qγ


p+
γ

≤ C

(


|�R(x)|
) qp+

 (∥∥|f|p(x)∥∥q
L(γ ,q)(�) +

∥∥|Dψ |p(x)∥∥q
L(γ ,q)(�) + 

) γ
γ . (.)
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In a similar way as above, we also get the following estimate. In fact, we again use (.)
for the embedding theory and employ the fact that  < R <  to obtain

( 

�R(x)

(|f| + |Dψ |)
p+
p– dx

) qp–


≤ C

( 

�R(x)

(|f|
p(x)

p– + |Dψ |
p(x)

p– ) p+
p– dx + 

) qp–


≤ C

(


|�R(x)|
) qp–

 (∥∥|f|
p(x)

p–
∥∥

L
p+
p– (�)

+
∥∥|Dψ |

p(x)
p–

∥∥
L

p+
p– (�)

+ 
) p+

p–
qp–



≤ C

(


|�R(x)|
) qp+

 (∥∥|f|
p(x)

p–
∥∥

L( γ p–
 , qp–

 )(�)
+

∥∥|Dψ |
p(x)

p–
∥∥

L( γ p–
 , qp–

 )(�)
+ 

) qp+


≤ C

(


|�R(x)|
) qp+

 (∥∥|f|p(x)∥∥q
L(γ ,q)(�) +

∥∥|Dψ |p(x)∥∥q
L(γ ,q)(�) + 

) γ
γ . (.)

Putting (.) and (.) into (.) deduces

( 

�R(x)
|Du|

p(x)
p– dx

) qp–


≤ C

(


|�R(x)|
) qp+

 (∥∥|f|p(x)∥∥q
L(γ ,q)(�) +

∥∥|Dψ |p(x)∥∥q
L(γ ,q)(�) + 

) γ
γ . (.)

Now we are in a position to estimate the second item on the right-hand side of (.).
Since η =  + ε for sufficiently small ε >  as the limit of (.), we have η < γ p–. Then, for
any γ ∈ [,∞), by the embedding inequality it follows that

( 

�R(x)

(|f|
p(x)

p– + |Dψ |
p(x)

p– + 
)η dx

) qp–
η

≤ C

(


|�R(x)|
) qp–

η (∥∥|f|p(x)∥∥
L

η
p– (�R(x))

+
∥∥|Dψ |p(x)∥∥

L
η
p– (�R(x))

+ 
)q

≤ C

(


|�R(x)|
) qp+

 (∥∥|f|p(x)∥∥
L

η
p– (�)

+
∥∥|Dψ |p(x)∥∥

L
η
p– (�)

+ 
)q

≤ C

(


|�R(x)|
) qp+

 (∥∥|f|p(x)∥∥q
L(γ ,q)(�) +

∥∥|Dψ |p(x)∥∥q
L(γ ,q)(�) + 

)
. (.)

Putting (.) and (.) into (.), we have

∥∥|Du|p(x)∥∥q
L(γ ,q)(�R(x))

≤ C
(∣∣�R(x)

∣∣

γ – γ


)q(∥∥|f|p(x)∥∥q

L(γ ,q)(�) +
∥∥|Dψ |p(x)∥∥q

L(γ ,q)(�) + 
) γ

γ . (.)

The rest of Step  is to use the standard finite covering argument to obtain the global
estimate. In fact, since � is compact in R

d , there exist finitely many points xk
 ∈ �, k =
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, , . . . , N and the corresponding Rk such that � =
⋃N

k= �Rk (xk
). Therefore,

∥∥|Du|p(x)∥∥q
L(γ ,q)(�) ≤

N∑

k=

∥∥|Du|p(x)∥∥q
L(γ ,q)(�Rk (xk

)).

Now, thanks to estimate (.), it yields

∥∥|Du|p(x)∥∥q
L(γ ,q)(�)

≤ C

N∑

k=

(∣∣�Rk

(
xk


)∣∣


γ – γ


)q(∥∥|f|p(x)∥∥q

L(γ ,q)(�) +
∥∥|Dψ |p(x)∥∥q

L(γ ,q)(�) + 
) γ

γ

≤ C
(∥∥|f|p(x)∥∥q

L(γ ,q)(�) +
∥∥|Dψ |p(x)∥∥q

L(γ ,q)(�) + 
) γ

γ ,

where C is a constant depending only on d, ν , �, ω(·), γ , q, δ, R and |�|. The proof of
q = ∞ is even simpler. Here for briefness we omit it, the reader may also refer to Section .
in [] for the case of q = ∞.

Step . The remainder of our proof for Theorem . is to remove the assumption
|Du|p(x) ∈ L(γ ,q)(�) via an approximation procedure. To do this, let {|fk|p(x)}∞k= and
{|Dψk|p(x)}∞k= be two sequences in C∞

 (�) converging to |f|p(x) and |Dψ |p(x) in L(γ ,q)(�).
It is clear that |fk| and |Dψk| ∈ L(γ γ,qγ)(�). According to the earlier work [] and the
facts that Lorentz space is an interpolation space of Lebesgue spaces, and the obstacle
problems under consideration are linear, the unique weak solution

uk ∈Ak =
{
φk ∈ W ,

 (�) : φk ≥ ψk a.e. in �
}

of the following variational inequalities

ˆ

�

A(x)DukD(φk – uk) dx ≥
ˆ

�

fkD(φk – uk) dx for all φk ∈A

satisfies a global gradient estimate in L(γ γ,qγ)(�) under the assumption that (A(x),�) is
(δ, R)-vanishing of codimension one. Thus, we have

|Duk| ∈ L(γ γ,qγ)(�) �⇒ |Duk|p(x) ∈ L(γ ,q)(�)

due to (.). As a consequence of the interpolation space, we have

∥∥|Duk|p(x)∥∥
L(γ ,q)(�) ≤ C

(∥∥|fk|p(x)∥∥
L(γ ,q)(�) +

∥∥|Dψk|p(x)∥∥
L(γ ,q)(�) + 

) γ
γ

≤ C
(∥∥|f|p(x)∥∥

L(γ ,q)(�) +
∥∥|Dψ |p(x)∥∥

L(γ ,q)(�) + 
) γ

γ ,

where C is independent of k. From this estimate we observe that there exists ū with
|Dū|p(x) ∈ L(γ ,q)(�) which is the weak limit of {uk}∞k= in Ak such that

∥∥|Dū|p(x)∥∥
L(γ ,q)(�) ≤ C

(∥∥|f|p(x)∥∥
L(γ ,q)(�) +

∥∥|Dψ |p(x)∥∥
L(γ ,q)(�) + 

) γ
γ .
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Then it is easy to check that this ū is the weak solution of the original problem (.). So,
by the uniqueness, we conclude that u = ū almost everywhere in �. This completes the
approximation procedure. �

5 Conclusions
This paper extends the classical Calderón-Zygmund theory to the refined estimates in the
Lorentz spaces for a variable exponent power of the gradient of weak solutions for el-
liptic obstacle problems. We would like to remark that the usual harmonic analyses, like
the Calderón-Zygmund operator, the maximal function operator and the sharp maximal
function operator, are not suitable for our estimates due to p(x) being a variable function.
Instead, our argument is motivated by the so-called maximal function-free technique. Two
things are deserved to be mentioned. One is our minimal regular assumptions which are
concerned with elliptic obstacle problems (.) with partially BMO coefficients over the
bounded nonsmooth domain. Another is our refined conclusion where we show a regular-
ity in Lorentz spaces for the variable exponent powers of the gradients of its weak solution.
To the best knowledge of the authors of this paper, this is the first time in the category of
the Lorentz spaces to consider the regularity of variable exponent powers of the gradient of
weak solution for variational inequalities under the weakest conditions on coefficients and
boundaries. We would also like to point out that there are a few of difficulties in dealing
with regularity of the gradient in Lorentz spaces with variable exponents to weak solutions
of variational inequalities (.). We believe that our work here has independent interests.
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