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Abstract
A regular 2mth-order spectral problem with self-adjoint boundary conditions is
considered in this paper. The continuous dependence of eigenvalues and normalized
eigenfunctions on the problem is researched. The derivative formulas of eigenvalues
with respect to the given parameters are obtained: endpoints, boundary conditions,
coefficients and the weight function. These are of both theoretical and
computational importance.
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1 Introduction
Spectral problems of differential operators arise in many different physical applications.
There is a vast amount of research papers on the boundary value problems (BVPs) for
ordinary differential operators. A substantial part of the previous work focuses on second-
order problems; see [–]. For a regular Sturm-Liouville differential equation of the form

–
(
py′)′ + qy = λwy (.)

with different boundary conditions (BCs), Pöschel and Trubowitz use the Dirichlet BCs
and consider the mth eigenvalue. It takes the form λ = λn(q), where q ∈ L(a, b), p = w = 
in []. They prove that λ is Frechet differentiable and they give the expression of its deriva-
tive. Dauge and Helffer (see [, ]) consider equation (.) with Neumann BCs and the
coefficients p, q, w ∈ C∞ on the interval [a, b] with p(t) ≥ k > . They prove that, as a func-
tion of the endpoint b, the Neumann eigenvalues are C functions. In [] and [], Kong
and Zettl study differential equation (.) with general self-adjoint BCs. They find that the
corresponding eigenvalues of this problem are C functions of all its data and they give the
derivative formulas. Battle in [] studies a more general second-order problem. Further,
in [], the authors prove the dependence of the kth eigenvalues on all its data.

There are also many papers that deal with the fourth-order spectral problems. Ge et al.
(see [, ]) consider the fourth-order differential equation

(
py′′)′′ + qy = λwy (.)
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with self-adjoint BCs. They study the continuity and differentiability of eigenvalues. Their
method is similar to that of [] and []. In [–], the authors treat fourth-order equations
of the form

(
py′′)′′ –

(
sy′)′ + qy = λwy, (.)

and they introduce different methods to compute the eigenvalues and eigenfunctions as-
sociated with the above-mentioned fourth-order differential equation.

The dependence of parameters on the mth spectral problem has drawn less attention
than the Sturm-Liouville equations and fourth-order differential equations. In [], Yang,
Wang and Gao study the kth-order differential equation of the form

ly =
k∑

r=

(–)r(pk–ry(r))(r) = λwy (.)

with separated self-adjoint BCs, rather than the coupled self-adjoint BCs. They consider
the eigenvalues as a function of one endpoint, and show that the eigenvalues of kth-order
spectral problems depend not only continuously but also smoothly on endpoints. In [],
Greenberg and Marletta discuss some numerical methods for self-adjoint boundary eigen-
values problems of (.).

In this paper, we deal with a mth-order spectral problem with more complicated BCs
which consist of separated self-adjoint BCs and coupled self-adjoint BCs. This kind of
spectral problems is widely used in many research areas, since the dependence of eigen-
values is closely related to the computation of eigenvalues. Based on the theories on the
Hilbert space and complex variable theory, we study the continuity and differentiability
properties of eigenvalues and eigenfunctions of the mth-order spectral problem. In ac-
cordance with [], we pose the conditions /pm, pm–, . . . , p, w ∈ L(a, b) so that each of
the initial value problems has a unique solution. Naimark, in [], shows that these local
integrable properties of the coefficients and weight functions imply not only the existence
but also the uniqueness of locally absolutely continuous solutions. First, by the extension
of /pm, pm–, . . . , p, w, we establish a new space and norm to study the continuity both
of eigenvalues and normalized eigenfunctions. The isolated eigenvalues, being continu-
ous functions, of all the parameters are proved. Based on proofs of the unique solution
of the initial value problem, which is dependent continuously on all variables, we get the
continuity of normalized eigenfunctions.

Next, we fix all but one of A, B, a, b, /pm, pm–, . . . , p, w and we study the continu-
ous dependence of eigenvalues on the problem and show that the eigenvalues are C

functions of the BCs, the endpoints, coefficients and the weight function. By means of
computation, we obtain its derivative formulas. Here differentiability with respect to
/pm, pm–, . . . , p, q or w is the Frechet derivative in the Banach space L(a, b). Our proof
is fundamental, but it is useful in spectral analysis.

Following this introduction, we give some general results and notations in Section .
In Section , we give the continuous dependence of the eigenvalues and corresponding
eigenfunctions. Section  establishes the differentiability of the eigenvalues on all its pa-
rameters.
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2 Preliminaries
We characterize a mth-order spectral problem consisting of differential equations as fol-
lows:

ly =
m∑

i=

(–)i(pi(x)y(i))(i) = λw(x)y, x ∈ (a′, b′), (.)

where –∞ ≤ a′ < b′ ≤ ∞,λ ∈C is the spectral parameter. The coefficient functions pi,  ≤
i ≤ m and weight function w(x) satisfy the following basic conditions:

pm, pi, w :
(
a′, b′)→R, /pm, pi ∈ L

loc
(
a′, b′), w >  a.e. on

(
a′, b′), (.)

where i = , , , . . . , m – , and L
loc(a′, b′) denotes the complex-valued Lebesgue integrable

functions on all compact subintervals of (a′, b′). Any self-adjoint differential equation with
sufficiently smooth real valued coefficients can be written in this form, so equation (.) is
a natural starting point. This equation (.) is a wide type of equation which has been re-
searched by many scholars. For example, m =  implies the classical Sturm-Liouville equa-
tion, and when m = , (.) reduces to the beam equation which is one of the important
models in engineering (see [] for details).

We introduce the quasi-derivatives (up to order m) of a function y, which are the func-
tions y[] = y, y[], . . . , y[m], given by

y[k] = y(k), k = , , , . . . , m – ,

y[m] = pmy(m), (.)

y[k] =
(
y[k–])′ – pm–ky(m–k), k = m + , m + , . . . , m,

where y(k) is the usual kth derivative (see [], p.). Then the differential equation (.)
can be simplified as

ly = (–)my[m] = λwy. (.)

The differential expression l on (a′, b′) is defined for all functions y such that y[], y[], . . . ,
y[k–] exist and are absolutely continuous over compact subintervals of (a′, b′).

Let

I = [a, b], a′ < a < b < b′, (.)

and the BC be of the form

A

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

y(a)
y[](a)

...
y[m–](a)
y[m–](a)

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

+ B

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

y(b)
y[](b)

...
y[m–](b)
y[m–](b)

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝



...



⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

, (.)
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where the complex m × m matrices A and B satisfy

the m × m matrix (A|B) has full rank (.)

and

AQA∗ = BQB∗, Q =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎝

  · · ·  –
  · · ·  
...

...
...

...
...

 – · · ·  
  · · ·  

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎠

. (.)

Here by A∗, we mean the complex conjugate transpose of matrix A.

Remark . The differential equation (.) together with BCs (.)-(.) are said to be a
self-adjoint mth-order spectral problem. Thanks to [], we know that the basic condi-
tions (.) ensure that the differential expression l is regular on [a, b]. The problem we
study can be identified with a self-adjoint operator in the Hilbert space L

ω(a, b) (see []).
So the spectrum of the problem corresponds to the spectrum of the operator and there
exist an infinite but countable number of real eigenvalues.

It is shown in [] that the self-adjoint BCs are of three types: separated, coupled and
mixed. Here we study three forms of the separated self-adjoint BCs, one form of the cou-
pled real self-adjoint BCs and one form of the coupled complex self-adjoint BCs.

. Separated self-adjoint BCs
() Separated self-adjoint BCs (I). We have

y(a) cosα – y[](a) sinα = ,

y[](a) cosα – y[](a) sinα = ,

...

y[m–](a) cosα – y[m–](a) sinα = , α ∈ [,π );

(.)

y(b) cosβ – y[](b) sinβ = ,

y[](b) cosβ – y[](b) sinβ = ,

...

y[m–](b) cosβ – y[m–](b) sinβ = , β ∈ (,π ].

(.)

() Separated self-adjoint BCs (II). We have

y(a) cosϕ – y[m](a) sinϕ = ,

y[](a) cosϕ + y[m+](a) sinϕ = ,

...

y[m–](a) cosϕ – (–)m–y[m–](a) sinϕ = , ϕ ∈ [,π );

(.)
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y(b) cosψ – y[m](b) sinψ = ,

y[](b) cosψ + y[m+](b) sinψ = ,

...

y[m–](b) cosψ – (–)m–y[m–](b) sinψ = , ψ ∈ (,π ].

(.)

() Separated self-adjoint BCs (III). We have

y(a) cosη – y[m–](a) sinη = ,

y[](a) cosη – y[m–](a) sinη = ,

...

y[m–](a) cosη – y[m](a) sinη = , η ∈ [,π );

(.)

y(b) cos τ – y[m–](b) sin τ = ,

y[](b) cos τ – y[m–](b) sin τ = ,

...

y[m–](b) cos τ – y[m](b) sin τ = , τ ∈ (,π ].

(.)

. Coupled real self-adjoint BCs. We have

Y(b) = KY(a), (.)

where K satisfies

KQK∗ = I, K = (kij), kij ∈R (i, j = , , . . . , m). (.)

. Coupled complex self-adjoint BCs. We have

Y(b) = eiθ KY(a), (.)

where K fulfills (.), and θ ∈ (–π , ) ∪ (,π ).

Remark . A function y is said to be a solution of the mth-order differential equation
(.), if y[], y[], . . . , y[m–] ∈ ACloc(a′, b′), and y satisfies equation (.) a.e. on (a′, b′).

3 Continuity of eigenvalues and eigenfunctions
It is easy to see that all but one of the parameters being fixed can determine a mth-order
spectral problem. Then we fix all but one of A, B, a, b, /pm, pm–, . . . , p, w, so we can study
the continuity properties of the eigenvalues and eigenfunctions on that parameter. First
we give a definition of W.

Definition . Assume (.), (.), (.) and (.) hold, then the mth-order spectral
problem reads

W =
{
ω = (A, B, a, b, /pm, pm–, . . . , p, w)

}
. (.)
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In the case of separated BCs (.) and (.), we take the form

Ws =
{
ω = (α,β , a, b, /pm, pm–, . . . , p, w)

}
. (.)

For BCs (.) and (.), we take the form

Ws =
{
ω = (ϕ,ψ , a, b, /pm, pm–, . . . , p, w)

}
. (.)

For BCs (.) and (.), we take the form

Ws =
{
ω = (η, τ , a, b, /pm, pm–, . . . , p, w)

}
. (.)

For the coupled BCs (.) and (.), we take the form

Wc =
{
ω = (θ , K, a, b, /pm, pm–, . . . , p, w)

}
. (.)

If θ =  in (.), we denote the BCs by

Wrc =
{
ω = (K, a, b, /pm, pm–, . . . , p, w)

}
. (.)

By Definition ., we conclude that each of the ω ∈ W defines a unique spectral problem.
In order to investigate the continuous dependence and differentiability of eigenvalues and
corresponding eigenfunctions on the problem, we need to compare the different spectrum
problems determined by different ω. Since the values of /pm, pm–, . . . , p, w, being zeros
outside the interval [a, b], do not change the spectrum determined by ω, we can extend
/pm, pm–, . . . , p, w to the larger interval (a′, b′).

Definition . We define the new set

W̃ =
{
ω̃ = (A, B, a, b, ̃/pm, p̃m–, . . . , p̃, w̃)

}
, (.)

where

̃/pm =

⎧
⎨

⎩
/pm, x ∈ [a, b]

, x ∈ (a′, b′)\[a, b]
(.)

i.e., ̃/pm is the extension of /pm to (a′, b′) that is equal to zero on (a′, b′)\[a, b], and
p̃m–, . . . , p̃ and w̃ have similar meanings.

Definition . A Banach space X is defined as

X = Mm,m(C) × Mm,m(C) ×R×R

× L(a′, b′)× L(a′, b′)× · · · × L(a′, b′)
︸ ︷︷ ︸

m+

, (.)
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and the norm is given by

‖ω‖ = ‖ω̃‖ = ‖A‖ + ‖B‖ + |a| + |b| +
∫ b′

a′

(

|̃/pm| +
m–∑

i=

|p̃i| + |w̃|
)

, (.)

where ‖·‖ is any fixed matrix norm.

Remark . It is with respect to this space X that we study the dependence of the eigen-
values and eigenfunctions of a regular mth-order spectral problem on its parameters.
Since /pm, pm–, . . . , p, w ∈ L

loc(a, b) only, W is not a subset of X. By means of the exten-
sion of /pm, pm–, . . . , p, w, we obtain ̃/pm, p̃m–, . . . , p̃, w̃ ∈ L(a′, b′), thus W̃ is a subset
of the Banach space X.

Lemma . (cf. []) Suppose that (.) holds and c ∈ (a′, b′), mi ∈ C (i = , , , . . . , m–).
Consider the following initial value problem:

⎧
⎪⎪⎨

⎪⎪⎩

∑m
i=(–)i(pi(x)y(i))(i) = λwy,

y[](c) = m, y[](c) = m,

y[](c) = m, . . . , y[m–] = mm–, y[m–](c) = mm–,

then the unique solution y = y(·, m, m, . . . , mm–, /pm, pm–, pm–, . . . , p, p, w) is a con-
tinuous function of all its variables. More precisely, given any ε >  and any subinterval I ,
there exists a δ > . If

|c – c| +
m–∑

i=

|mi – mi | +
∫ b

a

(

|/pm – /pm | +
m–∑

i=

|pi – pi | + |w – w|
)

ds < δ,

then, for all x ∈ I ,

∣∣y[](x, c, m, m, . . . , mm–, /pm, pm–, pm–, . . . , p, w)

– y[](x, c, m , m , . . . , m(m–) , /pm , p(m–) , p(m–) , . . . , p , w)
∣∣ < ε,

∣∣y[](x, c, m, m, . . . , mm–, /pm, pm–, pm–, . . . , p, w)

– y[](x, c, m , m , . . . , m(m–) , /pm , p(m–) , p(m–) , . . . , p , w)
∣∣ < ε,

...
∣
∣y[m–](x, c, m, m, . . . , mm–, /pm, pm–, pm–, . . . , p, w)

– y[m–](x, c, m , m , . . . , m(m–) , /pm , p(m–) , p(m–) , . . . , p , w)
∣
∣ < ε.

Next, we introduce the characteristic function �(ω, λ) which characterizes the eigenval-
ues of BVPs (.) and (.) as roots of �(ω, λ).
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Let (.) hold and �(·, a, /pm, pm–, . . . , p, w) denote the fundamental matrix solution of
the following problem:

Y′ =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

    · · ·    
    · · ·    
...

...
...

...
...

...
...

...
...

  · · ·  /pm  · · ·  
  · · · pm–   · · ·  
...

...
...

...
...

...
...

...
...

  (–)m–p  · · ·    
 (–)mp   · · ·    

(–)m+(p – λω)    · · ·    

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

Y

on
(
a′, b′),

and �(·, a, /pm, pm–, . . . , p, w) satisfy the initial condition �(a,λ) = Im. Here Im is the
m × m identity matrix. Then λ ∈ C is an eigenvalue of the spectral problems (.) and
(.) if and only if

�(ω, λ) = det
[
A + B�(b, a, /pm, pm–, . . . , p, w)

]
= .

The function �(ω, λ) = det[A + B�(b, a, /pm, pm–, . . . , p, w)] is called the characteristic
function of the problems (.) and (.).

Next we show that the isolated eigenvalues of a regular mth-order spectral problem are
continuous functions of all the parameters. This theorem is a special case of Kong, Wu, Zettl
(see [], Theorem .) for the continuity of isolated eigenvalues, in which a more generalized
mth-order differential equation is defined using quasi-derivatives.

Theorem . Suppose that ω0 = (a, b, A, B, /pm , p(m–) , . . . , p , w) ∈ W, and μ =
λ(ω) is an eigenvalue of the spectral problems (.) and (.)-(.), being determined by
ω. We see that λ(ω) is continuous at ω0, which means that for any ε > , there exists a
δ > . For any ω ∈ W that satisfies

‖ω – ω‖ = ‖A – A‖ + ‖B – B‖ + |a – a| + |b – b|

+
∫ b′

a′

[

|̃/pm – ̃/pm | +
m–∑

i=

|p̃i – p̃i | + |w̃ – w̃|
]

ds < δ, (.)

it is implied that

∣
∣λ(ω) – λ(ω0)

∣
∣ < ε. (.)

Proof This proof is similar to that of Kong, Wu, Zettl [], Theorem ., so we omit the
details. �

Remark . From Theorem ., we infer that, for any fixed eigenvalue μ associated with
ω = ω, there is a continuous eigenvalue branch λ(ω), such that λ(ω) = μ. However, this
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does not imply that, for a fixed m, the mth eigenvalue λm(ω) is always continuous in ω. In
what follows, for any ω ∈ W, each eigenvalue λ(ω) of the mth-order spectral problems
(.) and (.)-(.), as a function of ω, is embedded in one of the continuous eigenvalue
branches.

The following lemma characterizes the unique solution of any initial value problem of
equation (.) which is dependent continuously on all parameters in the norm L.

As a consequence of Theorem . and Lemma ., we obtain the following.

Lemma . Assume that ω = (a, b, A, B, /pm , p(m–) , p(m–) , . . . , p , w) ∈ W and
λ = λ(ω) is an eigenvalue of the mth-order spectral problems (.) and (.)-(.). If the
multiplicity of λ(ω) is , then we see that there exists an M ⊂ W, where M is a neighborhood
of ω, such that the multiplicity of λ = λ(ω) is  for each ω ∈ M.

Proof Given any solution y of (.) and eigenfunction u(·,ω) of the spectral problem, we
denote by

Y =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

y[]

y[]

...
y[m–]

y[m–]

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

and U =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

u[]

u[]

...
u[m–]

u[m–]

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

(.)

the vector solution and vector eigenfunction. The multiplicities of the eigenvalues are l (l =
, , . . . , m). Clearly, Lemma . holds for the multiplicity of the eigenvalues equal to . If
the eigenvalues are multiplicity l (l = , , . . . , m), we give a proof of coupled real BCs and
the other two BCs are similar. For ω = {K, a, b, /pm , p(m–) , p(m–) , . . . , p , w} ∈ Wrc,
assume that the multiplicity of λ(ω) is l. If the conclusion does not hold, then there exists
some sequence {ωk} ⊂ Wrc such that ωk → ω, and for k ∈ M, λ(ωk) is an eigenvalue with
multiplicity l. Now we choose v, . . . , vl ∈R

m, which are linearly independent vectors, and
U(·,ωk), . . . , Ul(·,ωk) are solutions of (.) with λ = λ(ωk) satisfying the initial conditions

Uj(a,ωk) = vj, j = , . . . , l.

Then U(·,ωk), . . . , Ul(·,ωk) are all vector eigenfunctions, and they satisfy

Uj(b,ωk) = KkUj(a,ωk), k ∈M, j = , . . . , l. (.)

Applying Lemma . and Theorem . as k → ∞ in (.), we obtain

Yj(b,ω) = KYj(a,ω), k ∈M, j = , . . . , l, (.)

where Yj = limk→∞ Uj (j = , . . . , l). Thus Y, . . . , Yl ( ≤ l ≤ m) are l linearly independent
eigenfunctions of λ(ω). This is impossible since the multiplicity of λ(ω) is . This finishes
the proof of Lemma .. �
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Definition . A normalized eigenfunction u of a mth-order spectral problem means
an eigenfunction u satisfying

∫ b

a

∣∣u(s)
∣∣w(s) ds = . (.)

Following the above definition, we notice that these eigenfunctions are not uniquely
determined by (.). In the situation of the multiplicity of the eigenvalue being , there
exists a unique real eigenfunction up to sign, and for double eigenvalues, there exist a pair
of normalized linearly independent eigenfunctions, and for a multiplicity l (l = , , . . . , m)
eigenvalue, the number of the normalized linearly independent eigenfunctions is l.

Theorem . Assume all the assumptions of Theorem . are true.
(i) If the multiplicity of the eigenvalue λ(ω) is  for some ω ∈ W, and u = u(·,ω) is a

corresponding normalized eigenfunction of λ(ω), then for ω ∈ W, we see that there
exists a normalized eigenfunction u = u(·,ω) corresponding to λ(ω), as ω → ω, and

u(·,ω) → u(·,ω),

u′(·,ω) → u′(·,ω),

...

u[m–](·,ω) → u[m–](·,ω),

u[m–](·,ω) → u[m–](·,ω),

(.)

hold uniformly on arbitrarily compact subinterval I of (a′, b′).
(ii) If the multiplicity of eigenvalue λ(ω0) is l (l = , , . . . , m), uj = uj(·,ω) (j = , , . . . , l)

is any l normalized eigenfunction of λ(ω), and suppose that the multiplicity of the
eigenvalue λ(ω) is l (l = , , . . . , m) for each ω ∈ M, where M is some neighborhood
of ω ∈ W, then there exist l normalized eigenfunctions uj = uj(·,ω) (j = , , . . . , l) of
λ(ω), as ω → ω. We have

u[]
j (·,ω) → u[]

j (·,ω),

u[]
j (·,ω) → u[]

j (·,ω),

...

u[m–]
j (·,ω) → u[m–]

j (·,ω),

u[m–]
j (·,ω) → u[m–]

j (·,ω),

(.)

uniformly on arbitrarily compact subinterval I of (a′, b′).

Proof Firstly, we prove that there are eigenfunctions u(·,ω) satisfying (.) uniformly on I .
Suppose (.) holds, y is a solution of (.) and u(·,ω) is an eigenfunction.

(i) Now we consider the case that the multiplicity of λ(ω) is . Using Lemma ., we
see that there exists a neighborhood M of ω such that the multiplicity of λ(ω) is  for all
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ω ∈ M. We select an eigenfunction u = u(·,ω) of λ(ω) for all ω ∈ M, and they satisfy

∥∥U(c,ω)
∥∥ =

m–∑

i=

∣∣u[i](c,ω)
∣∣ = ,

where c ∈ (a, b) is an arbitrary point, and u(t,ω) >  when t is near c.
It is sufficient to illustrate that

U(c,ω) → U(c,ω) as ω → ω in W. (.)

Then by Lemma . and Theorem ., the above limit is uniformly convergent on [a, b].
Indeed, if (.) is not fulfilled, we select a sequence ωk → ω in W such that

U(c, Wk) → Y as ω → ω, (.)

since the normalization at c, Y and U(c,ω) are two linearly independent vectors in C.
Let Z be the vector solution of (.) at ω = ω, which satisfies the initial condition Z(c) = Y,
and λ = λ(ω) is determined by Z(c) = Y. It follows from Lemma . that U(t,ωk) → Z(t)
uniformly on any compact subinterval of (a′, b′) as k → ∞. Noticing that ωk → ω implies
that ak → a and bk → b, we deduce

U(ak ,ωk) → Z(a) and U(bk ,ωk) → Z(b) as k → ∞.

So U(·,ωk) (k = , , . . .), satisfy the BC,

AkU(ak ,ωk) + BkU(bk ,ωk) = ,

by taking limits as k → ∞. We infer

AZ(a) + BZ(b) = .

Hence Z is a vector eigenfunction relating to the eigenvalue λ(ω). It is easy to see that
Z is linearly independent to U(·,ω) since their Cauchy data at c are independent. This is
impossible since the multiplicity of λ(ω) is .

(ii) Suppose that the multiplicity of the eigenvalue λ(ω) is l (l = , , . . . , m) for ω in
some neighborhood M of ω ∈ W. For ω ∈ M, let l linearly independent eigenfunctions
of λ(ω) be u, u, . . . , ul (l = , , . . . , m), which satisfy the same initial condition at a,
where a is determined by ω,ω = (a, b, A, B, /pm , p(m–) , p(m–) , . . . , p , w) ∈ W.
By the definition of ω, we know that a varies as ω, i.e., given any ω, there is an
a corresponding to it. We choose u(·,ω) =

∑l
j= djuj (l = , , . . . , m), which is an arbi-

trary linear combination of l linearly independent eigenfunctions. It is easy to see that
u(·,ω) =

∑l
j= djuj (l = , , . . . , m) is also an eigenfunction of λ(ω) which satisfies an ar-

bitrary initial condition at a. Now we consider the coupled BCs, and –π < θ ≤ π and
u(·,ω) =

∑l
j= djuj,ω → ω satisfying

∥∥U(a,ω)
∥∥ =

m–∑

i=

∣∣u(a,ω)
∣∣ = ,

and u(t,ω) >  when t is near a.
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It is sufficient to illustrate that

U(a,ω) → U(a,ω) as ω → ω in W. (.)

By Lemma . and Theorem ., we find the above limit is convergent uniformly on [a, b].
If (.) is not fulfilled, then we select a sequence ωk → ω in W such that

Vk := U(a,ω) – U(a,ωk) → V �=  as ω → ω. (.)

Suppose that Zk , Yk and Y are the vector solutions of (.) satisfying the initial conditions

Zk(a) = U
(
a, Yk(a) = Vk ,ωk

)
, Y(a) = V, k ∈N,

with the same ω = ω, respectively, then the uniqueness of the initial value problem implies

Yk = U(·,ω) – Zk on [a, b].

Then the BC (.) implies

Yk(b) = U(b,ω) – Zk(b) = U(b,ω) – U(bk ,ωk) + U(bk ,ωk) – Zk(b)

= eiθ KU(a,ω) – eiθk KkU(a,ωk) + U(bk ,ωk) – Zk(b)

= eiθ K
[
U(a,ω) – U(a,ωk)

]
+ eiθ KU(a,ωk)

– eiθk KkU(ak ,ωk) + U(bk ,ωk) – Zk(b)

= eiθ KYk(a) + eiθ KU(a,ωk) – eiθk KkU(ak ,ωk)

+ U(bk ,ωk) – Zk(b), (.)

taking limits as k → ∞ in (.). By Lemma ., noticing Y(a) = V �= , we deduce

Y(b) = eiθ KY(a).

So Y is a nontrivial vector eigenfunction of the eigenvalue λ(ω). The eigenfunction
u(·,ω) =

∑l
j= djuj (l = , , . . . , m) of λ(ω) is an arbitrary linear combination of l lin-

early independent eigenfunctions. Moreover, ‖U(a,ω)‖ = , and there is a constant s �=
 such that Y = sU(·,ω) for some dj (j = , , . . . , l), and V = Y(a) = sU(a,ω). As k → ∞
in (.), we obtain

U(a,ω) – lim
k→∞

U(a,ωk) = V = sU(a,ω),

that is,

lim
k→∞

U(a,ωk) = ( – s)U(a,ω).

Noticing that the signs of u(x,ωk) and u(x,ω) are the same when x is near a, so  – s > 
and we also have

lim
k→∞

∥
∥U(a,ωk)

∥
∥ = ( – s)

∥
∥U(a,ω)

∥
∥.
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This contradicts

∥∥V(a,ωk)
∥∥ =

∥∥U(a,ω)
∥∥ = .

The proof of separated conditions is similar to that of coupled conditions, we can use the
same method to the proof and have hence omitted it.

The above discussion illustrates that, for each self-adjoint boundary problem and each
eigenvalue λ(ω), we can choose the eigenfunction u(·,ω) and its quasi-derivative u[k] (k =
, , . . . , m – ) convergent uniformly with ω on any compact subinterval of (a′, b′). Then
we normalize the eigenfunctions to end the proof. �

4 Differentiability of eigenvalues on the problems
The results of the previous section will be the key to prove the differentiability of eigenval-
ues. In this section, our aim is to illustrate that the isolated eigenvalues are differentiable
with respect to all the data. For this purpose, we will make use of the definition of Frechet
derivatives and we recall Lemma . of [] here.

Definition . Let X and Y be Banach spaces. A map T : X → Y is a linear map, x ∈ X is
a given point, if it is satisfied by a bounded linear operator dTx : X → Y, for h ∈ X and as
h → , and

∣
∣T(x + h) – T(x) – dTx

∣
∣ = o(h),

we call the map T differentiable at x.

Lemma . We suppose that u and v are two solutions of (.) with different λ = μ and
λ = ν . Then

[u, v]b
a :=

[

(–)m
m–∑

i=

(–)m+–iu[i]v̄[m–i–]

]b

a

= (μ – ν)
∫ b

a
uv̄w ds. (.)

Proof Since u and v are solutions of (.) with λ = μ, λ = ν , respectively, we have

(μ – ν)
∫ b

a
uv̄w ds =

(
w–lu, v

)
–
(
u, w–lv

)

=
∫ b

a

[ m∑

i=

(–)i(pi(x)u(i))(i)v – u
m∑

i=

(–)i(pi(x)v(i))(i)
]

ds.

The integration by parts directly leads to the desired result. �

Lemma . ([], Lemma .) We suppose that f ∈ Lloc(a′, b′) is a real valued function. We
deduce that

lim
h→


h

∫ x+h

x
f (s) ds = f (x) a.e.

(
a′, b′).
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In the sequel of this paper, we will investigate the differentiability of the eigenvalue as one
of the components of ω, as the other components of ω are considered to be the same.

Theorem . (Eigenvalue-eigenfunction differential equation for special case of separated
BVPs) Assume (.) and ω = (A, B, a, b, /pm, pm–, . . . , p, w) ∈ W hold. We suppose further
that either (i) the multiplicity of λ(ω) is  in some neighborhood M ⊂ W of ω, or (ii) λ(ω) is
an eigenvalue of multiplicity l (l = , , . . . , m) for each ω ∈ M, M ⊂ W.

() Consider the spectral problems (.), (.) and (.) with  ≤ α < π and β = π . Let
λ = λ(b) be a function of endpoint b, and u = u(·, b) the corresponding eigenfunction.
We see that λ is differentiable a.e. and it satisfies:

if m is even, then

λ′(b) =
[ m

 ]∑

i=

(
u[i–](b)u[(n–i)+](b) + pi–(b)

∣
∣u[i–](b)

∣
∣)

a.e. in
(
a, b′); (.)

if m is odd, then

λ′(b) = –
[ m

 ]∑

i=

(
u[i–](b)u[(n–i)+](b) – pi–(b)

∣∣u[i–](b)
∣∣) –

|u[m](b)|
pm(b)

a.e. in
(
a, b′). (.)

() Consider the spectral problems (.), (.) and (.) with  ≤ ϕ < π and ψ = π . Let
λ = λ(b) be a function of endpoint b, and u = u(·, b) the corresponding eigenfunction.
Then λ is differentiable a.e. and it satisfies

(
pmλ′)(b) = –

∣∣u[m](b)
∣∣ a.e. in

(
a, b′). (.)

() Consider the spectral problems (.), (.) and (.) with  ≤ η < π and τ = π . Let
λ = λ(b) be a function of endpoint b, and u = u(·, b) the corresponding eigenfunction.
We see that λ is differentiable a.e. and it satisfies

(
pmλ′)(b) = –

∣∣u[m](b)
∣∣ a.e. in

(
a, b′). (.)

Proof () For sufficiently small h in (.), we denote by μ = λ(b), u = u(·, b) and ν = λ(b +
h), v = u(·, b + h) the corresponding eigenvalues and eigenfunctions, respectively. Since
[u, v](a) = , u(b, b) =  and u[j](b, b) =  (j = , , . . . , m – ), we infer

(
λ(b) – λ(b + h)

)∫ b

a
u(s, b)u(s, b + h)w(s) ds

= (–)m
m∑

i=

u[i–](b, b)u[(n–i)](b, b + h). (.)

By normalizing the eigenfunction and applying Theorem ., we deduce that

∫ b

a
u(s, b)u(s, b + h)w(s) ds →

∫ b

a
u(s, b)w(s) ds = , h → . (.)
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When m is even, by (.), we obtain

(
λ(b) – λ(b + h)

)∫ b

a
u(s, b)u(s, b + h)w(s) ds

= (–)m

m
∑

i=

u[i–](b, b)u[(m–i)](b, b + h)

+ (–)m
m∑

m
 +

u[i–](b, b)u[(m–i)](b, b + h). (.)

For i = , , . . . , m/, u[(m–i)](b, b) = , we obtain

u[(m–i)](b, b + h) = u[(m–i)](b, b + h) – u[(m–i)](b + h, b + h)

= –
∫ b+h

b

(
u[(m–i)])′(s, b + h) ds. (.)

It follows from Theorem . that as h → , u[j]
m (·, b + h) −→ u[j]

m (·, b) (j = , , , . . . , m – )
uniformly hold on any compact subinterval of (a′, b′), by (.) and Lemma ., we get

lim
h→

(–)mu[(m–i)](b, b + h)
h

= (–)m+(u[(m–i)])′(b, b), a.e. in
(
a, b′).

Since (u[(m–i)])′ = u[(m–i)+] – (–)m–i+pi–y(i–), we conclude that

lim
h→

(–)mu[(m–i)](b, b + h)
h

= (–)m+u[(m–i)+](b, b) – pi–(b)u[i–](b, b). (.)

In a similar way, for i = n/ + , n/ + , . . . , n, u[(m–i)](b, b) = , we have

u[(m–i)](b, b + h) = u(m–i)(b, b + h) – u(m–i)(b + h, b + h)

= –
∫ b+h

b
u(m–i+)(s, b + h) ds. (.)

Now (.) and Lemma . imply that

lim
h→

u[(m–i)](b, b + h)
h

= –u[(m–i)+](b, b), a.e. in
(
a, b′). (.)

We divide (.) by h, combine (.), (.) and (.), and as h → , we get

–λ′(b) =

m
∑

i=

u[i–](b, b)
(
–u[(m–i)+](b, b) – pi–(b)ui–(b, b)

)

–
m∑

m
 +

u[i–](b, b)u[(m–i)+](b, b)

= –

m
∑

i=

(
u[i–](b, b)u[(m–i)+](b, b) + pi–(b)

(
u[i–])(b, b)

)
.

So, we have (.);
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if m is odd, by (.) we infer

(
λ(b) – λ(b + h)

)∫ b

a
u(s, b)u(s, b + h)w(s) ds

= (–)m

m–
∑

i=

u[i–](b, b)u[(m–i)](b, b + h) + (–)mu[m](b, b)u[m–](b, b + h)

+ (–)m
m∑

m+


u[i–](b, b)u[(m–i)](b, b + h), (.)

for i = m – , u(m–)(b, b) = ; we get

u[m–](b, b + h) = u(m–)(b, b + h) – u(m–)(b + h, b + h)

= –
∫ b+h

b
u(n)(s, b + h) ds

= –
∫ b+h

b

pmu(n)(s, b + h)
pm(s)

ds = –
∫ b+h

b

u[m](s, b + h)
pm(s)

ds. (.)

Applying Lemma ., Lemma . and (.), we get

lim
h→

u[m–](b, b + h)
h

= –
u[m](b, b)

pm(b)
, a.e. in

(
a, b′). (.)

We divide (.) by h, as h →  and use (.), (.), (.) and (.) to get

–λ′(b) =

m–
∑

i=

u[i–](b, b)
(
u[(m–i)+](b, b) – pi–(b)u[i–](b, b)

)
+

(u[m])(b, b)
pm(b)

+
m∑

m+


u[i–](b, b)u[(m–i)+](b, b + h)

=

m–
∑

i=

(
u[i–](b, b)u[(m–i)+](b, b) – pi–(b)

(
u[i–])(b, b)

)

+
(u[m])(b, b)

pm(b)
.

So, we obtain (.).
() For sufficiently small h in (.), we denote by μ = λ(b), u = u(·, b) and ν = λ(b + h), v =

u(·, b + h) the corresponding eigenvalues and eigenfunctions, respectively. Since [u, v](a) =
, u(b, b) =  and u[j](b, b) =  (j = , , . . . , m – ), we infer

(
λ(b) – λ(b + h)

)∫ b

a
u(s, b)u(s, b + h)w(s) ds

= (–)m
m–∑

i=n

(–)m+–iu[i](b, b)u[m–i–](b, b + h)
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= –u[m](b, b)u[m–](b, b + h)

+ (–)m
m–∑

i=n+

(–)m+–iu[i](b, b)u[m–i–](b, b + h), (.)

for i = m + , m + , . . . , m – , u[m–i–](b, b) = . Now proceeding with the proof of (.),
we have

lim
h→

u[m–i–](b, b + h)
h

= –u[m–i](b, b), a.e. in
(
a, b′). (.)

Dividing (.) by h, using (.) (.) and (.), as h →  we get

–λ′(b) =
(u[m])(b, b)

pm(b)
+

m–∑

i=n+

(–)m–iu[i](b, b)u[m–i](b, b).

By u[j](b, b) =  (j = , , . . . , m – ), we obtain –λ′(b) = |u[m](b)|
pm(b) and (.) holds. The proof

of (.) is similar to the proof of (.), so we omit it. �

Corollary . Suppose (.) holds and we consider the BVPs (.) and (.)-(.) with
 ≤ ϕ < π ,ψ = π , or  ≤ η < π , τ = π . Let λ = λ(b) be a function of endpoint b, and u =
u(·, b) the corresponding eigenfunction. If pm ≥ , a.e., then λ(b) is strictly decreasing on
(a, b′).

Theorem . (Eigenvalue-eigenfunction differential equation for special case of separated
BVPs) Assume (.) and ω = (A, B, a, b, /pm, pm–, . . . , p, w) ∈ W hold. We suppose further
that either (i) the multiplicity of λ(ω) is  in some neighborhood M ⊂ W of ω, or (ii) λ(ω) is
an eigenvalue of multiplicity l (l = , , . . . , m) for each ω ∈ M, M ⊂ W.

() Consider the spectral problems (.), (.) and (.) with  ≤ α < π and β = π
 . Let

λ = λ(b) be a function of endpoint b, and u = u(·, b) the corresponding eigenfunction.
We see that λ is differentiable a.e. and it satisfies:

if m is even, then

λ′(b) =
∣∣u(b)

∣∣(p(b) – λ(b)w(b)
)

–
|u[m](b)|

pm(b)

–

m–
∑

i=

(
u[i](b)u[m–i](b) – pi(b)

∣
∣u[i](b)

∣
∣) a.e. in

(
a, b′); (.)

if m is odd, then

λ′(b) =
∣
∣u(b)

∣
∣(p(b) – λ(b)w(b)

)

+

m–
∑

i=

(
u[i](b)u[(m–i)](b) + pi(b)

∣
∣u[i](b)

∣
∣) a.e. in

(
a, b′). (.)

() Consider the spectral problems (.), (.) and (.) with  ≤ ϕ < π and ψ = π/.
Let λ = λ(b) be a function of endpoint b, and u = u(·, b) the corresponding
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eigenfunction. We see that λ is differentiable a.e. and it satisfies

λ′(b) =
∣
∣u(b)

∣
∣(p(b) – λ(b)w(b)

)
+

m–∑

i=

pi(b)
∣
∣u[i](b)

∣
∣ a.e. in

(
a, b′); (.)

() Consider the spectral problems (.), (.) and (.) with  ≤ η < π and τ = π/.
Let λ = λ(b) be a function of endpoint b, and u = u(·, b) the corresponding
eigenfunction. Then λ is differentiable a.e. and it satisfies

λ′(b) =
∣∣u(b)

∣∣(p(b) – λ(b)w(b)
)

+
m–∑

i=

pi(b)
∣∣u[i](b)

∣∣ a.e. in
(
a, b′). (.)

Proof () For sufficiently small h in (.), we denote by μ = λ(b), u = u(·, b), ν = λ(b + h), v =
u(·, b + h) the corresponding eigenvalues and eigenfunctions, respectively. Since [u, v](a) =
 and u[j+](b, b) =  (j = , , . . . , m – ), we have

∫ b

a
u(s, b)u(s, b + h)w(s) ds

= (–)m
m–∑

i=

(–)m+–iu[i](b, b)u[(m–i)–](b, b + h)

= (–)m+
m–∑

i=

u[i](b, b)u[(m–i)–](b, b + h). (.)

If m is even, we get

(
λ(b) – λ(b + h)

)∫ b

a
u(s, b)u(s, b + h)w(s) ds

= –(–)mu(b, b)u[m–](b, b + h) – (–)m

m–
∑

i=

u[i](b, b)u[(m–i)–](b, b + h)

– u[m](b, b)u[m–](b, b + h) –
m–∑

m+


u[i](b, b)u[(m–i)–](b, b + h), (.)

for i = m – , u[m–](b, b) = ; we infer

(–)mu[m–](b, b + h) = (–)mu[m–](b, b + h) – (–)mu[m–](b + h, b + h)

= –
∫ b+h

b
(–)m(u[m–])′(s, b + h) ds.

By u[m] = (u[m–])′ + (–)mpy and (.), we obtain

(–)mu[m–](b, b + h)

= –
∫ b+h

b
(–)m(u[m](s, b + h) – (–)mp(s)u(s, b + h)

)
ds
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=
∫ b+h

b

[
p(s)u(s, b + h) – λ(b + h)u(s, b + h)w(s)

]
ds

=
∫ b+h

b
p(s)u(s, b) ds +

∫ b+h

b
p(s)

[
u(s, b + h) – u(s, b)

]
ds – λ(b + h)

×
∫ b+h

b
u(s, b)w(s) ds + λ(b + h)

∫ b+h

b

[
u(s, b) – u(s, b + h)

]
w(s) ds. (.)

Applying Theorem ., as h → , u[j]
m (·, b+h) −→ u[j]

m (·, b) (j = , , , . . . , m–) uniformly
hold on the compact subinterval of (a′, b′). We get by (.) and Lemma .

lim
h→

(–)mu[m–](b, b + h)
h

= u(b, b)
[
p(b) – λ(b)w(b)

]
a.e. in

(
a, b′), (.)

for i = , , . . . , (m – )/, u[(m–i)–](b, b) = . We obtain

u[(m–i)–](b, b + h) = u[(m–i)–](b, b + h) – u[(m–i)–](b + h, b + h)

= –
∫ b+h

b

(
u[(m–i)–])′(s, b + h) ds. (.)

Applying Lemma . and (.), we get

lim
h→

(–)mu[(m–i)–](b, b + h)
h

= (–)m+(u[(m–i)–])′(b, b) a.e. in
(
a, b′).

By (u[(m–i)–])′ = u[(m–i)] – (–)m–ipiy(i), we conclude that

lim
h→

(–)mu[(m–i)–](b, b + h)
h

= (–)m+u[(m–i)](b, b) + pi(b)u[i](b, b)

= –u[(m–i)](b, b) + pi(b)u[i](b, b). (.)

Similarly, for i = (m + )/, (m + )/, . . . , m – , then u[(m–i)–](b, b) = , hence

lim
h→

u[(m–i)–](b, b + h)
h

= –u[(m–i)](b, b). (.)

Dividing (.) by h, as h →  and using (.), (.), (.), (.) and (.), we get

–λ′(b) = –u(b, b)
[
p(b) – λ(b)w(b)

]
+

(u[m])(b, b)
pm(b)

+

m–
∑

i=

(
u[i](b, b)u[(m–i)](b, b) – pi(b)

(
u[i])(b, b)

)
.

Then we obtain (.);
if m is odd, we get

[
λ(b) – λ(b + h)

] ∫ b

a
u(s, b)u(s, b + h)w(s) ds
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= –(–)m

[

u(b, b)u[m–](b, b + h) +

m–
∑

i=

u[i](b, b)u[(m–i)–](b, b + h)

]

– (–)m
m–∑

i= m+


u[i](b, b)u[(m–i)–](b, b + h). (.)

Dividing (.) by h, as h →  and using (.) (.), (.) and (.), we conclude that

–λ′(b) = –u(b, b)
[
p(b) – λ(b)w(b)

]

–

m–
∑

i=

(
u[i](b, b)u[(m–i)](b, b) + pi(b)

(
u[i])(b, b)

)
.

Then we obtain (.).
For sufficiently small h in (.), we denote by μ = λ(b), u = u(·, b) and ν = λ(b + h), v =

u(·, b + h) the corresponding eigenvalues and eigenfunctions, respectively. Since [u, v](a) =
, u(b, b) =  and u[j](b, b) =  (j = m, m + , . . . , m – ), we have

(
λ(b) – λ(b + h)

)∫ b

a
u(s, b)u(s, b + h)w(s) ds

= (–)m
m–∑

i=

(–)m+–iu[i](b, b)u[m–i–](b, b + h)

= –(–)mu(b, b)u[m–](b, b + h)

+ (–)m
m–∑

i=

(–)m+–iu[i](b, b)u[m–i–](b, b + h), (.)

for i = , , . . . , m – , u[m–i–](b, b) = ; hence

u[m–i–](b, b + h) = u[m–i–](b, b + h) – u[m–i–](b + h, b + h)

= –
∫ b+h

b

(
u[m–i–])′(s, b + h) ds. (.)

By Lemma . and (.), we get

lim
h→

(–)mu[m–i–](b, b + h)
h

= (–)m+(u[m–i–])′(b, b) a.e. in
(
a, b′).

Combining (u[m–i–])′ = u[m–i] – (–)m–ipiy(i), we get

lim
h→

(–)mu[m–i–](b, b + h)
h

= (–)m+u[m–i](b, b) – (–)m–i+pi(b)u[i](b, b)

= –(–)m–i+pi(b)u[i](b, b). (.)
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We divide (.) by h, as h → , and use (.) (.) and (.) to get

–λ′(b) = –u(b, b)
[
p(b) – λ(b)w(b)

]
–

m–∑

i=

pi(b)
(
u[i])(b, b).

We obtain (.). The proof of (.) is similar to that of (.), so we omit it. �

Theorem . (Eigenvalue-eigenfunction differential equation for separated BVPs) As-
sume (.) and ω = (A, B, a, b, /pm, pm–, . . . , p, w) ∈ W hold. Consider the BVPs (.), (.)
and (.) with  ≤ α < π and  < β ≤ π , or BVP (.), (.) and (.) with  ≤ ϕ < π and
 < ψ ≤ π , or BVP (.), (.) and (.) with  ≤ η < π and  < τ ≤ π . We suppose further
that either (i) the multiplicity of λ(ω) is  in some neighborhood M ⊂ W of ω, or (ii) λ(ω) is
an eigenvalue of multiplicity l (l = , , . . . , m) for each ω ∈ M, M ⊂ W.

() Let λ = λ(a) be a function of endpoint a, and u = u(·, a) the corresponding eigenfunc-
tion. We see that λ is differentiable a.e. and it satisfies

λ′(a) =
∣∣u(a)

∣∣[p(b) – λ(b)w(b)
]

–
|u[m](a)|

pm(a)

–
m–∑

i=

(
pi(a)

∣
∣u[i](a)

∣
∣ – (–)m–iu[i](a)u[m–i](a)

)
a.e. in

(
a′, b

)
, (.)

particularly, if pm, pm–, . . . , p and w are continuous at a and pm(a) �= ; then (.) holds
at a.

() Let λ = λm and u = um. We see that λ is differentiable a.e. and it satisfies

λ′(b) =
∣∣u(b)

∣∣[p(b) – λ(b)w(b)
]

–
|u[m](b)|

pm(b)

–
m–∑

i=

(
pi(b)

∣∣u[i](b)
∣∣ – (–)m–iu[i](b)u[m–i](b)

)
a.e. in

(
a, b′), (.)

particularly, if pm, pm–, . . . , p and w are continuous at b and pm(b) �= ; then (.) holds
at b.

Proof The proofs of (.) and (.) are similar, so we will prove (.) only. For suffi-
ciently small h in (.), we denote by μ = λ(b), u = u(·, b) and ν = λ(b + h), v = u(·, b + h) the
corresponding eigenvalues and eigenfunctions, respectively. Since [u, v](a) = , we have

(
λ(b) – λ(b + h)

)∫ b

a
u(s, b)u(s, b + h)w(s) ds

= (–)m
m–∑

i=

(–)m+–iu[i](b, b)u[m–i–](b, b + h)

= –(–)mu(b, b)u[m–](b, b + h)

+ (–)m
m–∑

i=

(–)m+–iu[i](b, b)u[m–i–](b, b + h)
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– u[m](b, b)u[m–](b, b + h)

+ (–)m
m–∑

i=n+

(–)m+–iu[i](b, b)u[m–i–](b, b + h). (.)

We divide (.) by h and take the limit h → , use (.) (.) (.) and (.), and apply
the continuity of λ at b in Theorem . and Lemma ., so we get (.). �

Theorem . (Eigenvalue-eigenfunction differential equation for coupled BVPs) Assume
that ω = (A, B, a, b, /pm, pm–, . . . , p, w) ∈ W and (.) hold. We suppose further that ei-
ther (i) the multiplicity of λ(ω) is  in some neighborhood M ⊂ W of ω, or (ii) λ(ω) is an
eigenvalue of multiplicity l (l = , , . . . , m) for each ω ∈ M, M ⊂ W. Consider the spectral
problems (.), (.) and (.) with –π < θ ≤ π .

() Let λ = λ(a) be a function of endpoint a, and u = u(·, a) the corresponding eigenfunc-
tion. We see that λ is differentiable a.e. and it satisfies:

if m is even, then

λ′(a) = –
∣∣u(a)

∣∣(p(a) – λ(a)w(a)
)

+  Re
m–∑

i=

(–)iu[i](a)u[m–i](a)

+
u[m](a)
pm(a)

–
m–∑

i=

pi(a)
∣∣u[i](a)

∣∣; (.)

if m is odd, then

λ′(a) = –
∣
∣u(a)

∣
∣(p(a) – λ(a)w(a)

)
–  Re

m–∑

i=

(–)iu[i](a)u[m–i](a)

+
u[m](a)
pm(a)

–
m–∑

i=

pi(a)
∣
∣u[i](a)

∣
∣, (.)

particularly, if pm, pm–, . . . , p and w are continuous at a ∈ (a′, b] and pm(a) �= , then equa-
tions (.) and (.) hold at a.

() Let λ = λ(b) be a function of endpoint b, and u = u(·, b) the corresponding eigenfunc-
tion. We see that λ is differentiable a.e. and it satisfies:

if m is even, then

λ′(b) =
∣
∣u(b)

∣
∣(p(b) – λ(b)w(b)

)
–  Re

m–∑

i=

(–)iu[i](b)u[m–i](b)

–
u[m](b)
pm(b)

+
m–∑

i=

pi(b)
∣
∣u[i](b)

∣
∣; (.)

if m is odd, then

λ′(b) =
∣∣u(b)

∣∣(p(b) – λ(b)w(b)
)

+  Re
m–∑

i=

(–)iu[i](b)u[m–i](b)

–
u[m](b)
pm(b)

+
m–∑

i=

pi(b)
∣∣u[i](b)

∣∣, (.)
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particularly, if pm, pm–, . . . , p and w are continuous at b ∈ [a, b′) and pm(b) �= , then equa-
tions (.) and (.) hold at b.

Proof The proofs of (.) and (.) are similar to (.) and (.), respectively, so we
prove (.) and (.) only. For sufficiently small h in (.), we denote by μ = λ(b),ν =
λ(b + h) and u = u(·, b), v = u(·, b + h) the eigenvalues and eigenfunctions.

[
λ(b) – λ(b + h)

] ∫ b

a
uvw ds =

[

(–)m
m–∑

i=

(–)m+–iu[i]v̄[m–i–]

]b

a

.

If m is even,

(
λ(b) – λ(b + h)

)∫ b

a
uvw ds

= –
(

v[m–], –v[m–], · · · , v[], –v
)

(b)

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎝

cu
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎠

(b)

+
(

v[m–], –v[m–], · · · , v[], –v
)

(a)

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

cu
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(a),

(
u[m–], –u[m–], u[m–], · · · , –u[], u[] –u

)
(b)

=
(

u, u[], u[], · · · , u[m–], u[m–], u[m–]
)

(b)

×

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

   · · ·   –
   · · ·   
   · · · –  
...

...
...

...
...

...
...

   · · ·   
 –  · · ·   
   · · ·   

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

= eiθ
(

u, u[], u[], · · · , u[m–], u[m–], u[m–]
)

(a)KT

×

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

   · · ·   –
   · · ·   
   · · · –  
...

...
...

...
...

...
...

   · · ·   
 –  · · ·   
   · · ·   

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠
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= eiθ
(

u[m–], –u[m–], u[m–], · · · , –u[], u[], –u
)

(a)

×

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

   · · ·   
   · · ·  – 
   · · ·   
...

...
...

...
...

...
...

  – · · ·   
   · · ·   

–   · · ·   

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

KT

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎝

   · · ·   –
   · · ·   
   · · · –  
...

...
...

...
...

...
...

   · · ·   
 –  · · ·   
   · · ·   

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎠

= eiθ
(

u[m–], –u[m–], u[m–], · · · , –u[], u[], –u
)

(a)K–,

hence
(

u[m–], –u[m–], · · · , u[], –u
)

(a)

= e–iθ
(

u[m–], –u[m–], · · · , u[], –u
)

(b)K,

or
(

u[m–], –u[m–], · · · , u[], –u
)

(a)

= eiθ
(

u[m–], –u[m–], · · · , u[], –u
)

(b)K. (.)

Then

(
λ(b) – λ(b + h)

)∫ b

a
uvw ds

= –
(

v[m–], –v[m–], · · · , v[], –v
)

(b)

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(b)

+
(

v[m–], –v[m–], · · · , v[], –v
)

(b + h)

⎛

⎜
⎜⎜
⎜⎜⎜
⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟
⎟⎟
⎟⎟⎟
⎟
⎠

=
[(

v[m–], –v[m–], · · · , v[], –v
)

(b + h)

–
(

v[m–], –v[m–], · · · , v[], –v
)

(b)
]

×

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(b). (.)
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Now proceeding as in Theorem . and Theorem ., we get

lim
h→

v[m–](b + h) – v[m–](b)
h

=
(
λ(b)w(b) – p(b)

)
u(b),

lim
h→

v[m–i–](b + h) – v[m–i–](b)
h

= u[m–i](b) – (–)m–ipi(b)u[i](b), i = , , . . . , m – ,

lim
h→

v[m–](b + h) – v[m–](b)
h

=
u[m](b)
pm(b)

,

lim
h→

v[i](b + h) – v[i](b)
h

= u[i+](b), i = , , . . . , m – .

Dividing (.) by h, as h → , we obtain

–λ′(b) =
(

(λw – p)u, –u[m–] – pu[], – u[m–] – pu[], · · · ,

u[m]/pm, · · · , u[], –u[]
)

(b)

×

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

u
u[]

u[]

...
u[m]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

(b)

=
∣
∣u(b)

∣
∣(λ(b)w(b) – p(b)

)
+  Re

m–∑

i=

(–)iu[i](b)u[m–i](b)

+
u[m](b)
pm(b)

–
m–∑

i=

pi(b)
∣∣u[i](b)

∣∣,

and (.) holds.
If m is odd, we infer

(
λ(b) – λ(b + h)

)∫ b

a
uvw ds

= –
[(

v[m–], –v[m–], · · · , v[], –v
)

(b + h)

–
(

v[m–], –v[m–], · · · , v[], –v
)

(b)
]

×

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎠

(b) (.)
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and

lim
h→

v[m–](b + h) – v[m–](b)
h

=
(
p(b) – λ(b)w(b)

)
u(b),

lim
h→

v[m–i–](b + h) – v[m–i–](b)
h

= u[m–i](b) – (–)m–ipi(b)u[i](b), i = , , . . . , m – ,

lim
h→

v[m–](b + h) – v[m–](b)
h

=
u[m](b)
pm(b)

,

lim
h→

v[i](b + h) – v[i](b)
h

= u[i+](b), i = , , . . . , m – .

We divide (.) by h, and take the limit as h →  to obtain

–λ′(b) = –
(

(p – λw)u, –u[m–] + pu[], u[m–] + pu[], · · · ,

–u[m]/pm, · · · , u[], –u[]
)

(b)

×

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

u
u[]

u[]

...
u[m]

...
u[m–]

u[m–]

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

(b)

=
∣∣u(b)

∣∣(λ(b)w(b) – p(b)
)

–  Re
m–∑

i=

(–)iu[i](b)u[m–i](b)

+
u[m](b)
pm(b)

–
m–∑

i=

pi(b)
∣∣u[i](b)

∣∣,

and (.) holds. �

Theorem . For the BVPs (.) and (.)-(.), let ω = (A, B, a, b, /pm, pm–, . . . , p, w) ∈
W, and λ = λ(ω) and u = u(·,ω) be the eigenvalue and normalized eigenfunction. We sup-
pose further that either (i) the multiplicity of λ(ω) is  in some neighborhood M ⊂ W of ω,
or (ii) λ(ω) is an eigenvalue of multiplicity l (l = , , . . . , m) for each ω ∈ M, M ⊂ W. Then
λ is continuously differentiable with respect to each variable of ω in the appropriate sense.
Their derivatives are given as follows.

. Let λ = λ(α) be a function of α, and u = u(·,α) the corresponding eigenfunction. We
see that λ is differentiable and it satisfies:

if m is even, then

λ′(α) =  Re

m–
∑

i=

(
u[i](a)u[m–i](a) + u[i+](a)u[m–i–](a)

)
; (.)
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if m is odd, then

λ′(α) = – Re

m–
∑

i=

(
u[i](a)u[m–i–](a) + u[i+](a)u[m–i–](a)

)

–
∣∣u[m–](a)

∣∣ –
∣∣u[m](a)

∣∣. (.)

. Let λ = λ(β) be a function of β , and u = u(·,β) the corresponding eigenfunction. We
see that λ is differentiable and it satisfies: if m is even, then

λ′(β) = – Re

m–
∑

i=

(
u[i](b)u[m–i](b) + u[i+](b)u[m–i–](b)

)
; (.)

if m is odd, then

λ′(β) =  Re

m–
∑

i=

(
u[i](b)u[m–i–](b) + u[i+](b)u[m–i–](b)

)

+
∣∣u[m–](b)

∣∣ +
∣∣u[m](b)

∣∣. (.)

. Let λ = λ(ϕ) be a function of ϕ, and u = u(·,ϕ) the corresponding eigenfunction. We
see that λ is differentiable and it satisfies:

if m is even, then

λ′(ϕ) = – Re

m–
∑

i=

(
u[i](a)u[m–i–](a) – u[m+i](a)u[m–i–](a)

)
; (.)

if m is odd, then

λ′(ϕ) = – Re

m–
∑

i=

(
u[i](a)u[m–i–](a) + u[m+i](a)u[m–i–](a)

)

–
∣
∣u[ m–

 ](a)
∣
∣ –

∣
∣u[ m–

 ](a)
∣
∣. (.)

. Let λ = λ(ψ) be a function of ψ , and u = u(·,ψ) the corresponding eigenfunction. We
see that λ is differentiable and it satisfies:

if m is even, then

λ′(ψ) =  Re

m–
∑

i=

(
u[i](b)u[m–i–](b) – u[m+i](b)u[m–i–](b)

)
; (.)

if m is odd, then

λ′(ψ) =  Re

m–
∑

i=

(
u[i](b)u[m–i–](b) + u[m+i](b)u[m–i–](b)

)

+
∣
∣u[ m–

 ](b)
∣
∣ +

∣
∣u[ m–

 ](b)
∣
∣. (.)
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. Let λ = λ(η) be a function of η, and u = u(·,η) the corresponding eigenfunction. We
see that λ is differentiable and it satisfies:

λ′(η) = (–)(n)
m–∑

i=

(∣∣u[i](a)
∣
∣ +

∣
∣u[m+i](a)

∣
∣). (.)

. Let λ = λ(τ ) be a function of τ , and u = u(·, τ ) the corresponding eigenfunction. We
see that λ is differentiable and it satisfies

λ′(τ ) = (–)(n+)
m–∑

i=

(∣∣u[i](b)
∣∣ +

∣∣u[m+i](b)
∣∣). (.)

. Let λ = λ(θ ) be a function of θ , and u = u(·, θ ) the corresponding eigenfunction. We
see that λ is differentiable and it satisfies

λ′(θ ) = (–)m Im
m–∑

i=

(–)iu[i](b)u[m–i–](b). (.)

. Let λ = λ(K) be a function of matrix K, and u = u(·, K) the corresponding
eigenfunction. We suppose that K fulfills (.). Then we see that λ is differentiable,
and its Frechet derivative is

dλK (H) = (–)m+
(

u[m–], –u[m–], · · · , u[], –u
)

(b)

× HK–

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎠

(b). (.)

. Consider λ as a function of p ∈ L(a, b). We see that λ is differentiable and its
Frechet derivative is

dλp (h) =
∫ b

a
|u|h. (.)

. Consider λ as a function w ∈ L(a, b). We see that λ is differentiable and its Frechet
derivative is

dλw(h) = –λ

∫ b

a
|u|h. (.)

Proof Since the proofs of (.)-(.) are similar we prove (.) and (.) only. Assume
β �= π/. When h ∈ R is small enough, we denote by u = u(·,β) and v = u(·,β + h) the
normalized real valued eigenfunctions of μ = λ(β) and ν = λ(β + h). By (.) we obtain

[
λ(β) – λ(β + h)

] ∫ b

a
uvw ds =

[

(–)m
m–∑

i=

(–)m+–iu[i]v̄[m–i–]

]b

a

.
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If m is even,

(
λ(β) – λ(β + h)

)∫ b

a
uvw ds

=
[
–uv[m–] + u[]v[m–] – u[]v[m–] + · · · + u[m–]v[] – u[m–]v[] + u[m–]v

]b
a.

By the BCs, we conclude

[
–uv[m–] + u[]v[m–] – u[]v[m–]

+ · · · + u[m–]v[] – u[m–]v[] + u[m–]v
]
(a) = .

Then

(
λ(β) – λ(β + h)

)∫ b

a
uvw ds

= –u(b)v[m–](b) + u[](b)v[m–](b) – u[](b)v[m–](b) + · · ·
+ u[m–](b)v[m](b) – u[m](b)v[m–](b)

+ · · · + u[m–](b)v[](b) – u[m–](b)v[](b) + u[m–](b)v(b)

= – tanβu[](b)v[m–](b) + tan(β + h)u[](b)v[m–](b) – tanβu[](b)v[m–](b) + · · ·
– tanβu[m–](b)v[m+](b) + tan(β + h)u[m–](b)v[m+](b) – · · ·
+ tan(β + h)u[m–](b)v[](b)

– tanβu[m–](b)v[](b) + tan(β + h)u[m–](b)v[](b)

=
[
tan(β + h) – tan(β)

](
u[](b)v[m–](b) + u[](b)v[m–](b) + · · · + u[m–](b)v[m+](b)

+ u[m+](b)v[m–](b) + · · · + u[m–](b)v[](b) + u[m–](b)v[](b)
)
. (.)

We divide both sides of (.) by h, as h → , and we have

–λ′(β) = sec β
(
u[](b)u[m–](b) + u[](b)u[m–](b) + · · · + u[m–](b)u[m+](b)

+ u[m+](b)u[m–](b) + · · · + u[m–](b)u[](b) + u[m–](b)u[](b)
)

= tan βu[](b)u[m–](b) + tan βu[](b)u[m–](b) + · · ·
+ tan βu[m–](b)u[m+](b)

+ tan βu[m+](b)u[m–](b) + · · · + tan βu[m–](b)u[](b)

+ tan βu[m–](b)u[](b)

+ u[](b)u[m–](b) + u[](b)u[m–](b) + · · ·
+ u[m–](b)u[m+](b) + u[m+](b)u[m–](b)

+ · · · + u[m–](b)u[](b) + u[m–](b)u[](b)

= u(b)u[m–](b) + u[](b)u[m–](b) + · · · + u[m–](b)u[m](b)

+ u[m](b)u[m–](b) + · · ·
+ u[m–](b)u(b) + u[](b)u[m–](b) + u[](b)u[m–](b)
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+ · · · + u[m–](b)u[m+](b)

+ u[m+](b)u[m–](b) + · · · + u[m–](b)u[](b) + u[m–](b)u[](b)

=  Re

m–
∑

i=

(
u[i](b)u[m–i](b) + u[i+](b)u[m–i–](b)

)
,

and (.) holds;
if m is odd,

(
λ(β) – λ(β + h)

)∫ b

a
uvw ds

=
[
uv[m–] – u[]v[m–] + u[]v[m–] – · · · – u[m–]v[] + u[m–]v[] – u[m–]v

]b
a.

By the BCs, we infer that

[
uv[m–] – u[]v[m–] + u[]v[m–] – · · · – u[m–]v[] + u[m–]v[] – u[m–]v

]
(a) = .

Then

(
λ(β) – λ(β + h)

)∫ b

a
uvw ds

= u(b)v[m–](b) – u[](b)v[m–](b) + u[](b)v[m–](b) + · · ·
+ u[m–](b)v[m](b) – u[m](b)v[m–](b)

+ · · · – u[m–](b)v[](b) + u[m–](b)v[](b) – u[m–](b)v(b)

= tanβu[](b)v[m–](b) – tan(β + h)u[](b)v[m–](b) + tanβu[](b)v[m–](b) – · · ·
+ tanβu[m](b)v[m](b) – tan(β + h)u[m](b)v[m](b) + · · ·
– tan(β + h)u[m–](b)v[](b)

+ tanβu[m–](b)v[](b) – tan(β + h)u[m–](b)v[](b)

= –
[
tan(β + h) – tan(β)

](
u[](b)v[m–](b) + u[](b)v[m–](b)

+ · · · + u[m–](b)v[m+](b)

+ u[m](b)v[m](b) + · · · + u[m–](b)v[](b) + u[m–](b)v[](b)
)
. (.)

We divide both sides of (.) by h, as h → , and we obtain

λ′(β) = sec β
(
u[](b)u[m–](b) + u[](b)u[m–](b) + · · · + u[m–](b)u[m+](b)

+ u[m](b)u[m](b) + · · · + u[m–](b)u[](b) + u[m–](b)u[](b)
)

= tan βu[](b)u[m–](b) + tan βu[](b)u[m–](b) + · · · + tan βu[m–](b)u[m+](b)

+ tan βu[m](b)u[m](b) + · · · + tan βu[m–](b)u[](b) + tan βu[m–](b)u[](b)

+ u[](b)u[m–](b) + u[](b)u[m–](b) + · · · + u[m–](b)u[m+](b) + u[m](b)u[m](b)

+ · · · + u[m–](b)u[](b) + u[m–](b)u[](b)
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= u(b)u[m–](b) + u[](b)u[m–](b) + · · ·
+ u[m–](b)u[m+](b) + u[m–](b)u[m–](b)

+ u[m+](b)u[m–](b) + · · · + u[m–](b)u(b)

+ u[](b)u[m–](b) + u[](b)u[m–](b) + · · ·
+ u[m–](b)u[m+](b) + u[m](b)u[m](b) + · · ·
+ u[m–](b)u[](b) + u[m–](b)u[](b)

=  Re

m–
∑

i=

(
u[i](b)u[m–i–](b) + u[i+](b)u[m–i–](b)

)

+
∣
∣u[m–](b)

∣
∣ +

∣
∣u[m](b)∣∣,

and (.) holds. This finishes the proof.
Next, we prove (.) and (.). Firstly, we show (.) is true. Let μ = λ(θ ), u = u(·, θ )

and ν = λ(θ + h), v = u(·, θ + h) be the corresponding eigenvalues and eigenfunctions, re-
spectively. When h ∈ R is small enough, we apply (.) to infer

(
λ(θ ) – λ(θ + h)

)∫ b

a
uvw ds

=

[

(–)m
m–∑

i=

(–)m+–iu[i]v̄[m–i–]

]b

a

= (–)m+
(

v[m–], –v[m–], · · · , v[], –v
)

(b)

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

(b)

– (–)m+
(

v[m–], –v[m–], · · · , v[], –v
)

(a)

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎠

(a)

= (–)m+eiθ
(

v[m–], –v[m–], · · · , v[], –v
)

(b)K

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎠

(a)

– (–)m+ei(θ+h)
(

v[m–], –v[m–], · · · , v[], –v
)

(b)K

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(a)
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= (–)meiθ
(

v[m–], –v[m–], · · · , v[], –v
)

(b)K

×

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(a)
(
eih – 

)
. (.)

We divide both sides of (.) by h, as h → , and we get

λ′(θ ) = (–)m+ieiθ
(

u[m–], –u[m–], · · · , u[], –u
)

(b)K

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎠

(a)

= (–)m+i
(

u[m–], –u[m–], · · · , u[], –u
)

(b)

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(b)

= (–)m Im
m–∑

i=

(–)iu[i](b)u[m–i–](b),

and (.) holds.
Then we turn to establishing (.). Let u = u(·, K), v = u(·, K + H) for K and K + H satisfy

(.). Proceeding similar to the argument above, we have

(
λ(K) – λ(K + H)

)∫ b

a
uvw ds

=

[

(–)m
m–∑

i=

(–)m+–iu[i]v̄[m–i–]

]b

a

= (–)m+
(

v[m–], –v[m–], · · · , v[], –v
)

(b)

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎠

(b)

– (–)m+
(

v[m–], –v[m–], · · · , v[], –v
)

(a)

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(a)
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= (–)m+eiθ
(

v[m–], –v[m–], · · · , v[], –v
)

(b)K

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

(a)

– (–)m+eiθ
(

v[m–], –v[m–], · · · , v[], –v
)

(b)(K + H)

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

(a)

= (–)meiθ
(

v[m–], –v[m–], · · · , v[], –v
)

(b)H

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎠

(a)

= (–)m
(

v[m–], –v[m–], · · · , v[], –v
)

(b)HK–

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(b)

= (–)m
(

u[m–], ū[m–], · · · , u[], –u
)

(b)HK–

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

(b)

= (–)m
(

v[m–] – u[m–], u[m–] – v[m–], · · · , v[] – u[], u – v
)

(b)HK–

×

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

(b).

Then

λ(K + H) – λ(K) = (–)m+
(

u[m–], –u[m–], · · · , u[], –u
)

(b)

× HK–

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

u
u[]

...
u[m–]

u[m–]

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

(b) + o(H),
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and (.) follows.
To show (.), we let u = u(·, q), v = u(·, q + h) where h ∈ L(a, b). Using (.) and inte-

gration by parts, then

[
λ(p) – λ(p + h)

] ∫ b

a
uv̄w ds =

[

(–)m
m–∑

i=

(–)m+–iu[i]v̄[m–i–]

]b

a

–
∫ b

a
uv̄h ds.

For all BCs, we have

[

(–)m
m–∑

i=

(–)m+–iu[i]v̄[m–i–]

]b

a

= .

An application of Lemma . and Theorem . implies

[
λ(p + h) – λ(p)

](
 + o(h)

)
=
∫ b

a
|u|h ds + o(h).

Consequently,

λ(p + h) – λ(p) =
[∫ b

a
|u|h ds + o(h)

](
 + o(h)

)– =
∫ b

a
|u|h ds + o(h),

as h →  in L(a, b), and (.) is proved. �

In a similar manner, we can deduce (.), here we omit its details.

Remark . The continuity of the nth eigenvalue of the self-adjoint BCs for mth-order
spectral problems is more complicated. For regular Sturm-Liouville problems, Everitt,
Möller and Zettl [] show that the nth eigenvalue is not a continuous function of the
BCs with separated boundary conditions, and similar results are obtained by Kong, Wu
and Zettl [] for general BCs.

5 Conclusions
The dependence of eigenvalues on parameters is one important branch of spectral theories
of differential operators. It offers theoretical support of approximal calculation of eigenval-
ues, and the derivatives with respect to the parameters give information of monotonicity
of the eigenvalues on the given parameters.

In this paper, with the separated, real coupled and complex coupled BCs, we give the
continuity of eigenvalues and eigenfunctions with respect to parameters. The formulas of
their derivatives with respect to all the parameters are computed in detail. Our results are
new, and the work established in this paper is of quite a general nature and covers a variety
of special cases involved in the problem. As for the discontinuity of the nth eigenvalue, it
is still an open problem till now, and we will work on it later.
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