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Abstract
In this paper, we prove the existence of global weak solutions for a model described
by the fractional Heisenberg equation for the magnetization field and the viscoelastic
integro-differential equation for the displacements. We study the three-dimensional
case. The demonstration of the existence of weak solution is based on the method of
Faedo-Galerkin; and to get the convergence of the nonlinear terms, we introduce the
commutator structure.
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1 Introduction
There is a wide class of materials, although they are naturally insensitive to magnetic fields,
which have been rendered magneto-sensitive by the incorporation of particles of iron or
magnetite. The resulting composite materials are often divided into two categories ac-
cording to the forms of response. These materials, which are often characterized by their
low mechanical stiffness and their usually isotropic distribution, react to magnetic stim-
uli with strong deformation. Typical deformation models include elongation, rotation and
torsion, winding and bending. The high deformation capacity or the response to the mag-
netic field by modification of the mechanical properties, such as rigidity, made these ma-
terials a promising field for the industry. It is difficult to classify these materials as solids or
viscous liquids, while their mechanical properties are highly dependent on the test condi-
tions. A composite material can show all the characteristics of a glassy solid or an elastic
rubber or a viscous fluid, depending on the temperature and the time of the scale of mea-
surement. These materials are generally described as viscoelastic materials, a generic term
that emphasizes their intermediate position between elastic solids and viscous fluids [].
Viscoelasticity is undoubtedly one of the properties which clearly shows the complexity
and the particularities of these materials. At low temperature, or at high measurement
frequencies, a body can be glassy, and at high or low temperatures the same material can
be difficult to chew and be able to withstand extensions without permanent deformation.
At even higher temperatures, they have a permanent deformation under the load, and the
material behaves like a very viscous liquid. In a frequency range or at intermediate tem-
peratures, commonly referred to as the glass transition range, the material behaves neither
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as the rubber nor as the glass. It appears in an intermediate form, it is viscoelastic and can
dissipate a considerable amount of energy during deformation.

In this paper we are concerned with a system describing the evolution of a magneto-
viscoelastic material. Our investigation has its starting point in the work of Carillo et al.
[], where the authors proposed a three-dimensional evolutive model and established the
existence of weak solutions. We intend to study the existence of global weak solutions for
a three-dimensional fractional model.

Let us now describe the model equations. The nonlinear coupled system describing the
dynamics in Q = (, T) × � (� is a bounded open set of R) is given by

ṁ = νm × Heff – μm × (m × Heff), ()

ρü – div

(
S(u) +



L(m)

)
= . ()

The first equation (), well known in the literature, is the Landau-Lifshitz equation. The
unknown m, the magnetization vector, is a map from � to S (the unit sphere of R) and
ṁ is its derivative with respect to time. The symbol × denotes the vector cross product in
R

. ν ∈ R and μ >  are some physical constants, and μ is known as the Gilbert damping
parameter. Heff represents the effective field, and in this paper we take

Heff = –a�αm – �(m, u), ()

where a is a positive constant, � = (–�) 
 denotes the square root of the Laplacian which

can be defined via Fourier transformation []. In this paper we are interested in the case
α ∈ (, 

 ). We denote by εij(u) = 
 (∂iuj +∂jui) the deformation tensor ε where, as a common

praxis, ∂iuj stands for ∂uj
∂xi

and by mi, i = , , , the components of m. The components of
the vector �(m, u) are given by


i = λijklmjεkl(u),

where λijkl = λδijkl + λδijδkl + λ(δikδjl + δilδjk) with δijkl =  if i = j = k = l and δijkl =  oth-
erwise. Note that we adopt the Einstein summation convention for repeated indices.

The second equation () describes the evolution of the displacement u, ρ is a positive
constant and the tensor L(m) is given by

Lkl = λijklmimj,

and we take (see [])

S(u) = G()∇u +
∫ t


Ġ(t – s)∇u(s) ds,

where the tensor field G(t) = {Gijkl(t)}, t ∈ [, T], is assumed to check the following prop-
erties: for any t ∈ [, T] and for any symmetric tensor eij,

Gijkl = Gklij = Gjikl, (H)
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Gijkl ∈ C[, T], (H)

Ġijkleijekl ≤ , (H)

G̈ijkleijekl ≥ , (H)

Gijkleijekl ≥ β
∑

|eij| for some β >  (H)

and

Gijklεijεkl ≤ τ
∑

|∇u| for some τ > . (H)

Many studies have been done on the fractional Landau-Lifshitz equation, we quote here
for example [] where the existence of weak solutions under periodical boundary con-
dition was proved for equation of a reduced model for thin-film micromagnetics. When
ν =  and Heff = �αm, () can be regarded as a generalization of the harmonic map heat
flow to the fractional order which was studied in [] under both conditions α ∈ (, ) and
α > d

 . In [] the main purpose is to consider the well-posedness of the fractional Landau-
Lifshitz equation without Gilbert damping. There are also other authors who have studied
the magneto-elasticity coupling. In [] they studied the three-dimensional case and estab-
lished the existence of weak solutions taking into account three terms of the total free
energy. Existence and uniqueness of solutions were proved in [] for a simplified model,
and in [] they treated a one-dimensional penalty problem and studied the gradient flow of
the associated type Ginzburg-Landau functional. They proved the existence and unique-
ness of a classical solution which tends asymptotically for subsequences to a stationary
point of the energy functional. Global existence of weak solutions to a fractional model
in magneto-elasticity was proved in D [] and in D [] with a behavior without mem-
ory (which is the subject of current work), the demonstration is based on the method of
Faedo-Galerkin and on a commutator structure to ensure the convergence of nonlinear
terms. Note that, in [], the tensor S(u) has for expression Skl = σijklεij(u), where the elas-
ticity tensor σ = (σijkl), which is independent of time and space, is assumed to satisfy the
symmetry property σijkl = σklij = σjikl , whereas in this work S(u) is expressed as a function
of an integral with respect to time, which leads to additional difficulties. The first one is
the existence of a local solution, which we prove by a fixed point argument, and the second
one is to establish a priori estimate in order to extend the local solution, which requires
more techniques compared to the work realized in [].

For the dynamics of magneto-viscoelastic materials, we quote [] where the authors
study the general three-dimensional case and establish a theorem for the existence of weak
solutions. The existence is proved by compactness of the approximated penalty problem.

In the last three decades, many scientific studies have shown the importance of frac-
tional calculus and its applications in mathematics and in many other applied scientific
branches. Several theoretical and experimental studies show that some systems, in partic-
ular magnetic systems, are governed by non-integer partial differential equations. The use
of traditional integer order differential equations is therefore not appropriate. Inspired by
contributions from [, , ], in this paper we aim at going further by coupling a fractional
order equation with a viscoelasticity equation as a kind of generalization of the work [].

Throughout, we make use of the following notation. For � an open bounded domain
of R, we denote by Lp(�) = (Lp(�)) and H(�) = (H(�)) the classical Hilbert spaces
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equipped with the usual norm denoted by ‖ · ‖Lp(�) and ‖ · ‖H(�) (in general, the product
functional spaces (X) are all simplified to X). For all s > , W s,p denotes the usual Sobolev
space consisting of all f such that

‖f ‖W s,p :=
∥∥F–( + | · |) s

 (F f )(·)∥∥Lp < ∞,

where F denotes the Fourier transform and F– its inverse. Let Ẇ s,p denote the cor-
responding homogeneous Sobolev space. When p = , W s,p corresponds to the usual
Sobolev space Hs, and in this case we have

‖f ‖Ḣs :=
∥∥�sf

∥∥
L .

The rest of the paper is divided as follows. In the next section we present the model on
which we will work. Section  is devoted to the definition of weak solutions and the main
result. In Section  we prove a global existence result, and we conclude in the last section
by some remarks and perspectives.

2 The model
The right-hand side of equation () consists of two terms, a dissipative processes repre-
sented by the μ-term and a gyromagnetic precession (the ν-term) which takes its name
from the ν constant called the gyromagnetic ratio. This constant is measured experimen-
tally via the precession of the spin vector and it is equal to, for a particle or system, the ratio
of its magnetic moment to its angular momentum. Considering the difficulty represented
by equation (), we shall adopt a model without precession (i.e. ν = ) which corresponds
in some ways to a weak magnetic moment. More precisely, we will study global existence
of weak solutions in the spatial domain � = (, π )d with periodic boundary conditions
for the magnetization vector. We take d =  and for simplicity we let μ = , which will not
affect the result essentially. The generic point of � is denoted by x = (x, x, x). We take
the following system:

⎧⎨
⎩

ṁ = –m × (m × Heff),

ρü – div(S(u) + 
L(m)) = ,

()

where Heff is given by (). Now, we propose an equivalent equation for the first equation
of ()

m × ṁ = m × Heff. ()

Indeed, let us first recall the two properties: for all a, b and c in R
,

a × (b × c) = (a · c)b – (a · b)c

and

(a × b) · c = (b × c) · a = (c × a) · b.

One uses the fact that |m| =  and, consequently, m · ṁ = .
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We start from the first equation of (), and by using the property of the double vector
product, we have

ṁ = –(m · Heff)m + Heff,

which implies, since (m · Heff)m × m = ,

m × ṁ = m × Heff.

Conversely, from () we have

m × (ṁ – Heff) = .

Hence there exists a multiplier r : � ×R
+ →R such that

ṁ – Heff = rm,

and in order to find r, it is enough to multiply the last equation by m

m · ṁ – m · Heff = r|m|.

Therefore r = –m · Heff, which finishes the proof.
Now we can replace system () with the following:

⎧⎨
⎩

m × ṁ = m × Heff,

ρü – div(S(u) + 
L(m)) = .

()

As initial conditions, we assume

u(·, ) = u, u̇(·, ) = u, m(·, ) = m, |m| =  in �, ()

with a boundary condition for the displacement vector

u =  on � := ∂� × (, T). ()

3 Global existence of weak solutions
3.1 Weak solution
Now we give a definition of the solution in the weak sense of problem ()-()-().

Definition . Let m ∈ Hα(�), |m| =  a.e., u ∈ H
(�) and u ∈ L(�). We say that the

pair (m, u) is a weak solution of problem ()-()-() if:
• for all T > , m ∈ L∞(, T ; Hα(�)), ṁ ∈ L(, T ; L(�)), |m| =  a.e.,

u ∈ L(, T ; H
(�)) and u̇ ∈ L(, T ; L(�));

• for all ϕ ∈ C∞(Q) and ψ ∈ H
(Q), we have:

∫
Q

(ṁ × m) · ϕ dx dt + a
∫

Q
�αm · �α(m × ϕ) dx dt

+
∫

Q

(
�(m, u) × m

) · ϕ dx dt = , ()
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–ρ

∫
Q

u̇ · ψ̇ dx dt +
∫

Q

(
S(u) +



L(m)

)
· ∇ψ dx dt = ;

• m(, x) = m(x) and u(, x) = u(x) in the trace sense;
• for all T > , we have

∫
Q

|ṁ| dx dt +
a


∫
�

∣∣�αm(T)
∣∣ dx +

ρ



∫
�

∣∣u̇(T)
∣∣ dx +

β



∫
�

∣∣∇u(T)
∣∣ dx

≤ a


∫
�

∣∣�αm
∣∣ dx +

ρ



∫
�

|u| dx +
τ



∫
�

|∇u| dx + C(�,β ,λ), ()

where C(�,β ,λ) is a positive constant which depends only on �, β and λ.

Remark  We will show in Section  (Section .) that �α(m × ϕ) is in L(Q), and then
it will be clear that the second term in () is well defined.

3.2 Main result
The main result of this paper is the following.

Theorem . Let α ∈ (, 
 ), m ∈ Hα(�) such that |m| =  a.e., u ∈ H

(�) and u ∈
L(�). Then there exists at least a weak solution for the problem in the sense of Defini-
tion ..

The proof of Theorem . will be given in Section .

4 Proof of the main result
This section is dedicated to constructing the global weak solutions for the fractional prob-
lem ()-()-() via the Faedo-Galerkin/penalty method. In particular, the global existence
theorem (.) for the problem considered will be proved.

4.1 The penalty problem
Let ε >  be a fixed parameter. We construct approximated solutions (mε , uε) converging,
as ε → , to a solution (m, u) of the problem. Then we consider the following problem:

⎧⎨
⎩

ṁε + a�αmε + �(mε , uε) + |mε |–
ε

mε = ,

ρüε – div(S(uε) + 
L(mε)) = ,

()

in Q = � × (, T). Note that the last term of the first equation in () has been introduced
in order to represent the constraint |m| =  in the limit ε → .

System () is supplemented with initial and boundary conditions

uε(·, ) = u, u̇ε(·, ) = u, mε(·, ) = m, |m| =  a.e. in �, ()

uε =  on �. ()

We construct approximate solutions of ()-()-() by using the Galerkin method: let
{fi}i∈N be an orthonormal basis of L(�) consisting of all the eigenfunctions for the oper-
ator �α (the existence of such a basis can be proved as in [], Ch. II)

�αfi = αifi, i = , , . . .
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under periodic boundary conditions, and let {gi}i∈N be an orthonormal basis of L(�) con-
sisting of all the eigenfunctions for the operator –�

⎧⎨
⎩

–�gi = βigi, i = , , . . . ,

gi =  on ∂�.

We consider the following problem in Q = � × (, T):

⎧⎨
⎩

ṁε,N + a�αmε,N + �(mε,N , uε,N ) + |mε,N |–
ε

mε,N = ,

ρüε,N – div(S(uε,N ) + 
L(mε,N )) = ,

()

with initial and boundary conditions

uε,N (·, ) = uN (·, ), u̇ε,N (·, ) = u̇N (·, ), mε,N (·, ) = mN (·, ) in �,

uε,N =  on � = ∂� × (, T)

and
∫

�

uN (x, )gi(x) dx =
∫

�

u(x)gi(x) dx,
∫

�

u̇N (x, )gi(x) dx =
∫

�

u(x)gi(x) dx,
∫

�

mN (x, )fi(x) dx =
∫

�

m(x)fi(x) dx.

We are looking for approximate solutions (mε,N , uε,N ) to () under the form

mε,N =
N∑

i=

ai(t)fi(x), uε,N =
N∑

i=

bi(t)gi(x),

where ai and bi are R
-valued vectors.

If we multiply each scalar equation of the first equation of () by fi and the second by
gi and integrate in �, we get to a system of integro-differential equations in the unknown
(ai(t), bi(t)), i = , , . . . , N , that we can write in the form (based on ideas exploited in [])

⎧⎪⎪⎨
⎪⎪⎩

mε,N = –
∫ t

 (a�αmε,N (s) + �(mε,N (s), uε,N (s)) + |mε,N (s)|–
ε

mε,N (s)) ds + mN (),

u̇ε,N = 
ρ

∫ t
 div(S(uε,N (s)) + 

L(mε,N (s))) ds + u̇N (),

uε,N =
∫ t

 u̇ε,N (s) ds + uN ()

and if we define v(t) := (v(t), v(t), . . . , vN (t)), where vi(t) = (ai(t), bi(t), ḃi(t)), i = , , . . . , N ,
we can write the last system in the form

v(t) =
∫ t


w

(
t, s, v(s)

)
ds + v().

Now, for a strictly positive constant α, we take

Eα :=
{

x/‖x‖∞ ≤ α
}

,
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where ‖x‖∞ = sup≤t≤τ |xi(t)|, for τ > . We consider the mapping T defined on Eα by

∀x ∈ Eα , T(x) =
∫ t


w

(
t, s, x(s)

)
ds + v().

Then we have, for x in Eα ,

∥∥w(x)
∥∥∞ = sup

≤t≤τ

sup
≤s≤t

∣∣w(
t, s, x(s)

)∣∣ ≤ Cα

for a positive constant C. So, if we choose (α, τ ) such that ‖v()‖∞ ≤ α
 and τ ≤ 

C , we
can write

∥∥T(x)
∥∥∞ ≤ Cατ +

∥∥v()
∥∥∞

≤ Cατ +
α


≤ α,

that implies T(x) ∈ Eα . Moreover, for x() and x() in Eα and for all t ∈ [, τ ],

∣∣T(
x())

i – T
(
x())

i

∣∣ =
∣∣∣∣
∫ t



(
w()

i – w()
i

)
ds

∣∣∣∣
≤ τ

∥∥∇xw(x)
∥∥∞

∥∥x() – x()∥∥∞.

Since ‖∇xw(x)‖∞ is bounded in Eα and we can choose τ small enough to have
τ‖∇xw(x)‖∞ < , then we obtain

∥∥T
(
x()) – T

(
x())∥∥∞ ≤ C

∥∥x() – x()∥∥∞

with  < C < . Hence T is a contraction mapping of the convex compact set Eα into itself.
From the fixed point theorem we deduce the local existence of solutions to the problem
that we can extend on [, T] using a priori estimates. For this, we multiply the first equation
of () by ṁε,N and the second by u̇ε,N integrating in �, we obtain

⎧⎪⎪⎨
⎪⎪⎩

∫
�

|ṁε,N | dx + a
∫
�

�αmε,N · ṁε,N dx

+
∫
�

�(mε,N , uε,N ) · ṁε,N dx + 
ε

d
dt

∫
�

(|mε,N | – ) dx = ,
ρ


d
dt

∫
�

|u̇ε,N | dx +
∫
�

(S(uε,N ) + 
L(mε,N )) · ∇u̇ε,N dx = .

Now we use the following result (the proof can be found in []).

Lemma . If f and g belong to Hα
per(�) := {f ∈ L(�)/�αf ∈ L(�)}, then

∫
�

�αf · g dx =
∫

�

�αf · �αg dx.
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We obtain

⎧⎪⎪⎨
⎪⎪⎩

∫
�

|ṁε,N | dx + a


d
dt

∫
�

|�αmε,N | dx

+
∫
�

�(mε,N , uε,N ) · ṁε,N dx + 
ε

d
dt

∫
�

(|mε,N | – ) dx = ,
ρ


d
dt

∫
�

|u̇ε,N | dx +
∫
�

(S(uε,N ) + 
L(mε,N )) · ∇u̇ε,N dx = .

()

Note that λijkl = λjikl , hence (using the components of the vector �)

∫
�

�
(
mε,N , uε,N) · ṁε,N dx =

∫
�

λijklmε,N
j ṁε,N

i εkl
(
uε,N)

dx

=



∫
�

λijkl
(
mε,N

j ṁε,N
i + mε,N

i ṁε,N
j

)
εkl

(
uε,N)

dx.

From where
∫

�

�
(
mε,N , uε,N) · ṁε,N dx =




d
dt

∫
�

λijklmε,N
i mε,N

j εkl
(
uε,N)

dx

–



∫
�

λijklmε,N
i mε,N

j εkl
(
u̇ε,N)

dx, ()

and since the tensor L is symmetric, we have




∫
�

L
(
mε,N) · ∇u̇ε,N dx =




∫
�

L
(
mε,N) · ε(u̇ε,N)

dx

=



∫
�

λijklmε,N
i mε,N

j εkl
(
u̇ε,N)

dx. ()

Furthermore, (omitting superscripts and) following the idea introduced in [], we have
∫

�

S
(
u(t)

) · ∇u̇(t) dx =
∫

�

Gijkl()εij
(
u(t)

)
εkl

(
u̇(t)

)
dx

+
∫

�

∫ t


Ġijkl(t – s)εij

(
u(s)

)
εkl

(
u̇(t)

)
ds dx

=
∫

�

Gijkl()εij
(
u(t)

)
εkl

(
u̇(t)

)
dx

+
∫

�

∫ t


Ġijkl(s)εij

(
u(t – s)

)
εkl

(
u̇(t)

)
ds dx

= –
∫

�

(
Gijkl(t) – Gijkl()

)
εij

(
u(t)

)
εkl

(
u̇(t)

)
dx

+
∫

�

Gijkl(t)εij
(
u(t)

)
εkl

(
u̇(t)

)
dx

+
∫

�

∫ t


Ġijkl(s)εij

(
u(t – s)

)
εkl

(
u̇(t)

)
ds dx

= –
∫

�

∫ t


Ġijkl(s)εij

(
u(t)

)
εkl

(
u̇(t)

)
ds dx

+
∫

�

Gijkl(t)εij
(
u(t)

)
εkl

(
u̇(t)

)
dx

+
∫

�

∫ t


Ġijkl(s)εij

(
u(t – s)

)
εkl

(
u̇(t)

)
ds dx.
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Then

∫
�

S
(
u(t)

) · ∇u̇(t) dx = –
∫

�

∫ t


Ġijkl(s)

(
εij

(
u(t)

)
– εij

(
u(t – s)

))
εkl

(
u̇(t)

)
ds dx

+
∫

�

Gijkl(t)εij
(
u(t)

)
εkl

(
u̇(t)

)
dx.

This leads to

∫
�

S
(
u(t)

) · ∇u̇(t) dx = –
∫

�

∫ t


Ġijkl(s)

(
εij

(
u(t)

)
– εij

(
u(t – s)

))
εkl

(
u̇(t)

)
ds dx

+



d
dt

∫
�

Gijkl(t)εij
(
u(t)

)
εkl

(
u(t)

)
dx

–



∫
�

Ġijkl(t)εij
(
u(t)

)
εkl

(
u(t)

)
dx, ()

by using (H). On the other hand,

d
dt

∫ t



∫
�

Ġijkl(s)
(
εij

(
u(t)

)
– εij

(
u(t – s)

))(
εkl

(
u(t)

)
– εkl

(
u(t – s)

))
dx ds

=
∫

�

Ġijkl(t)
(
εij

(
u(t)

)
– εij

(
u()

))(
εkl

(
u(t)

)
– εkl

(
u()

))
dx

+ 
∫

�

∫ t


Ġijkl(s)

(
εij

(
u(t)

)
– εij

(
u(t – s)

))
εkl

(
u̇(t)

)
ds dx

– 
∫

�

∫ t


Ġijkl(s)

(
εij

(
u(t)

)
– εij

(
u(t – s)

))
εkl

(
u̇(t – s)

)
ds dx, ()

and we have

–
∫

�

∫ t


Ġijkl(s)

(
εij

(
u(t)

)
– εij

(
u(t – s)

))
εkl

(
u̇(t – s)

)
ds dx

= –
∫

�

∫ t


Ġijkl(s)

(
εij

(
u(t)

)
– εij

(
u(t – s)

)) ∂

∂s
(
εkl

(
u(t)

)
– εkl

(
u(t – s)

))
ds dx

= –
∫

�

Ġijkl(t)
(
εij

(
u(t)

)
– εij

(
u()

))(
εkl

(
u(t)

)
– εkl

(
u()

))
dx

+
∫

�

∫ t


G̈ijkl(s)

(
εij

(
u(t)

)
– εij

(
u(t – s)

))(
εkl

(
u(t)

)
– εkl

(
u(t – s)

))
ds dx.

Substituting in (), we find

–
∫

�

∫ t


Ġijkl(s)

(
εij

(
u(t)

)
– εij

(
u(t – s)

))
εkl

(
u̇(t)

)
ds dx

= –



d
dt

∫ t



∫
�

Ġijkl(s)
(
εij

(
u(t)

)
– εij

(
u(t – s)

))(
εkl

(
u(t)

)
– εkl

(
u(t – s)

))
dx ds

+



∫ t



∫
�

G̈ijkl(s)
(
εij

(
u(t)

)
– εij

(
u(t – s)

))(
εkl

(
u(t)

)
– εkl

(
u(t – s)

))
dx ds.
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Substituting in ()

∫
�

S
(
u(t)

) · ∇u̇(t) dx

= –



d
dt

∫ t



∫
�

Ġijkl(s)
(
εij

(
u(t)

)
– εij

(
u(t – s)

))(
εkl

(
u(t)

)
– εkl

(
u(t – s)

))
dx ds

+



∫ t



∫
�

G̈ijkl(s)
(
εij

(
u(t)

)
– εij

(
u(t – s)

))(
εkl

(
u(t)

)
– εkl

(
u(t – s)

))
dx ds

+



d
dt

∫
�

Gijkl(t)εij
(
u(t)

)
εkl

(
u(t)

)
dx

–



∫
�

Ġijkl(t)εij
(
u(t)

)
εkl

(
u(t)

)
dx. ()

Substituting (), () and () in (), we obtain after summing

∫
�

∣∣ṁε,N ∣∣ dx +
a


d
dt

∫
�

∣∣�αmε,N ∣∣ dx +


ε

d
dt

∫
�

(∣∣mε,N ∣∣ – 
) dx

+
ρ


d
dt

∫
�

∣∣u̇ε,N ∣∣ dx +



d
dt

∫
�

λijklmε,N
i mε,N

j εkl
(
uε,N)

dx

–



d
dt

∫ t



∫
�

Ġijkl(s)
(
εij

(
uε,N (t)

)

– εij
(
uε,N (t – s)

))(
εkl

(
uε,N (t)

)
– εkl

(
uε,N (t – s)

))
dx ds

+



∫ t



∫
�

G̈ijkl(s)
(
εij

(
uε,N (t)

)
– εij

(
uε,N (t – s)

))(
εkl

(
uε,N (t)

)
– εkl

(
uε,N (t – s)

))
dx ds

+



d
dt

∫
�

Gijkl(t)εij
(
uε,N (t)

)
εkl

(
uε,N (t)

)
dx

–



∫
�

Ġijkl(t)εij
(
uε,N (t)

)
εkl

(
uε,N (t)

)
dx = .

Now integrating in time

∫
Q

∣∣ṁε,N ∣∣ dx dt +
a


∫
�

∣∣�αmε,N (T)
∣∣ dx +


ε

∫
�

(∣∣mε,N (T)
∣∣ – 

) dx

+
ρ



∫
�

∣∣u̇ε,N (T)
∣∣ dx +




∫
�

λijklmε,N
i mε,N

j εkl
(
uε,N)

(T) dx

–



∫ T



∫
�

Ġijkl(s)
(
εij

(
uε,N (T)

)
– εij

(
uε,N (T – s)

))(
εkl

(
uε,N (T)

)

– εkl
(
uε,N (T – s)

))
ds dx

+



∫
Q

∫ t


G̈ijkl(s)

(
εij

(
uε,N (t)

)
– εij

(
uε,N (t – s)

))(
εkl

(
uε,N (t)

)

– εkl
(
uε,N (t – s)

))
ds dx dt

+



∫
�

Gijkl(T)εij
(
uε,N (T)

)
εkl

(
uε,N (T)

)
dx

–



∫
Q
Ġijkl(t)εij

(
uε,N (t)

)
εkl

(
uε,N (t)

)
dx dt
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=
a


∫
�

∣∣�αmN ()
∣∣ dx +


ε

∫
�

(∣∣mN ()
∣∣ – 

) dx +
ρ



∫
�

∣∣u̇N ()
∣∣ dx

+



∫
�

λijklmN
i mN

j εkl
(
uN)

() dx +



∫
�

Gijkl()εij
(
uN ()

)
εkl

(
uN ()

)
dx.

Taking into account assumptions (H) and (H)

∫
Q

∣∣ṁε,N ∣∣ dx dt +
a


∫
�

∣∣�αmε,N (T)
∣∣ dx +


ε

∫
�

(∣∣mε,N (T)
∣∣ – 

) dx

+
ρ



∫
�

∣∣u̇ε,N (T)
∣∣ dx +




∫
�

λijklmε,N
i mε,N

j εkl
(
uε,N)

(T) dx

+



∫
�

Gijkl(T)εij
(
uε,N (T)

)
εkl

(
uε,N (T)

)
dx

≤ a


∫
�

∣∣�αmN ()
∣∣ dx +


ε

∫
�

(∣∣mN ()
∣∣ – 

) dx +
ρ



∫
�

∣∣u̇N ()
∣∣ dx

+



∫
�

λijklmN
i mN

j εkl
(
uN)

() dx +



∫
�

Gijkl()εij
(
uN ()

)
εkl

(
uN ()

)
dx. ()

We call Aε,N (T) the left-hand side of () and AN () its right-hand side.
Now, for a positive parameter λ such that λ

 > supijkl|λijkl|, we have by Young’s inequality,
omitting superscripts,

∣∣λijklmimjεkl(u)
∣∣ ≤ λ


|mi||mj|

∣∣εkl(u)
∣∣

≤ λ



(
λ

β
|mi||mj| +

β

λ

∣∣εkl(u)
∣∣

)
,

from where

∑
ijkl

∣∣λijklmimjεkl(u)
∣∣ ≤ λ



(
λ

β

∑
i

|mi|
∑

j

|mj| +
β

λ

∑
kl

∣∣εkl(u)
∣∣

)

= λ

(
λ

β

(∑
i

|mi|
)

+
β

λ

∑
kl

∣∣εkl(u)
∣∣

)

=
λ

β
|m| +

β


∑

kl

∣∣εkl(u)
∣∣.

Therefore, following the idea introduced in [], we have




∣∣∣∣
∫

�

λijklmimjεkl(u) dx
∣∣∣∣

=



∣∣∣∣
∫

�

∑
ijkl

λijklmimjεkl(u) dx
∣∣∣∣

≤ 


∫
�

∑
ijkl

∣∣λijklmimjεkl(u)
∣∣dx

≤ λ

β

∫
�

|m| dx +
β



∫
�

∑
kl

∣∣εkl(u)
∣∣ dx



Ellahiani et al. Boundary Value Problems  (2017) 2017:122 Page 13 of 20

=
λ

β

∫
�

(|m| –  + 
) dx +

β



∫
�

∑
kl

∣∣εkl(u)
∣∣ dx

≤ λ

β

∫
�

(|m| – 
) dx +

λ

β
vol(�) +

β



∫
�

∑
kl

∣∣εkl(u)
∣∣ dx

≤ λ

β

∫
�

(|m| – 
) dx +

λ

β
vol(�) +




∫
�

Gijklεij(u)εkl(u) dx

by using (H). Now, for ε < β

λ , we have




∣∣∣∣
∫

�

λijklmimjεkl(u) dx
∣∣∣∣ ≤ 

ε

∫
�

(|m| – 
) dx +

λ

β
vol(�) +




∫
�

Gijklεij(u)εkl(u) dx,

which implies




∫
�

λijklmN
i mN

j εkl
(
uN)

() dx ≤ 
ε

∫
�

(∣∣mN ()
∣∣ – 

) dx

+
λ

β
vol(�) +




∫
�

Gijklεij
(
uN)

εkl
(
uN)

() dx,

and

–


ε

∫
�

(∣∣mε,N (T)
∣∣ – 

) dx –
λ

β
vol(�)

–



∫
�

Gijklεij
(
uε,N)

εkl
(
uε,N)

(T) dx

≤ 


∫
�

λijklmε,N
i mε,N

j εkl
(
uε,N)

(T) dx.

According to the definition of Aε,N (T) and AN (), we can write

∫
Q

∣∣ṁε,N ∣∣ dx dt +
a


∫
�

∣∣�αmε,N (T)
∣∣ dx +


ε

∫
�

(∣∣mε,N (T)
∣∣ – 

) dx

+
ρ



∫
�

∣∣u̇ε,N (T)
∣∣ dx +




∫
�

Gijklεij
(
uε,N)

εkl
(
uε,N)

(T) dx –
λ

β
vol(�) ≤Aε,N (T),

and

AN () ≤ a


∫
�

∣∣�αmN ()
∣∣ dx +


ε

∫
�

(∣∣mN ()
∣∣ – 

) dx +
ρ



∫
�

∣∣u̇N ()
∣∣ dx

+



∫
�

Gijklεij
(
uN)

εkl
(
uN)

() dx +
λ

β
vol(�).

Since Aε,N (T) ≤AN (), we have

∫
Q

∣∣ṁε,N ∣∣ dx dt +
a


∫
�

∣∣�αmε,N (T)
∣∣ dx +


ε

∫
�

(∣∣mε,N (T)
∣∣ – 

) dx

+
ρ



∫
�

∣∣u̇ε,N (T)
∣∣ dx +




∫
�

Gijklεij
(
uε,N)

εkl
(
uε,N)

(T) dx
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≤ a


∫
�

∣∣�αmN ()
∣∣ dx +


ε

∫
�

(∣∣mN ()
∣∣ – 

) dx +
ρ



∫
�

∣∣u̇N ()
∣∣ dx

+



∫
�

Gijklεij
(
uN)

εkl
(
uN)

() dx +
λ

β
vol(�).

Moreover,
∫
�

|∇uε,N (T)| dx ≤ ∫
�

∑
kl |εkl(uε,N (T))| dx and under assumptions (H) and

(H) we have

∫
Q

∣∣ṁε,N ∣∣ dx dt +
a


∫
�

∣∣�αmε,N (T)
∣∣ dx +


ε

∫
�

(∣∣mε,N (T)
∣∣ – 

) dx

+
ρ



∫
�

∣∣u̇ε,N (T)
∣∣ dx +

β



∫
�

∣∣∇uε,N (T)
∣∣ dx

≤ a


∫
�

∣∣�αmN ()
∣∣ dx +


ε

∫
�

(∣∣mN ()
∣∣ – 

) dx +
ρ



∫
�

∣∣u̇N ()
∣∣ dx

+
τ



∫
�

∣∣∇uN ()
∣∣ dx +

λ

β
vol(�). ()

Since u ∈ H
(�), u ∈ L(�) and m ∈ Hα(�), which is embedded into L(�) for  <

α < 
 , the right-hand side is uniformly bounded. Indeed, for constants C, C, C and C

independent of N ,

∫
�

(∣∣mN ()
∣∣ – 

) dx =
∫

�

∣∣mN ()
∣∣ dx – 

∫
�

∣∣mN ()
∣∣ dx + vol(�)

≤ ∥∥mN ()
∥∥

L(�) + vol(�)

≤ C
∥∥mN ()

∥∥
Hα (�) + C

≤ C

and
∫

�

∣∣∇uN ()
∣∣ dx =

∫
�

∣∣∇uN () – ∇u + ∇u
∣∣ dx

≤ 
∫

�

∣∣∇uN () – ∇u
∣∣ dx + 

∫
�

|∇u| dx

≤ 
∥∥uN () – u

∥∥
H

(�) + ‖u‖
H

(�)

≤ C,

thanks to the strong convergences mN (·, ) → m in Hα(�) and uN (·, ) → u in H
(�).

For the other term (u̇N ()), the estimate can be carried out in an analogous way using
the strong convergence u̇N (·, ) → u in L(�). Moreover, noting that (for a constant C
independent of ε and N )

∫
�

∣∣mε,N ∣∣ dx =
∫

�

(∣∣mε,N ∣∣ –  + 
)

dx

≤ 


∫
�

(∣∣mε,N ∣∣ – 
) dx + C.
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Therefore, for fixed ε > , we have

(
mε,N)

N is bounded in L∞(
, T ; Hα(�)

)
,

(
ṁε,N)

N is bounded in L(, T ; L(�)
)
,

(∣∣mε,N ∣∣ – 
)

N is bounded in L∞(
, T ; L(�)

)
,

(
uε,N)

N is bounded in L(, T ; H
(�)

)
,

(
u̇ε,N)

N is bounded in L(, T ; L(�)
)
.

()

Note that () is due to the Poincaré lemma. Now, from classical compactness results,
there exist two subsequences which we still denote by (mε,N ) and (uε,N ) such that for fixed
ε > 

mε,N ⇀ mε weakly in L(, T ; Hα(�)
)
,

ṁε,N ⇀ ṁε weakly in L(Q),

mε,N → mε strongly in L(, T , Hβ (�)
)

and a.e. for  ≤ β < α,
∣∣mε,N ∣∣ –  ⇀ ζ weakly in L(Q),

uε,N ⇀ uε weakly in L(, T ; H
(�)

)
,

u̇ε,N ⇀ u̇ε weakly in L(Q),

uε,N → uε strongly in L(Q).

()

Convergence () is due to the following lemma (the proof can be found in [], p.).

Lemma . Assume A, B and C are three Banach spaces and satisfy A ⊂ B ⊂ C where the
injections are continuous with compact embedding A ↪→ B and A, C are reflexive. Denote

D :=
{

v
∣∣∣v ∈ Lp (, T ; A), v̇ =

dv
dt

∈ Lp (, T ; C)
}

,

where T is finite and  < pi < ∞, i = , . Then D, equipped with the norm

‖v‖Lp (,T ;A) + ‖v̇‖Lp (,T ;C),

is a Banach space and the embedding D ↪→ Lp (, T ; B) is compact.

Another lemma (Lemma .) whose proof can be found in [], p. will ensure that
ζ = |mε| – .

Lemma . Let � be a bounded open set of Rd
x × Rt , hn and h in Lq(�),  < q < ∞ such

that ‖hn‖Lq(�) ≤ C, hn → h a.e. in �, then hn ⇀ h weakly in Lq(�).

Now, since  < α < 
 and from the Sobolev embedding Hα(Q) ↪→ L(Q), further com-

pactness result follows

mε,N
i mε,N

j → mε
i mε

j strongly in L(Q) ()
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and

mε,N
i φj → mε

i φj strongly in L(Q).

The above estimates allow us to pass to the limit as N goes to infinity and to get the
desired result. Indeed consider the variational formulation of ()

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Q ṁε,N · φ dx dt + a

∫
Q �αmε,N · �αφ dx dt

+
∫

Q λijklmε,N
j εkl(uε,N )φi dx dt +

∫
Q

|mε,N |–
ε

mε,N · φ dx dt = ,

–ρ
∫

Q u̇ε,N · ψ̇ dx dt +
∫

Q Gijkl()εij(uε,N (t))εkl(ψ(t)) dx dt

+
∫

Q
∫ t

 Gijkl(t – s)εij(uε,N (s))εkl(ψ(t)) ds dx dt

+ 

∫

Q λijklmε,N
i mε,N

j εkl(ψ) dx dt = 

()

for any φ ∈ L(, T ; Hα(�)) and ψ ∈ H
(Q). Taking N → ∞ in (), we find

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Q ṁε · φ dx dt + a

∫
Q �αmε · �αφ dx dt

+
∫

Q λijklmε
j εkl(uε)φi dx dt +

∫
Q

|mε |–
ε

mε · φ dx dt = ,

–ρ
∫

Q u̇ε · ψ̇ dx dt +
∫

Q Gijkl()εij(uε(t))εkl(ψ(t)) dx dt

+
∫

Q
∫ t

 Gijkl(t – s)εij(uε(s))εkl(ψ(t)) ds dx dt

+ 

∫

Q λijklmε
i mε

j εkl(ψ) dx dt = 

()

for any φ ∈ L(, T ; Hα(�)) and ψ ∈ H
(Q). We proved the following result.

Proposition . Given m ∈ Hα(�) such that |m| =  a.e., u ∈ H
(�) and u ∈ L(�).

Then there exists a solution (mε , uε), for any positive ε small enough, to problem () in the
sense of distributions. Moreover, we have the following energy estimate:

∫
Q

∣∣ṁε
∣∣ dx dt +

a


∫
�

∣∣�αmε(T)
∣∣ dx +


ε

∫
�

(∣∣mε(T)
∣∣ – 

) dx

+
ρ



∫
�

∣∣u̇ε(T)
∣∣ dx +

β



∫
�

∣∣∇uε(T)
∣∣ dx

≤ a


∫
�

∣∣�αm
∣∣ dx +

ρ



∫
�

|u| dx +
τ



∫
�

|∇u| dx +
λ

β
vol(�). ()

Remark  We can deduce () by taking the lower semicontinuous limit in ().

4.2 Convergence of approximate solutions
The limit process as ε →  makes use also of some convergence results. For this, we will
use estimate (), from which we have

(
mε

)
ε

is bounded in L∞(
, T ; Hα(�)

)
,(

ṁε
)
ε

is bounded in L(, T ; L(�)
)
,(∣∣mε

∣∣ – 
)
ε

is bounded in L∞(
, T ; L(�)

)
,(

uε
)
ε

is bounded in L(, T ; H
(�)

)
,(

u̇ε
)
ε

is bounded in L(, T ; L(�)
)
.
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Then there exist two subsequences, which we still denote by (mε) and (uε), such that

mε ⇀ m weakly in L(, T ; Hα(�)
)
,

ṁε ⇀ ṁ weakly in L(, T ; L(�)
)
,

mε → m strongly in L(, T , Hβ (�)
)

and a.e. for  ≤ β < α,
∣∣mε

∣∣ –  →  strongly in L(Q) and a.e.,

uε ⇀ u weakly in L(, T ; H
(�)

)
,

u̇ε ⇀ u̇ weakly in L(Q),

uε → u strongly in L(Q).

()

It can be shown from convergence () that |m| =  a.e.
Now, in order to pass to the limit ε →  in (), let φ = mε × ϕ, where ϕ ∈ C∞(Q). As φ

is in L(, T ; Hα(�)), there holds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Q ṁε · (mε × ϕ) dx dt + a

∫
Q �αmε · �α(mε × ϕ) dx dt

+
∫

Q λijklmε
j εkl(uε)(mε × ϕ)i dx dt = ,

–ρ
∫

Q u̇ε · ψ̇ dx dt +
∫

Q Gijkl()εij(uε(t))εkl(ψ(t)) dx dt

+
∫

Q
∫ t

 Gijkl(t – s)εij(uε(s))εkl(ψ(t)) ds dx dt

+ 

∫

Q λijklmε
i mε

j εkl(ψ) dx dt = .

()

In () we can easily pass to the limit ε →  (with the exception of the terms where there
is the fractional Laplacian) thanks to recent convergences that we have set and a result like
the one in ().

Now we consider the convergence of the second term of the first equation. This is by
no means obvious since we encounter the fractional order derivatives; for this reason, the
classical methods are not applied anymore. However, commutator estimates (Lemma .
(see [–] for a proof )) provide us with proper tools, to which the success in the follow-
ing owes a lot.

Lemma . (Commutator estimates) Suppose that s >  and p ∈ (, +∞). If f , g ∈ S (the
Schwartz class), then

∥∥�s(fg) – f �sg
∥∥

Lp ≤ C
(‖∇f ‖Lp ‖g‖Ẇ s–,p + ‖f ‖Ẇ s,p ‖g‖Lp

)
()

and

∥∥�s(fg)
∥∥

Lp ≤ C
(‖f ‖Lp ‖g‖Ẇ s,p + ‖f ‖Ẇ s,p ‖g‖Lp

)
()

with p, p ∈ (, +∞) such that 
p = 

p
+ 

p
= 

p
+ 

p
.

We start firstly by showing that �α(mε ×ϕ) ∈ L(Q) (then we comment that the second
term in () makes sense), indeed applying the multiplicative estimates () in Lemma .
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to mε and ϕ (for s = α, p = , p = 
–α

, p = 
α

, p =  and p = ∞), we find for a constant C
independent of ε

∥∥�α
(
mε × ϕ

)∥∥
L(�) ≤ C

(∥∥mε
∥∥

Lp (�)‖ϕ‖Ẇα,p (�) +
∥∥mε

∥∥
Ḣα (�)‖ϕ‖L∞(�)

)
= C

(∥∥mε
∥∥

Lp (�)

∥∥�αϕ
∥∥

Lp (�) +
∥∥�αmε

∥∥
L(�)‖ϕ‖L∞(�)

)
.

Here is another lemma (see [] for a detailed proof and for more details on fractional
calculus).

Lemma . Suppose that p > q >  and 
p + s

d = 
q . Assume that �sf ∈ Lq, then f ∈ Lp and

there is a constant C >  such that

‖f ‖Lp ≤ C
∥∥�sf

∥∥
Lq .

In Lemma ., we take f = mε , q = , s = α, p = p, then ‖mε‖Lp (�) ≤ C‖�αmε‖L(�).
Therefore

∥∥�α
(
mε × ϕ

)∥∥
L(�) ≤ C

(
C

∥∥�αmε
∥∥

L(�)

∥∥�αϕ
∥∥

Lp (�) +
∥∥�αmε

∥∥
L(�)‖ϕ‖L∞(�)

)
≤ C

∥∥�αmε
∥∥

L(�)

(
C

∥∥�αϕ
∥∥

Lp (�) + ‖ϕ‖L∞(�)
)

≤ C,

where the constants C, C and C are independent of ε.
Now, to ensure the convergence for the nonlinear nonlocal term, we introduce the com-

mutator (see [])

�ϕ(m) := �α(m × ϕ) – ϕ × �αm

and we begin by showing that �ϕ(m) ∈ L(Q). Indeed, applying () for p = ∞, p = , p =

β

and p = 
–β

with β = α –  (note that for the choice of p we have Ḣβ (�) ↪→ Lp (�)),
we find

∥∥�ϕ(m)
∥∥

L(�) ≤ C
(‖∇ϕ‖L∞(�)‖m‖Ḣβ (�) + ‖ϕ‖Ẇα,p (�)‖m‖Lp (�)

)
≤ C

(‖∇ϕ‖L∞(�)‖m‖Ḣβ (�) + C‖ϕ‖Ẇα,p (�)‖m‖Ḣβ (�)
)

≤ C‖m‖Hβ (�)
(‖∇ϕ‖L∞(�) + ‖ϕ‖Ẇα,p (�)

)
≤ C′‖m‖Hβ (�),

where C, C, C and C′ are constants. Then

∥∥�ϕ(m)
∥∥

L(Q) ≤ C‖m‖L(,T ;Hβ (�)).

Once again, similarly

∥∥�ϕ

(
mε – m

)∥∥
L(Q) ≤ C

∥∥mε – m
∥∥

L(,T ;Hβ (�)).
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In what follows, we focus on the convergence of the following term:

Iε :=
∫

Q
�αmε · �α

(
mε × ϕ

)
dx dt.

Let I :=
∫

Q �αm · �α(m × ϕ) dx dt, since �αm · (�αm × ϕ) = , we have

Iε =
∫

Q
�αmε · �ϕ

(
mε

)
dx dt and I =

∫
Q

�αm · �ϕ(m) dx dt,

and note that these two integrals are well defined since �ϕ(mε) and �ϕ(m) are in L(Q).
Now we will show that Iε → I as ε → .

We have

|Iε – I| =
∣∣∣∣
∫

Q
�αmε · �ϕ

(
mε

)
dx dt –

∫
Q

�αm · �ϕ(m) dx dt
∣∣∣∣

=
∣∣∣∣
∫

Q
�αmε · �ϕ

(
mε – m

)
dx dt +

∫
Q

�α
(
mε – m

) · �ϕ(m) dx dt
∣∣∣∣

≤
∫

Q

∣∣�αmε · �ϕ

(
mε – m

)∣∣dx dt +
∣∣∣∣
∫

Q
�α

(
mε – m

) · �ϕ(m) dx dt
∣∣∣∣

≤ C
∥∥�ϕ

(
mε – m

)∥∥
L(Q) +

∣∣∣∣
∫

Q
�α

(
mε – m

) · �ϕ(m) dx dt
∣∣∣∣

≤ C′∥∥mε – m
∥∥

L(,T ;Hβ (�)) +
∣∣∣∣
∫

Q
�α

(
mε – m

) · �ϕ(m) dx dt
∣∣∣∣

→ 

by the strong convergence for mε to m in L(, T ; Hβ (�)) and the weak convergence in
L(, T ; Hα(�)).

Therefore

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Q ṁ · (m × ϕ) dx dt + a

∫
Q �αm · �α(m × ϕ) dx dt

+
∫

Q λijklmjεkl(u)(m × ϕ)i dx dt = ,

–ρ
∫

Q u̇ · ψ̇ dx dt +
∫

Q Gijkl()εij(u(t))εkl(ψ(t)) dx dt

+
∫

Q
∫ t

 Gijkl(t – s)εij(u(s))εkl(ψ(t)) ds dx dt + 

∫

Q λijklmimjεkl(ψ) dx dt = .

This being true for every ϕ ∈ C∞(Q), ψ ∈ H
(Q). Note that from () one can easily get

(). Hence (m, u) is a solution of problem ()-()-() in the sense of Definition .. The
proof of Theorem . is complete.

5 Concluding remarks
In this paper, we have considered a model described by the fractional Heisenberg equa-
tion for the magnetization field and the viscoelastic integro-differential equation for the
displacements. Global existence of weak solutions is proved. However, it would be inter-
esting to prove the global existence of weak solutions in the case where ν �=  and to set up
a numerical scheme for the system studied.
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