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Abstract
This paper focuses on the maximum and minimum solutions for a fractional order
differential system, involving a p-Laplacian operator and nonlocal boundary
conditions, which arises from many complex processes such as ecological economy
phenomena and diffusive interaction. By introducing new type growth conditions
and using the monotone iterative technique, some new results about the existence
of maximal and minimal solutions for a fractional order differential system is
established, and the estimation of the lower and upper bounds of the maximum and
minimum solutions is also derived. In addition, the iterative schemes starting from
some explicit initial values and converging to the exact maximum and minimum
solutions are also constructed.
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1 Introduction
The interest in using fractional differential equations in modeling ecological economy and
diffusive processes has wide literature. Especially when one wants to model long-range
ecological economy phenomena and diffusive interaction, fractional differential operator
has higher accuracy than integer order differential model in depicting the co-evolution
process of economic, social and ecological subsystems and the transport of solute in highly
heterogeneous porous media. Recently this interest has also been activated by recent
progress in the mathematical theory and psycho-socio-economical dynamics, see [, ].
On the other hand, since fractional order derivative, which exhibits a long time memory
behavior, is nonlocal, thus except for diffusive processes in porous medium flow and eco-
logical economy phenomena, the differential equation with fractional derivative can also
describe many other physical phenomena in natural sciences and engineering, such as
earthquake, traffic flow, measurement of viscoelastic material properties, polymer rheol-
ogy and various material processes [–].

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-017-0849-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-017-0849-y&domain=pdf
mailto:hunantengren@163.com


Ren et al. Boundary Value Problems  (2017) 2017:118 Page 2 of 15

In this paper, we study the existence of maximum and minimum solutions for the fol-
lowing nonlocal fractional differential system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dβ
t (ϕp (–Dα

t x))(t) = f(x(t), x(t)),

–Dβ
t (ϕp (–Dα

t x))(t) = f(x(t), x(t))

x() = , Dα
t x() = Dα

t x() = , x() =
∫ 

 x(t) dA(t),

x() = , Dα
t x() = Dα

t x() = , x() =
∫ 

 x(t) dA(t),

(.)

where Dαi
t , Dβi

t are the standard Riemann-Liouville derivatives satisfying  < αi,βi ≤ ,
∫ 

 x(s) dAi(s) denotes a Riemann-Stieltjes integral and Ai is a function of bounded varia-
tion, ϕpi is the p-Laplacian operator defined by ϕpi (s) = |s|pi–s, pi > , where i = , . Ob-
viously, ϕpi (s) is invertible and its inverse operator is ϕqi (s), where qi = pi

pi– , i = , , are
conjugate indices of pi.

Recently, some interesting results about the existence of positive solutions for nonlinear
fractional equation with p-Laplacian operator have been reported [–, ]. In [],
Chen and Liu investigated the existence of solutions for the anti-periodic fractional order
p-Laplacian boundary value problem with the following form:

⎧
⎨

⎩

Dβ
t (ϕp(Dα

t x))(t) = f (t, x(t)), t ∈ (, ),

x() = –x(), Dα
t x() = –Dα

t x(),
(.)

where  < α,β ≤ ,  < α +β ≤ , Dβ
t is a Caputo fractional derivative, and f : [, ]×R →

R is continuous. Under certain nonlinear growth conditions of the nonlinearity, a new
existence result is obtained by using Schaefer’s fixed point theorem. By means of upper
and lower solutions method, Wang et al. [] studied the existence of positive solutions
for the following nonlocal fractional p-Laplacian equation:

⎧
⎨

⎩

Dβ
t (ϕp(Dα

t x))(t) + f (t, x(t)) = , t ∈ (, ),

x() = , x() = ax(ξ ), Dα
t x() = , Dα

t x() = bDα
t x(η),

(.)

where  < α,β ≤ ,  ≤ a, b ≤ ,  < ξ ,η < . More recently, Zhang et al. [] considered
the uniqueness of positive solution for the following fractional order differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ
t (ϕp(–Dα

t x))(t) = –f (x(t),Dγ
t x(t)), t ∈ (, ),

Dα
t x() = Dα+

t x() = Dα
t x() = ,

Dγ
t x() = , Dγ

t x() =
∫ 

 Dγ
t x(s) dA(s),

(.)

where Dα
t , Dβ

t , Dγ
t are the standard Riemann-Liouville derivatives,

∫ 
 x(s) dA(s) denotes

a Riemann-Stieltjes integral and  < γ ≤  < α ≤  < β < , α – γ > , A is a function of
bounded variation and dA can be a signed measure. Under the case where the nonlinear-
ity f (u, v) may be singular at both u =  and v = , the uniqueness of positive solution for
equation (.) was established via the fixed point theorem of the mixed monotone opera-
tor.
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However, to the best of our knowledge, there are relatively few results on a fractional or-
der differential system involving the p-Laplacian operator and nonlocal Riemann-Stieltjes
integral boundary conditions, and no work has been done concerning the maximal and
minimal solutions of system (.). Thus, motivated by the above work, in this paper, we
consider the maximum and minimum solutions for a fractional order p-Laplacian system
subject to a nonlocal Riemann-Stieltjes integral boundary condition. Difference from the
above mentioned work is that in this paper we introduce new type growth condition of
nonlinearity which covers a large number of nonlinear functions; at the same time, the
existence, estimation of the lower and upper bounds and the convergent iterative scheme
of minimal and maximal solutions for system (.) are also established.

2 Preliminaries and lemmas
A number of definitions for the fractional derivative have emerged over the years, and
in this paper, we carry out our work base on the sense of Riemann-Liouville fractional
derivatives; for details, see [, , ]. Here we only recall a famous semigroup property
for Riemann-Liouville fractional calculus.

Proposition . (see [, , ]) Let α > , and f (t) is integrable, then

IαDα
t f (t) = f (t) + ctα– + ctα– + · · · + cntα–n,

where ci ∈R (i = , , . . . , n), n is the smallest integer greater than or equal to α.

Let i = , , we firstly focus on the following linear fractional differential equation subject
to the nonlocal Riemann-Stieltjes integral boundary condition:

⎧
⎨

⎩

–Dαi
t xi(t) = hi(t), t ∈ (, ),

xi() = , xi() =
∫ 

 xi(t) dAi(t).
(.)

In order to establish the existence of positive solutions for system (.), it is necessary to
find Green’s function of BVP (.). The following result has been given in [].

Lemma . (see []) Given hi ∈ L(, ) and  < αi ≤ , then the following boundary value
problem

⎧
⎨

⎩

–Dαi
t xi(t) = hi(t),  < t < ,

xi() = xi() = ,
(.)

has the unique solution

xi(t) =
∫ 


Gαi (t, s)hi(s) ds,

where

Gαi (t, s) =


�(αi)

⎧
⎨

⎩

[t( – s)]αi–,  ≤ t ≤ s ≤ ,

[t( – s)]αi– – (t – s)αi–,  ≤ s ≤ t ≤ .
(.)
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By Proposition ., it is easy to get that the unique solution of the following boundary
value problem

⎧
⎨

⎩

–Dαi
t xi(t) = ,  < t < ,

xi() = , xi() = ,
(.)

is tαi–. Thus, by [] and [], we have the following lemma.

Lemma . (see []) If  < αi ≤  and hi ∈ L[, ], then the boundary value problem (.)
has the unique solution

xi(t) =
∫ 


Hi(t, s)hi(s) ds, (.)

where

Hi(t, s) =
tαi–

 – Ai
GAi (s) + Gαi (t, s), Ai =

∫ 


tαi– dAi(t),

GAi (s) =
∫ 


Gαi (t, s) dAi(t),

(.)

and Gαi (t, s) is defined by (.).

Now we introduce the following necessary condition to ensure the nonnegativity of
Green’s function.

(H) Ai is functions of bounded variation satisfying GAi (s) ≥  for s ∈ [, ] and
 ≤Ai < .

Lemma . (see []) Assume (H) holds, then Gαi (t, s) and Hi(t, s) have the following
properties:

() Gαi (t, s) and Hi(t, s) are nonnegative and continuous for (t, s) ∈ [, ] × [, ].
() For any t, s ∈ [, ], Gαi (t, s) satisfies

tαi–( – t)s( – s)αi–

�(αi)
≤ Gαi (t, s) ≤ αi – 

�(αi)
s( – s)αi–. (.)

() There exist two constants a, b such that

atαi–GAi (s) ≤ Hi(t, s) ≤ btαi–, s, t ∈ [, ]. (.)

For convenience of writing, for hi ∈ L[, ] and pi > , hi ≥ , i = , , we rewrite the
following linear boundary value problems:

⎧
⎨

⎩

–Dβ
t (ϕp (–Dα

t x))(t) = h(t), t ∈ (, ),

x() = , Dα
t x() = Dα

t x() = , x() =
∫ 

 x(t) dA(t),
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and

⎧
⎨

⎩

–Dβ
t (ϕp (–Dα

t x))(t) = h(t), t ∈ (, ),

x() = , Dα
t x() = Dα

t x() = , x() =
∫ 

 x(t) dA(t),

as

⎧
⎨

⎩

–Dβi
t (ϕpi (–Dαi

t xi))(t) = hi(t), t ∈ (, ),

xi() = , Dαi
t x() = Dαi

t xi() = , xi() =
∫ 

 xi(t) dAi(t).
(.)

Lemma . The linear boundary value problem (.) has a unique positive solution

xi(t) =
∫ 


Hi(t, s)

(∫ 


Gβi (s, τ )hi(τ ) dτ

)qi–

ds,

where qi is conjugate indices of pi.

Proof Let wi = –Dαi
t xi, vi = ϕpi (wi), by Lemma ., the unique solution of the boundary

value problem

⎧
⎨

⎩

–Dβi
t vi(t) = hi(t), t ∈ (, ),

vi() = vi() = ,

is

vi(t) =
∫ 


Gβi (t, s)hi(s) ds, t ∈ [, ]. (.)

Noting that –Dαi
t x = wi, wi = ϕ–

pi
(vi) as well as (.), we get that the solution of (.)

satisfies

⎧
⎨

⎩

–Dαi
t xi(t) = ϕ–

pi
(
∫ 

 Gβi (t, s)hi(s) ds), t ∈ (, ),

xi() = , xi() =
∫ 

 xi(t) dAi(t),

which implies that

xi(t) =
∫ 


Hi(t, s)ϕ–

pi

(∫ 


Gβi (s, τ )hi(τ ) dτ

)

ds, t ∈ [, ],

that is,

xi(t) =
∫ 


Hi(t, s)

(∫ 


Gβi (s, τ )hi(τ ) dτ

)qi–

ds, t ∈ [, ]. �

To establish the existence of positive solution of system (.), the following new growth
condition for nonlinearity will be used in the rest of the paper.
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(H) f, f : [, +∞) × [, +∞) → (, +∞) are continuous and nondecreasing in the first
variable and second variable, and there exist positive constants ε > 

q– , ε > 
q–

and M such that

max

{

sup
s,t≥
s+t �=

f(s, t)
(s + t)ε

, sup
s,t≥
s+t �=

f(s, t)
(s + t)ε

}

≤ M. (.)

Remark . In this work, we introduce the growth condition (.) for the first time which
differs from previous work [, , –, ]. In particular, it includes a large number of
nonlinear functions, some basic examples of f, f satisfying (H) are

() f (s, t) = a +
∑m

i= ai(s + t)γi , where ai,γi > , i = , , , . . . , m.
() f (s, t) = [a +

∑m
i= ai(s + t)μi ]


μ , where a, μ, ai,μi (i = , , . . . , m) are positive

constants.
() f (s, t) = (s + t + )μ+ ln( + 

+s+t ) + (s + t)μ + a, a,μ > .
() f (s, t) = ln( + s + t).

Proof ()-() are obvious, we omit the proof. �

Remark . If fi(s, t) = gi(s + t), then the following interesting cases are also included by
(.):

Case . There exists a constant εi > 
qi– such that gi(x)

xεi is increasing on x and

lim
x→+∞

gi(x)
xεi

= M > .

Case . There exists a constant εi > 
qi– such that gi(x)

xεi is nonincreasing on x.

Case  and Case  indicate that gi can be superlinear or sublinear or mixed cases of them;
moreover, this shows that assumption (.) is very easy to be satisfied.

Let E = C[, ] × C[, ] be the Banach space of all continuous functions with the norm

∥
∥(x, x)

∥
∥ = ‖x‖ + ‖x‖, ‖xi‖ = max

{
xi(t) : t ∈ [, ]

}
.

Define a cone P in E

P =
{

(x, x) ∈ E : there exist nonnegative numbers lxi < Lxi such that

lxi t
αi– ≤ xi(t) ≤ Lxi t

αi–, t ∈ [, ], i = , 
}

,

and operators T, T, T ,

T(x, x)(t) =
∫ 


H(t, s)

(∫ 


Gβ (s, τ )f

(
x(τ ), x(τ )

)
dτ

)q–

ds,

T(x, x)(t) =
∫ 


H(t, s)

(∫ 


Gβ (s, τ )f

(
x(τ ), x(τ )

)
dτ

)q–

ds,

T(x, x)(t) =:
(
T(x, x)(t), T(x, x)(t)

)
,

then the fixed point of operator T in E is the solution of system (.).
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Lemma . Assume that (H)-(H) hold. Then T : P → P is a continuous, compact oper-
ator.

Proof For any (x, x) ∈ P, we can find four nonnegative numbers Lxi > lxi ≥  such that

lxi t
αi– ≤ xi(t) ≤ Lxi t

αi–, t ∈ [, ], i = , . (.)

If (x, x) = (, ), notice that fi(, ) �= , then it follows from (.) that T(x, x) ∈ P. Oth-
erwise, by (H), we know that T and T are increasing with respect to x, x. Now we
divide into two cases to prove the right-hand side of inequality of (.) is valid for T .

Case . If x(t) + x(t) ≥ , by (.), we get

T(x, x)(t) ≤ btα–
∫ 



(∫ 


Gβ (s, τ )f

(
x(τ ), x(τ )

)
dτ

)q–

ds

≤ btα–
∫ 



(∫ 


Gβ (s, τ )

f(x(τ ), x(τ ))
(x(τ ) + x(τ ))ε

(
x(τ ) + x(τ )

)ε dτ

)q–

ds

≤ bMε(q–)tα–
∫ 



(∫ 


Gβ (s, τ )

(
x(τ ) + x(τ )

)ε dτ

)q–

ds

≤ bMε(q–)tα–
(∫ 



β – 
�(β)

τ ( – τ )β–(Lxτ
α– + Lxτ

α–)ε dτ

)q–

≤ bMε(q–)
(

β – 
�(β)

(Lx + Lx )ε

)q–

tα– ≤ L∗
x tα–. (.)

Case . If x(t) + x(t) < , we have

T(x, x)(t) ≤ btα–
∫ 



(∫ 


Gβ (s, τ )f

(
x(τ ), x(τ )

)
dτ

)q–

ds

≤ btα–
∫ 



(∫ 


Gβ (s, τ )f(, ) dτ

)q–

ds

≤ btα–
(∫ 



β – 
�(β)

τ ( – τ )β–f(, ) dτ

)q–

≤ b
(

β – 
�(β)

f(, )
)q–

tα– ≤ L∗
x tα–, (.)

where

L∗
x = max

{

bMε(q–)
(

β – 
�(β)

(Lx + Lx )ε

)q–

, b
(

β – 
�(β)

f(, )
)q–}

.

On the other hand,

T(x, x)(t) ≥ atα–
∫ 


GA (s)

(∫ 


Gβ (s, τ )f

(
x(τ ), x(τ )

)
dτ

)q–

ds

≥ atα–
∫ 


GA (s)

(∫ 



sβ–( – s)τ ( – τ )β–

�(β)
f(, )

)q–

ds
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= a
(

f(, )
�(β)

)q– ∫ 


GA (s)s(β–)(q–)( – s)q– ds

×
(∫ 


τ ( – τ )β– dτ

)q–

tα–

= a
(

f(, )
�(β + )

)q– ∫ 


GA (s)s(β–)(q–)( – s)q–dstα–

= l∗x tα–, (.)

where

l∗x = a
(

f(, )
�(β + )

)q– ∫ 


GA (s)s(β–)(q–)( – s)q– ds.

Thus (.)-(.) yield that

l∗x tα– ≤ T(x, x)(t) ≤ L∗
x tα–.

In the same way, there exist two constants L∗
x > l∗x ≥  such that

l∗x tα– ≤ T(x, x)(t) ≤ L∗
x tα–.

Therefore T is well defined and uniformly bounded and T(P) ⊂ P.
On the other hand, according to the Arzela-Ascoli theorem and the Lebesgue dominated

convergence theorem, we know that T : P → P is completely continuous. �

3 Main results
Lemma . Suppose εi(qi – ) > , i = , , then the equation

(
β – 

�(β + )
ε M

)q–

xε(q–)– +
(

β – 
�(β + )

ε M
)q–

xε(q–)– = b– (.)

has a unique positive solution r∗ in [,∞).

Proof Let

ϕ(x) = b– –
(

β – 
�(β + )

ε M
)q–

xε(q–)–

–
(

β – 
�(β + )

ε M
)q–

xε(q–)–, (.)

then ϕ(x) is continuous in [,∞), and

ϕ() = b– > , (.)

ϕ

((
(β – )ε Mb


q–

�(β + )

)– q–
ε(q–)–

)

= –
(

β – 
�(β + )

ε M
)q–( (β – )ε Mb


q–

�(β + )

)– (q–)(ε(q–)–)
ε(q–)–

< . (.)
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On the other hand, we also have

ϕ′(x) = –
[
ε(q – ) – 

]
(

β – 
�(β + )

ε M
)q–

xε(q–)–

–
[
ε(q – ) – 

]
(

β – 
�(β + )

ε M
)q–

xε(q–)–

< , x ∈ (,∞). (.)

Thus by (.)-(.), equation (.) has a unique positive solution r∗ in [,∞). �

Theorem . Suppose conditions (H) and (H) hold, and

(βi – )fi(, )
�(βi + )

≤
(

r∗

b

) 
qi–

, i = , . (.)

Then system (.) has the minimal and maximal solutions, x∗ = (x∗
 , x∗

) and y∗ = (y∗
 , y∗

),
which are positive; and there exist some nonnegative numbers mi < ni, i = , , , , such
that

mtα– ≤ x∗
 (t) ≤ ntα–, mtα– ≤ y∗

 (t) ≤ ntα–, t ∈ [, ],

mtα– ≤ x∗
(t) ≤ ntα–, mtα– ≤ y∗

(t) ≤ ntα–, t ∈ [, ].
(.)

Moreover, for initial values u()(t) = (, ), w()(t) = (r∗, r∗), let {u(n)} and {w(n)} be the iter-
ative sequences generated by

u(n)(t) = Tu(n–)(t) = Tnu()(t), w(n)(t) = Tw(n–)(t) = Tnw()(t), (.)

then

lim
n→+∞ u(n)(t) = x∗(t), lim

n→+∞ w(n)(t) = y∗(t)

uniformly for t ∈ [, ].

Proof Take P[, r∗] = {(x, x) ∈ P :  ≤ ‖x‖ ≤ r∗,  ≤ ‖x‖ ≤ r∗}, we firstly prove
T(P[, r∗]) ⊂ P[, r∗].

In fact, for any (x, x) ∈ P[, r∗], if (x, x) ≡ (, ), it follows from (.) that

∥
∥T(x, x)

∥
∥ = max

t∈[,]

{∫ 


H(t, s)

(∫ 


Gβ (s, τ )f

(
x(τ ), x(τ )

)
dτ

)q–

ds
}

≤ b
∫ 



(∫ 



β – 
�(β)

τ ( – τ )β–f(, ) dτ

)q–

ds

= b
(

β – 
�(β + )

f(, )
)q–

≤ r∗, (.)
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and

∥
∥T(x, x)

∥
∥ = max

t∈[,]

{∫ 


H(t, s)

(∫ 


Gβ (s, τ )f

(
x(τ ), x(τ )

)
dτ

)q–

ds
}

≤ b
∫ 



(∫ 



β – 
�(β)

τ ( – τ )β–f(, ) dτ

)q–

ds

= b
(

β – 
�(β + )

f(, )
)q–

≤ r∗. (.)

Otherwise, for any t ∈ (, ), we have

 < x(t) + x(t) ≤ max
t∈[,]

x(t) + max
t∈[,]

x(t) ≤ r∗. (.)

So, by (H), we get

∥
∥T(x, x)

∥
∥ = max

t∈[,]

{∫ 


H(t, s)

(∫ 


Gβ (s, τ )f

(
x(τ ), x(τ )

)
dτ

)q–

ds
}

≤ b
∫ 



(∫ 



β – 
�(β)

τ ( – τ )β–M
[
x(τ ) + x(τ )

]ε dτ

)q–

ds

≤ b
∫ 



(∫ 



β – 
�(β)

τ ( – τ )β–Mε
(
r∗)ε dτ

)q–

ds

≤ b
(

β – 
�(β + )

ε M
)q–(

r∗)ε(q–)

≤ b
(

β – 
�(β + )

ε M
)q–(

r∗)ε(q–) + b
(

β – 
�(β + )

ε M
)q–(

r∗)ε(q–)

= r∗. (.)

Similar to (.), we have

∥
∥T(x, x)

∥
∥ ≤ b

(
β – 

�(β + )
ε M

)q–(
r∗)ε(q–)

+ b
(

β – 
�(β + )

ε M
)q–(

r∗)ε(q–) = r∗, (.)

which implies that T(P[, r∗]) ⊂ P[, r∗].
Let u()(t) = (u()

 (t), u()
 (t)) = (, ) and

u()(t) =:
(
u()

 (t), u()
 (t)

)
=

((
T

(
u()

 , u()


))
(t),

(
T

(
u()

 , u()


))
(t)

)

=
((

T(, )
)
(t),

(
T(, )

)
(t)

)
, t ∈ [, ],

it follows from u()(t) ∈ P([, r∗]) that u()(t) ∈ T(P[, r∗]).
Denote

u(n+)(t) = Tu(n)(t) = Tn+u()(t), n = , , . . . .
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It follows from T(P[, r∗]) ⊂ P[, r∗] that un(t) ∈ P[, r∗] for n ≥ . Noticing that T is com-
pact, we get that {u(n)} is a sequentially compact set.

On the other hand, since u()(t) ≥  = u()(t), we have

u()(t) =
(
Tu())(t) ≥ (

Tu())(t) = u()(t), t ∈ [, ].

By induction, we get

u(n+) ≥ u(n), n = , , . . . .

Consequently, there exists x∗ = (x∗
 , x∗

) ∈ P[, r] such that u(n) → x∗. Letting n → +∞,
from the continuity of T and Tu(n) = u(n–), we obtain Tx∗ = x∗, which implies that x∗ =
(x∗

 , x∗
) is a nonnegative solution of the nonlinear integral equation (.). Since x∗ ∈ P,

there exist constants  < m < n,  < m < n such that

 < mtα– ≤ x∗
 (t) ≤ ntα–,  < mtα– ≤ x∗

(t) ≤ ntα–, t ∈ (, ),

and consequently x∗ is a positive solution of system (.).
Now let w()(t) = (w()

 (t), w()
 (t)) = (r∗, r∗) and

w()(t) =:
(
w()

 (t), w()
 (t)

)
=

((
T

(
w()

 , w()


))
(t),

(
T

(
w()

 , w()


))
(t)

)
, t ∈ [, ].

Since w()(t) = (r∗, r∗) ∈ P[, r∗], and then w()(t) ∈ P[, r∗]. Thus denote

w(n+)(t) = Tw(n)(t) = Tn+w()(t), n = , , . . . .

It follows from T(P[, r∗]) ⊂ P[, r∗] that

w(n)(t) ∈ P
[
, r∗], n = , , , . . . .

From Lemma ., T is compact, consequently {w(n)} is a sequentially compact set.
Now, since w()(t) ∈ P[, r∗], we get

 ≤ w()
 (t) ≤ ∥

∥w()


∥
∥ ≤ r = w()

 (t),  ≤ w()
 (t) ≤ ∥

∥w()


∥
∥ ≤ r∗ = w()

 (t).

It follows from (H) that w()(t) = Tw()(t) ≤ Tw()(t) = w()(t). By induction, we obtain

w(n+)(t) ≤ w(n)(t), n = , , , . . . .

Consequently, there exists y∗(t) ∈ P[, r∗] such that w(n)(t) → y∗ = (y∗
 , y∗

). Letting n →
+∞, from the continuity of T and Tw(n)(t) = w(n–)(t), we have Ty∗ = y∗, which implies that
y∗ is another nonnegative solution of the boundary value problem (.) and y∗ also satisfies
(.) since y∗ ∈ P.

In the end, we prove that x∗ and y∗ are maximum and minimum solutions for sys-
tem (.). Let x̃ be any positive solution of system (.), then u() =  ≤ x̃ ≤ r∗ = w(), and
u() = Tu() ≤ Tx̃ = x̃ ≤ T(w()) = w(). By induction, we have u(n) ≤ x̃ ≤ w(n), n = , , , . . . .
Taking limit, we have x∗ ≤ x̃ ≤ y∗. This implies that x∗ and y∗ are the maximal and minimal
solutions of system (.), respectively. The proof is completed. �
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Remark In particular, if αi = βi = pi = , then the nonlocal fractional system (.) will
reduce to a fourth order classical beam system of ordinary differential equation,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–x()
 (t) = f(x(t), x(t)),

–x()
 (t) = f(x(t), x(t))

x() = , x′′
 () = x′′

 () = , x() =
∫ 

 x(t) dA(t),

x() = , x′′
() = x′′

() = , x() =
∫ 

 x(t) dA(t),

(.)

we have the following good result.

Corollary . Suppose conditions (H) and (H) hold, and

fi(, ) ≤ 
b

r∗, i = , , (.)

then system (.) has the minimal and maximal solutions, x∗ = (x∗
 , x∗

) and y∗ = (y∗
 , y∗

),
which are positive; and there exist some nonnegative numbers mi < ni, i = , , , , such that

mt ≤ x∗
 (t) ≤ nt, mt ≤ y∗

 (t) ≤ nt, t ∈ [, ],

mt ≤ x∗
(t) ≤ nt, mt ≤ y∗

(t) ≤ nt, t ∈ [, ].
(.)

Moreover, for initial values u()(t) = (, ), w()(t) = (r∗, r∗), let {u(n)} and {w(n)} be the iter-
ative sequences generated by

u(n)(t) = Tu(n–)(t) = Tnu()(t), w(n)(t) = Tw(n–)(t) = Tnw()(t), (.)

then

lim
n→+∞ u(n)(t) = x∗(t), lim

n→+∞ w(n)(t) = y∗(t)

uniformly for t ∈ [, ].

In the end, we know that fractional order integral and derivative operators can describe
an important characteristics exhibiting long-memory in time in many complex processes
and systems. With this advantage, in many eco-economical systems and diffusive pro-
cesses with long time memory behavior [, , , ], fractional calculus provides an ex-
cellent tool to describe the hereditary properties of them. Here we give a specific example
arising from the above complex processes.

Example Consider the following nonlocal boundary value problem of the fractional p-
Laplacian equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–D



t (ϕ 


(–D



t x))(t)

= (x + x) + (x + x)(x + x + ) ln( + 
+x+x

) + ,

–D



t (ϕ 


(–D



t x))(t) = ln( + x + x), t ∈ (, ),

x() = , D



t x() = D



t x() = , x() =
∫ 

 x(s) dA(s),

x() = , D



t x() = D



t x() = , x() =
∫ 

 x(s) dA(s),

(.)
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where

A(t) =

⎧
⎪⎪⎨

⎪⎪⎩

, t ∈ [, 
 ),

, t ∈ [ 
 , 

 ),

, t ∈ [ 
 , ],

A(t) =

⎧
⎪⎪⎨

⎪⎪⎩

, t ∈ [, 
 ),


 , t ∈ [ 

 , 
 ),


 , t ∈ [ 

 , ].

Then system (.) has the positive minimal and maximal solutions, x∗ = (x∗
 , x∗

) and y∗ =
(y∗

 , y∗
); and there exist some nonnegative numbers mi ≤ ni, i = , , , , such that

mt

 ≤ x∗

 (t) ≤ nt

 , mt


 ≤ y∗

 (t) ≤ nt

 , t ∈ [, ],

mt

 ≤ x∗

(t) ≤ nt

 , mt


 ≤ y∗

(t) ≤ nt

 , t ∈ [, ].

(.)

By simple computation, problem (.) is equivalent to the following multipoint bound-
ary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–D



t (ϕ 


(–D



t x))(t)

= (x + x) + (x + x)(x + x + ) ln( + 
+x+x

) + ,

–D



t (ϕ 


(–D



t x))(t) = ln( + x + x), t ∈ (, ),

x() = , D



t x() = D



t x() = , x() = x( 
 ) – x( 

 ),

x() = , D



t x() = D



t x() = , x() = 
 x( 

 ) – x( 
 ).

Let

α =



, α =



, β =



, β =



, p =



, p =



,

and

f(s, t) = (s + t)(s + t + ) ln

(

 +


 + s + t

)

+ (s + t) + , f(s, t) = ln( + s + t).

Firstly, we have

A =
∫ 


tα– dA(t) =  ×

(



) 


–
(




) 


= . < ,

A =
∫ 


tα– dA(t) =




×
(




) 


–
(




) 


= . < ,

and by simple computation, we have GAi (s) ≥ , i = , , and so (H) holds.
Obviously, f, f : [, +∞) × [, +∞) → [, +∞) are continuous and nondecreasing in the

first variable and second variable and fi(, ) �= , i = , . Noticing that

sup
s+t≥

f(s, t)
(s + t) ≤ sup

s+t≥

{

ln

(

 +


 + s + t

)+s+t

+ 
}

≤ ,

sup
s+t≥

f(s, t)
(s + t)

= sup
s+t≥

ln( + s + t)
(s + t)

≤ ln  ≤ ,
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and then (.) is satisfied with ε =  > 
q– = 

 , ε =  > 
q– = 

 , M = . Thus, by Theo-
rem ., system (.) has maximal and minimal solutions which satisfy (.).

4 Conclusion
In this work, we have established an existence result on the maximum and minimum so-
lutions for a class of fractional order differential systems involving a p-Laplacian operator
and nonlocal boundary conditions. This type of differential systems actually arise from
some complex natural processes such as ecological economy phenomena and diffusive
interaction, moreover fractional differential operator can more accurately depict the co-
evolution process of economic, social and ecological subsystems and the transport of so-
lute in highly heterogeneous porous media. The main contribution is that we introduced
some new type growth conditions for nonlinearity and adopted the monotone iterative
technique to establish the existence and estimation of the lower and upper bounds of the
maximum and minimum solutions. Furthermore, the iterative schemes converging to the
exact maximum and minimum solutions, which start from some explicit initial values, are
also constructed.
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