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Abstract
Inverse spectral problems are studied for the first order integro-differential operators
on a finite interval. Properties of spectral characteristic are established, and the
uniqueness theorem is proved for this class of inverse problems.
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1 Introduction
The paper is devoted to studying inverse spectral problems for integro-differential opera-
tors of the form

�y := iy′(x) + R(x)
∫ x


V (t)y(t) dt.

Inverse problems of spectral analysis consist in recovering operators from their spectral
characteristics. Such problems often appear in mathematics, mechanics, physics, elec-
tronics, geophysics, meteorology and other branches of natural sciences. Inverse prob-
lems also play an important role in solving nonlinear evolution equations in mathematical
physics. Interest in this subject has been increasing permanently because of the appear-
ance of new important applications, and nowadays the inverse problem theory is being
developed intensively all over the world. The greatest success in the inverse problem the-
ory has been achieved for the Sturm-Liouville operator (see, e.g., [–]) and afterwards for
higher order differential operators [–] and other classes of differential operators. For
integro-differential and other classes of nonlocal operators, inverse problems are more
difficult to investigate, and the main classical methods (transformation operator method
and the method of spectral mappings) either are not applicable to them or require essential
modifications; and for such operators, the general inverse problem theory does not exist.
At the same time, nonlocal and, in particular, integro-differential operators are of great
interest, because they have many applications (see, e.g., []). We note that some aspects
of inverse problems for integro-differential and integral operators were studied in [–]
and other works. In the present paper, we study the inverse spectral problem for the first
order integro-differential operator � on a finite interval. Properties of spectral character-
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istics are established, and the uniqueness theorem is proved for the inverse problem of
recovering the function R(x) and V (x) from the given spectral data.

2 Preliminary information
Consider the integro-differential equation

�y := iy′(x) + R(x)
∫ x


V (t)y(t) dt = λy(x), x ∈ [,π ], ()

where R(x), V (t) are continuous complex-valued functions, and

R(π – x) ∼ Cαxα , V (x) ∼ Dβxβ , x → +, CαDβ �= .

Let ϕ(x,λ) be the solution of Eq. () with the condition ϕ(,λ) = . Then the following
representation holds (see []):

ϕ(x,λ) = exp(–iλx) +
∫ x


K(x, t) exp(–iλt) dt, ()

where K(x, t) is a continuous function, and K(x, ) = . Denote

�+ := {λ : Imλ ≥ }, �δ
– :=

{
λ : argλ ∈ [π + δ, π – δ]

}
.

It follows from () that for |λ| → ∞ uniformly in x ∈ [,π ]:

ϕ(ν)(x,λ) = (–iλ)ν exp(–iλx)( + o()), λ ∈ �+,ν = , ,
ϕ(ν)(x,λ) = o(λν), λ ∈ �δ

–,ν = , .

}
()

Denote

ϕν(x,λ) :=

ν!

∂νϕ(x,λ)
∂λν

, ν ≥ , �(λ) := ϕ(π ,λ).

The function �(λ) is entire in λ of exponential type, and its zeros 
 := {λn}n≥ (count-
ing with multiplicities) coincide with the eigenvalues of the boundary value problem
L = L(R, V ) for Eq. () with the condition y(π ) = . Let mn be the multiplicity of λn

(λn = λn+ = · · · = λn+mn–). Denote

S := {n : n –  ∈ N,λn– �= λn} ∪ {}, sn+ν(x) := ϕν(x,λn), n ∈ S,ν = mn – .

The functions {sn(x)}n≥ are eigen and associated functions for L.

Example  Let λ = λ < λ < λ = λ = λ < λ < λ < · · · . Then S = {, , , , , . . .},
s(x) = ϕ(x,λ), s(x) = ϕ(x,λ), s(x) = ϕ(x,λ), s(x) = ϕ(x,λ), s(x) = ϕ(x,λ), s(x) =
ϕ(x,λ), s(x) = ϕ(x,λ), . . . .

Let the function η(x,λ) be the solution of the problem

iη′(x,λ) – R(x)
∫ π

x
V (t)η(t,λ) dt + R(x) = λη(x,λ), η(π ,λ) = . ()
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Denote θ (x,λ) := η(π – x,λ). Then

iθ ′(x,λ) + R(x)
∫ x


V(t)θ (t,λ) dt – R(x) = –λθ (x,λ), θ (,λ) = , ()

where R(x) := R(π – x), V(x) := V (π – x). It follows from () that

θ (x,λ) =
∫ x


g(x, t,λ)R(t) dt, ()

where g(x, t,λ) is Green’s function of the Cauchy problem, and

igx(x + t, t,λ) – λg(x + t, t,λ) + R(x + t)
∫ x


V (τ + t)g(τ + t, t,λ) dτ = , g(t, t,λ) = –i;

and consequently, g(x + t, t,λ) = –iϕ(x,λ; t), where ϕ(x,λ; t) is the solution of the Cauchy
problem

iϕ′(x,λ; t) + R(x + t)
∫ x


V (τ + t)ϕ(τ ,λ; t) dτ = λϕ(x,λ; t), ϕ(,λ; t) = .

In view of () we get

ϕ(x,λ; t) = exp(–iλx) +
∫ x


K(x, τ ; t) exp(–iλτ ) dτ ,

where K(x, τ ; t) is a continuous function. This yields

g(x, t,λ) = –i exp
(
–iλ(x – t)

)
– i

∫ x–t


K(x – t, τ ; t) exp(–iλτ ) dτ . ()

Substituting () into (), we obtain

θ (x,λ) =
∫ x


P(x, t) exp(iλt) dt, ()

where

P(x, t) = –iR(x – t) – i
∫ x–t


R(τ )K(x – τ , t; τ ) dτ . ()

Clearly, P(x, x) = –iR(), P(x, ) = –iR(x). Using ()-() and (), we conclude that for
|λ| → ∞ uniformly in x ∈ [,π ]:

η(ν)(x,λ) = o(λν), λ ∈ �+,ν = , ,
η(ν)(x,λ) = o(λν exp(iλ(π – x))), λ ∈ �δ

–,ν = , .

}
()

Denote

�(λ) :=  –
∫ π


V (t)η(t,λ) dt. ()
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Using () and (), we calculate

iη′(x,λ) + R(x)
(

�(λ) +
∫ x


V (t)η(t,λ) dt

)
= λη(x,λ), η(π ,λ) = . ()

In particular, it follows from () that the zeros of the entire function �(λ) coincide with
the zeros of �(λ), and multiplicities of zeros of �(λ) are not more than multiplicities of
zeros of �(λ). Therefore the function �(λ)/�(λ) is entire in λ of exponential type. Denote
�(λ) := �(λ) exp(–iλπ ). Using (), () and (), by standard arguments (see, e.g., []), we
obtain that for |λ| → ∞, the following asymptotical formulae hold:

�(λ) = exp(–iλπ )( + o()), λ ∈ �+,
�(λ) = Bλ–γ –( + o()), λ ∈ �δ

–,

}
()

where B �= ,γ := α + β + . The function F(λ) := �(λ)/�(λ) is entire in λ of exponential
type. By virtue of (),

�(λ) = exp(–iλπ )( + o()), λ ∈ �+,
�(λ) = o(), λ ∈ �δ

–.

}
()

Together with () this yields that F(λ) ≡ , i.e., �(λ) ≡ �(λ) or

�(λ) ≡ �(λ) exp(–iλπ ). ()

Denote

ην(x,λ) :=

ν!

∂η(x,λ)
∂λν

, ν ≥ , ψn+ν(x) := ην(x,λn), n ∈ S,ν = mn – .

The functions {ψn(x)}n≥ are eigen and associated functions for the boundary value prob-
lem L, and

ψn+ν(x) =
ν∑

j=

βn+ν–jsn+j(x), n ∈ S,ν = mn – . ()

The coefficients {βn}n≥ are called Levinson’s weight numbers, and the data {λn,βn}n≥ are
called the spectral data for the boundary value problem L. We will consider the following
inverse problem.

Inverse problem  Given the spectral data {λn,βn}n≥, construct R and V .

3 The uniqueness theorem
Below we will assume that R(x) �=  a.e. on (,π ). If this condition does not hold, then the
specification of the spectral data does not uniquely determine L (see Example ).

Let us formulate the uniqueness theorem for this inverse problem. For this purpose,
together with L we consider the boundary value problem L̃ := L(R̃, Ṽ ) of the same form
but with different functions R̃(x), Ṽ (t). We agree that in what follows if a certain symbol
α denotes an object related to L, then α̃ will denote the analogous object related to L̃.
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Theorem  Let {λ̃n, β̃n} be the spectral data for the problem L̃ = L(R̃, Ṽ ). If λn = λ̃n, βn = β̃n

for all n ≥ , then R(x) ≡ R̃(x), V (x) ≡ Ṽ (x), x ∈ [,π ].

Proof Using ()-() and Hadamard’s factorization theorem, we get �(λ) ≡ �̃(λ). Tak-
ing () into account, we deduce that the functions

Aj(x,λ) =
(
�(λ)

)–
exp(iλx)

(
ϕ̃(x,λ)η(j–)(x,λ) – η̃(x,λ)ϕ(j–)(x,λ)

)
, j = , ,

are entire in λ of exponential type. Taking (), () and () into account, we obtain for
|λ| → ∞

A(x,λ) = o(), A(x,λ) = o(λ), λ ∈ �+,

A(x,λ) = o
(
λγ +), A(x,λ) = o

(
λγ +), λ ∈ �δ

–,

and consequently,

A(x,λ) ≡ , A(x,λ) ≡ A(x), ()

where the function A(x) does not depend on λ. In particular, () yields

ϕ̃(x,λ)η(x,λ) ≡ η̃(x,λ)ϕ(x,λ), ()

ϕ̃(x,λ)η′(x,λ) – η̃(x,λ)ϕ′(x,λ) ≡ A(x)�(λ) exp(–iλx). ()

Similarly, we obtain

ϕ(x,λ)η′(x,λ) – η(x,λ)ϕ′(x,λ) ≡ A∗(x)�(λ) exp(–iλx), ()

where A∗(x) does not depend on λ. Using () we calculate

ϕ̃(x,λ)
(
ϕ(x,λ)η′(x,λ) – η(x,λ)ϕ′(x,λ)

)
= ϕ(x,λ)

(
ϕ̃(x,λ)η′(x,λ) – η̃(x,λ)ϕ′(x,λ)

)
.

Together with ()-() this yields

ϕ̃(x,λ)A∗(x) ≡ ϕ(x,λ)A(x).

Taking () into account, we conclude that A(x) ≡ A∗(x), and

(
ϕ̃(x,λ) – ϕ(x,λ)

)
A(x) ≡ . ()

Furthermore, using (), () and Eqs. () and (), we infer

iA(x)�(λ) exp(–iλx)

= iϕ̃(x,λ)η′(x,λ) – iη̃(x,λ)ϕ′(x,λ)

= ϕ̃(x,λ)
(

R(x)
∫ π

x
V (t)η(t,λ) dt – R(x)

)
+ η̃(x,λ)R(x)

∫ x


V (t)ϕ(t,λ) dt.
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Hence, for |λ| → ∞,λ ∈ �+, we get A(x) ≡ iR(x). In view of (), one has

(
ϕ̃(x,λ) – ϕ(x,λ)

)
R(x) ≡ . ()

Since R(x) �=  a.e. on (,π ), it follows from () that

ϕ̃(x,λ) ≡ ϕ(x,λ).

By virtue of (),

η̃(x,λ) ≡ η(x,λ).

Then, according to (),

R(x) – R̃(x) = R(x)
∫ π

x
V (t)η(t,λ) dt – R̃(x)

∫ π

x
Ṽ (t)η(t,λ) dt.

For |λ| → ∞ this yields R(x) ≡ R̃(x), x ∈ [,π ], and consequently V (x) ≡ Ṽ (x), x ∈ [,π ].
Theorem  is proved. �

Example  Fix a ∈ (,π ). Let R(x) ≡  for x ∈ [, a] and R(x) �=  for x ∈ (a,π ). Put R̃(x) ≡
R(x) for x ∈ [,π ], and choose V (t), Ṽ (t) such that V (t) ≡ Ṽ (t) for t ∈ (a,π ), and V (t) �=
Ṽ (t) for t ∈ [, a]. Then ϕ̃(x,λ) ≡ ϕ(x,λ) and η̃(x,λ) ≡ η(x,λ); hence λ̃n = λn, β̃n = βn for all
n ≥ .
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