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1 Introduction
In this paper, we study the existence of solutions for higher-order nonlinear fractional
differential equations with p-Laplacian operator:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dβ
+φp(Dα

+u(t)) = f (t, v(t), Dα–
+ v(t), . . . , Dα–(n–)

+ v(t)), t ∈ (, ),

Dβ
+φp(Dα

+v(t)) = g(t, u(t), Dα–
+ u(t), . . . , Dα–(n–)

+ u(t)), t ∈ (, ),

u′() = · · · = u(n–)() = Dα
+u() = , u() =

∑∞
i= aiu(ξi),

v′() = · · · = v(n–)() = Dα
+v() = , v() =

∑∞
i= biv(ηi),

(.)

where the p-Laplacian operator is defined as φp(s) = |s|p–s, p > , φq(s) = φ–
p (s), 

p + 
q = ,

 < β,β < , n –  < α,α < n,  < ξ < ξ < · · · < ξi < · · · < ,  < η < η < · · · < ηi < · · · < ,
∑∞

i= ai =
∑∞

i= bi = ,
∑∞

i= |ai| < ∞,
∑∞

i= |bi| < ∞, Dα
+, Dβ

+, Dα
+, Dβ

+ denote the Caputo
fractional derivatives and f , g : [, ] ×R

n →R are continuous.
The theory of fractional differential equations is a branch of differential equation theory,

which occurs more frequently in different research areas and engineering, such as fluid
mechanics, control system, viscoelasticity, chemistry, electromagnetic, etc. (see [–]). In
the last few decades, many authors devoted their attention to the study of resonant bound-
ary value problems for nonlinear fractional differential equations, see [–]. Meanwhile,
some important results relative to the existence of solutions for a coupled system of frac-
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tional differential equations with p-Laplacian operator at resonance have been obtained,
see [–].

In [], Hu et al. considered the two-point boundary value problem for nonlinear frac-
tional differential equations with p-Laplacian operator at resonance:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ

+φp(Dα
+ u(t)) = f (t, v(t), Dδ

+ u(t)), t ∈ (, ),
Dγ

+φp(Dδ
+ v(t)) = g(t, u(t), Dα

+ u(t)), t ∈ (, ),
Dα

+ u() = Dα
+ u() = Dδ

+ v() = Dδ
+ v() = ,

where φp(s) = |s|p–s, p >  is the p-Laplacian operator,  < α,β < ,  < α + β < , Dα
+ , Dβ

+

Dγ

+ Dδ
+ denote the Caputo fractional derivatives and f , g : [, ]×R

 →R are continuous.
In [], Cheng et al. considered the two-point boundary value problem for nonlinear

fractional p-Laplacian differential equations with Ker L = n ≥ :
⎧
⎪⎪⎨

⎪⎪⎩

Dγ

+φp(Dα
+ u(t)) = f (t, v(t)), t ∈ (, ),

Dγ

+φp(Dβ

+ v(t)) = g(t, u(t)), t ∈ (, ),
Dα

+ u() = Dα
+ u() = Dβ

+ v() = Dβ

+ v() = ,

where φp(s) = |s|p–s, p >  is the p-Laplacian operator,  < γ < , n –  < α,β < n, Dα
+ , Dβ

+ ,
Dγ

+ denote the Caputo fractional derivatives and f , g : [, ] ×R →R are continuous.
In recent years, the subject of infinite-point boundary value problems of fractional dif-

ferential equations which can extend many previous results have attracted more attention.
Most of the results are mainly at nonresonance. For the resonance case, the existing re-
sults of fractional differential equations with infinite-point boundary value problems are
few. We refer the reader to [–] and the references cited therein.

From the above work, we see that recent study on a coupled system of fractional p-
Laplacian differential equations is mainly at two-point boundary value problem. The the-
ory for fractional p-Laplacian differential equations with multi-point and even infinite-
point at resonance has yet been sufficiently developed. To the best of our knowledge, this
is the first paper to study higher order fractional differential equations with p-Laplacian
and infinite-point boundary value conditions at resonance. Motivated by the works above,
we consider the existence of solutions for BVP (.).

The rest of this paper is organized as follows. In Section , we give some necessary nota-
tions, definitions and lemmas. In Section , we study the existence of solutions of (.) by
the coincidence degree theory due to Mawhin []. Finally, an example is given to illustrate
our results in Section .

2 Preliminaries
We present the necessary definitions and lemmas from fractional calculus theory that will
be used to prove our main theorems.

Definition . ([]) The Riemann-Liouville fractional integral of order α >  of a function
f : (,∞) →R is given by

Iα
+f (t) =


	(α)

∫ t


(t – s)α–f (s) ds,

provided that the right-hand side is pointwise defined on (,∞).
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Definition . ([]) The Caputo fractional derivative of order α >  of a function f ∈
ACn–[, ] is given by

Dα
+f (t) =


	(n – α)

∫ t



f (n)(s)
(t – s)α–n+ ds,

where n –  < α ≤ n, provided that the right-hand side is pointwise defined on (,∞).

Lemma . ([]) Let n –  < α ≤ n, u ∈ ACn–[, ], then

Iα
+Dα

+u(t) = u(t) + c + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – .

Lemma . ([]) If β > , α + β > , then the equation

Iα
+Iβ

+f (x) = Iα+β
+ f (x)

is satisfied for an integrable function f .

Lemma . ([]) For any u, v ≥ , then

φp(u + v) ≤ φp(u) + φp(v) if p < ;

φp(u + v) ≤ p–(φp(u) + φp(v)
)

if p ≥ .

Firstly, we briefly recall some definitions on the coincidence degree theory. For more
details, see [].

Let Y , Z be real Banach spaces, L : dom L ⊂ Y → Z be a Fredholm map of index zero
and P : Y → Y , Q : Z → Z be continuous projectors such that

Ker L = Im P, Im L = Ker Q, Y = Ker L ⊕ Ker P, Z = Im L ⊕ Im Q.

It follows that

L|dom L∩Ker P : dom L ∩ Ker P → Im L

is invertible. We denote the inverse of this map by KP .
If 
 is an open bounded subset of Y , the map N will be called L-compact on 
 if QN(
)

is bounded and KP,QN = KP(I – Q)N : 
 → Y is compact.

Theorem . Let L be a Fredholm operator of index zero and N be L-compact on 
. Sup-
pose that the following conditions are satisfied:

() Lx �= λNx for each (x,λ) ∈ [(dom L\Ker L) ∩ ∂
] × (, );
() Nx /∈ Im L for each x ∈ Ker L ∩ ∂
;
() deg(JQN |Ker L,
 ∩ Ker L, ) �= , where Q : Z → Z is a continuous projection as above

with Im L = Ker Q and J : Im Q → Ker L is any isomorphism.
Then the equation Lx = Nx has at least one solution in dom L ∩ 
.
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3 Main results
In this section, we begin to prove the existence of solutions to problem (.). Consider
the functions φ(z) =

∑∞
i= aiξ

z
i , φ(z) =

∑∞
i= biη

z
i , z ∈ [,∞). According to

∑∞
i= |ai| < ∞,

∑∞
i= |bi| < ∞, one has the series are (uniformly) convergent and thus φ, φ are continuous

on [,∞).
The following assumption will be used in our main results:

(H) There exist z, z̃ with z ≥ α, z̃ ≥ α such that φ(z) · φ(z̃) �= .

The following lemma is fundamental in the proofs of our main results.

Lemma . Problem (.) is equivalent to the following equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
+u(t) = φq[Iβ

+f (t, v(t), Dα–
+ v(t), . . . , Dα–(n–)

+ v(t))], t ∈ (, ),

Dα
+v(t) = φq[Iβ

+g(t, u(t), Dα–
+ u(t), . . . , Dα–(n–)

+ u(t))], t ∈ (, ),

u′() = · · · = u(n–)() = , u() =
∑∞

i= aiu(ξi),

v′() = · · · = v(n–)() = , v() =
∑∞

i= biv(ηi).

(.)

Proof By Lemma ., Dβ
+φp(Dα

+u(t)) = f (t, v(t), Dα–
+ v(t), . . . , Dα–(n–)

+ v(t)) has the follow-
ing solution:

φp
(
Dα

+u(t)
)

= Iβ
+f

(
t, v(t), Dα–

+ v(t), . . . , Dα–(n–)
+ v(t)

)
+ c, c ∈ R.

Substituting t =  into the above formula, by Dα
+ u() = , we obtain c = . Then we have

φp
(
Dα

+u(t)
)

= Iβ
+f

(
t, v(t), Dα–

+ v(t), . . . , Dα–(n–)
+ v(t)

)
. (.)

Applying the operator φq to the both sides of (.) respectively, we have

Dα
+u(t) = φq

[
Iβ

+f
(
t, v(t), Dα–

+ v(t), . . . , Dα–(n–)
+ v(t)

)]
.

By a similar argument, we have

Dβ
+φp

(
Dα

+v(t)
)

= g
(
t, u(t), Dα–

+ u(t), . . . , Dα–(n–)
+ u(t)

)

is equivalent to

Dα
+v(t) = φq

[
Iβ

+g
(
t, u(t), Dα–

+ u(t), . . . , Dα–(n–)
+ u(t)

)]
.

Therefore, BVP (.) is rewritten by (.)
It is easy to verify that equation (.) has a solution (u, v) if and only if (u, v) solves equa-

tion (.). �

Let E = C[, ] with the norm ‖x‖∞ = max≤t≤ |x(t)|. Now, we set X = {u(t) : u(t),
Dα–i

+ u(t) ∈ E, i = , , . . . , n – } with the norm

‖u‖X = max
{‖u‖∞,

∥
∥Dα–

+ u
∥
∥∞, . . . ,

∥
∥Dα–(n–)

+ u
∥
∥∞

}
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and X = {v(t) : v(t), Dα–i
+ v(t) ∈ E, i = , , . . . , n – } with the norm

‖v‖X = max
{‖v‖∞,

∥
∥Dα–

+ v
∥
∥∞, . . . ,

∥
∥Dα–(n–)

+ v
∥
∥∞

}
.

Let Y = X ×X with the norm ‖(u, v)‖Y = max{‖u‖X ,‖v‖X} and Z = E ×E with the norm
‖(x, y)‖Z = max{‖x‖∞,‖y‖∞}.

Clearly, X and Y are Banach spaces.
Define the linear operator L : dom L → E by setting

dom L =

{

u ∈ X

∣
∣
∣
∣u

′() = · · · = u(n–)() = , u() =
∞∑

i=

aiu(ξi)

}

and

Lu = Dα
+u, u ∈ dom L.

Define the linear operator L from dom L → E by setting

dom L =

{

v ∈ X

∣
∣
∣
∣v

′() = · · · = v(n–)()) = , v() =
∞∑

i=

biv(ηi)

}

and

Lv = Dα
+v, v ∈ dom L.

Define the operator L : dom L → Z with

dom L =
{

(u, v) ∈ Y |u ∈ dom L, v ∈ dom L
}

and

L(u, v) = (Lu, Lv).

Let N : Y → Z be the Nemytskii operator

N(u, v) = (Nv, Nu),

where N : X → E is defined by

Nv(t) = φq
[
Iβ

+f
(
t, v(t), Dα–

+ v(t), . . . , Dα–(n–)
+ v(t)

)]

and N : X → E is defined by

Nu(t) = φq
[
Iβ

+g
(
t, u(t), Dα–

+ u(t), . . . , Dα–(n–)
+ u(t)

)]
.

Then BVP (.) can be written as L(u, v) = N(u, v).
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Lemma . L is defined as above, then

Ker L =
{

(u, v) ∈ X : (u, v) = (c, d), c, d ∈R
}

, (.)

Im L =

{

(x, y) ∈ Z :
∞∑

i=

aiIα
+x(ξi) = ;

∞∑

i=

biIα
+y(ηi) = 

}

. (.)

Proof For (u, v) ∈ Ker L, then Lu = Lv = . By Lemma ., the equation Dα
+u(t) =  has

solution

u(t) = c + ct + · · · + cn–tn–.

In view of u(i)() = , i = , , . . . , n – , we get ci = , i = , , . . . , n – . Then u(t) = c. Simi-
larly, for v ∈ Ker L, we have v(t) = d ∈R. Thus, we obtain (.).

Next we prove that (.) holds. Let (x, y) ∈ Im L, so there exists (u, v) ∈ dom L such that
x(t) = Dα

+u(t), y(t) = Dα
+v(t). By Lemma ., we have

u(t) = Iα
+x(t) +

n–∑

i=

citi, v(t) = Iα
+y(t) +

n–∑

i=

diti, ci, di ∈R.

In view of u(i)() = v(i)() = , i = , , . . . , n – , we get ci = di = , i = , , . . . , n – . Hence,

u(t) = Iα
+x(t) + c, v(t) = Iα

+y(t) + d.

According to u() =
∑∞

i= aiu(ξi) and v() =
∑∞

i= biv(ηi), we have

u() = Iα
+x() + c =

∞∑

i=

aiu(ξi) =
∞∑

i=

ai
(
Iα

+x(ξi) + c
)

=
∞∑

i=

aiIα
+x(ξi) + c,

v() = Iα
+y() + d =

∞∑

i=

biv(ξi) =
∞∑

i=

bi
(
Iα

+y(ηi) + c
)

=
∞∑

i=

biIα
+y(ηi) + d,

that is,

∞∑

i=

aiIα
+x(ξi) = ,

∞∑

i=

biIα
+y(ηi) = .

On the other hand, suppose that (x, y) satisfies the above equations. Let u(t) = Iα
+x(t) and

v(t) = Iα
+y(t), we can prove (u, v) ∈ dom L and L(u, v) = (x, y). Then (.) holds. �

Lemma . The mapping L : dom L ⊂ Y → Z is a Fredholm operator of index zero.

Proof The linear continuous projector operator P(u, v) = (Pu, Pv) can be defined as

Pu = u(), Pv = v().

Obviously, P
 = P and P

 = P.
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It is clear that

Ker P =
{

(u, v) : u() = , v() = 
}

.

It follows from (u, v) = (u, v) – P(u, v) + P(u, v) that Y = Ker P + Ker L. For (u, u) ∈ Ker L ∩
Ker P, then u = c, v = d, c, d ∈ R. Furthermore, by the definition of Ker P, we have
c = d = . Thus, we get

Y = Ker L ⊕ Ker P.

By (H), the linear operator Q(x, y) = (Qx, Qy) can be defined as

Qx(t) = tθ ·
∑∞

i= aiIα
+x(ξi)

∑∞
i= ai(Iα

+tθ )(ξi)
= tθ · 	( + α + θ)

φ(z)	( + θ)

∞∑

i=

aiIα
+x(ξi),

Qy(t) = tθ ·
∑∞

i= biIα
+y(ηi)

∑∞
i= bi(Iα

+tθ )(ηi)
= tθ · 	( + α + θ)

φ(z̃)	( + θ)

∞∑

i=

biIα
+y(ηi),

where θ = z – α, θ = z̃ – α.
Obviously, Q(x, y) = (Qx(t), Qy(t)) ∼= R

.
For x(t) ∈ E, we have

Q
(
Qx(t)

)
=

	( + α + θ)
φ(z)	( + θ)

∞∑

i=

aiIα
+x(ξi) · Q

(
tθ

)

=
	( + α + θ)
φ(z)	( + θ)

∞∑

i=

aiIα
+x(ξi) · tθ · 	( + α + θ)

φ(z)	( + θ)
·

∞∑

i=

ai
(
Iα

+tθ
)
(ξi)

=
	( + α + θ)
φ(z)	( + θ)

∞∑

i=

aiIα
+x(ξi) · tθ

· 	( + α + θ)
φ(z)	( + θ)

·
∞∑

i=

ai
	( + θ)ξi

α+θ

	( + α + θ)

=
	( + α + θ)
φ(z)	( + θ)

∞∑

i=

aiIα
+x(ξi) · tθ · 	( + α + θ)

φ(z)	( + θ)
·

∞∑

i=

ai
	( + θ)ξi

z

	( + α + θ)

=
	( + α + θ)
φ(z)	( + θ)

∞∑

i=

aiIα
+x(ξi) · tθ · 	( + α + θ)

φ(z)	( + θ)
· φ(z)	( + θ)

	( + α + θ)

= tθ · 	( + α + θ)
φ(z)	( + θ)

∞∑

i=

aiIα
+x(ξi)

= Qx(t).

Similarly, Q
 = Q, that is to say, the operator Q is idempotent. It follows from (x, y) =

(x, y) – Q(x, y) + Q(x, y) that Z = Im L + Im Q. Moreover, by Ker Q = Im L and Q
 = Q, we

get Im L ∩ Im Q = {(, )}. Hence,

Z = Im L ⊕ Im Q.

Now, Ind L = dim Ker L – codim Im L = , so L is a Fredholm mapping of index zero. �
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For every (u, v) ∈ Y ,

∥
∥P(u, v)

∥
∥

Y = max
{‖Pu‖X ;‖Pv‖X

}
= max

{∣
∣u()

∣
∣;

∣
∣v()

∣
∣
}

. (.)

Furthermore, the operator KP : Im L → dom L ∩ Ker P can be defined

KP(x, y) =
(
Iα

+x, Iα
+y

)
.

For (x, y) ∈ Im L, we have

LKP(x, y) = L
(
Iα

+x, Iα
+y

)
=

(
Dα

+Iα
+x, Dα

+Iα
+y

)
= (x, y). (.)

On the other hand, for (u, v) ∈ dom L ∩ Ker P, according to Lemma ., we have

Iα
+Lu(t) = Iα

+Dα
+u(t) = u(t) + c + ct + · · · + cn–tn–,

Iα
+Lv(t) = Iα

+Dα
+v(t) = v(t) + d + dt + · · · + dn–tn–.

By the definitions of dom L and Ker P, one has u(i)() = v(i)(), i = , , . . . , n – , which im-
plies that ci = di, i = , , . . . , n – . Thus, we obtain

KpL(x, y) =
(
Iα

+Dα
+x, Iα

+Dα
+y

)
= (x, y). (.)

Combining (.) and (.), we get KP = (Ldom L∩Ker P)–.
For (x, y) ∈ Im L, we have

∥
∥KP(x, y)

∥
∥

Y =
∥
∥
(
Iα

+x, Iα
+y

)∥
∥

Y = max
{∥
∥Iα

+x
∥
∥

X
;
∥
∥Iα

+y
∥
∥

X

}

≤ max
{
max

{∥
∥Iα

+x
∥
∥∞,

∥
∥Dα–

+ Iα
+x

∥
∥∞, . . . ,

∥
∥Dα–(n–)

+ Iα
+ x

∥
∥∞

}
;

max
{∥
∥Iα

+y
∥
∥∞,

∥
∥Dα–

+ Iα
+y

∥
∥∞, . . . ,

∥
∥Dα–(n–)

+ Iα
+y

∥
∥∞

}}

= max
{‖x‖∞;‖y‖∞

}
. (.)

Again, for (u, v) ∈ 
, (u, v) ∈ dom(L) \ Ker(L), then (I – P)(u, v) ∈ dom L ∩ Ker P and
LP(u, v) = (, ), thus from (.) we have

∥
∥(I – P)(u, v)

∥
∥

Y =
∥
∥KPL(I – P)(u, v)

∥
∥

Y =
∥
∥KP(Lu, Lv)

∥
∥

Y

≤ max
{‖Nv‖∞;‖Nu‖∞

}
. (.)

By similar arguments as in [] or [], we have the following lemma. We omit the proof
of it.

Lemma . KP(I – Q)N : Y → Y is completely continuous.

For simplicity of notation, we set

a =


	(α + )
; b =

[


	(β + )

]q–

; ã =


	(α + )
; b̃ =

[


	(β + )

]q–

.
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Theorem . Assume that (H) and the following conditions hold.
(H) There exist nonnegative functions ψ(t), ψ̃(t),ϕi(t), ϕ̃i(t) ∈ E, i = , , . . . , n – , such

that for t ∈ [, ], (u, u, . . . , un), (v, v, . . . , vn) ∈ R
n, one has

∣
∣f (t, u, u, . . . , un)

∣
∣ ≤ ψ(t) + ϕ(t)|u|p– + · · · + ϕn–(t)|un|p–,

∣
∣g(t, v, v, . . . , vn)

∣
∣ ≤ ψ̃(t) + ϕ̃(t)|v|p– + · · · + ϕ̃n–(t)|vn|p–.

(H) There exists A >  such that if |u| > A or |v| > A, ∀t ∈ [, ], one has

u ·
[ ∞∑

i=

aiφq
[
Iβ

+f
(
t, v(t), Dα–

+ v(t), . . . , Dα–(n–)
+ v(t)

)]∣
∣
t=ξi

]

> ,

v ·
[ ∞∑

i=

biφq
[
Iβ

+g
(
t, u(t), Dα–

+ u(t), . . . , Dα–(n–)
+ u(t)

)]∣
∣
t=ηi

]

> ,

or

u ·
[ ∞∑

i=

aiφq
[
Iβ

+f
(
t, v(t), Dα–

+ v(t), . . . , Dα–(n–)
+ v(t)

)]∣
∣
t=ξi

]

< ,

v ·
[ ∞∑

i=

biφq
[
Iβ

+g
(
t, u(t), Dα–

+ u(t), . . . , Dα–(n–)
+ u(t)

)]∣
∣
t=ηi

]

< .

Then BVP (.) has at least a solution in X provided that

max
{

q–ãb̃c̃ + q–bc, q–abc + q–b̃c̃,

q–abc + q–bc, q–ãb̃c̃ + q–b̃c̃
}

<  for p < , (.)

max{ãb̃c̃ + bc, abc + b̃c̃, abc + bc, ãb̃c̃ + b̃c̃} <  for p ≥ , (.)

where c = (
∑n–

i= ‖ϕi(t)‖∞)q– and c̃ = (
∑n–

i= ‖ϕ̃i(t)‖∞)q–.

Proof According to the definitions of N and N, we have the following inequalities.
For  < p ≤ , one has

‖Nv‖∞ =
∥
∥φq

[
Iβ

+f
(
t, v(t), Dα–

+ v(t), . . . , Dα–(n–)
+ v(t)

)]∥
∥∞

= max
∣
∣Iβ

+f
(
s, v(s), Dα–

+ v(s), . . . , Dα–(n–)
+ v(s)

)∣
∣q–

≤
∣
∣
∣
∣
∣


	(β + )

[

‖ψ‖∞ + ‖v‖p–
X

·
n–∑

i=

∥
∥ϕi(t)

∥
∥∞

]∣
∣
∣
∣
∣

q–

≤ q–b‖ψ‖q–
∞ + q–b

( n–∑

i=

∥
∥ϕi(t)

∥
∥∞

)q–

· ‖v‖X

= q–b‖ψ‖q–
∞ + q–bc · ‖v‖X (.)
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and

‖Nu‖∞ =
∥
∥φq

[
Iβ

+g
(
t, u(t), Dα–

+ u(t), . . . , Dα–(n–)
+ u(t)

)]∥
∥∞

= max
∣
∣Iβ

+g
(
t, u(t), Dα–

+ u(t), . . . , Dα–(n–)
+ u(t)

)∣
∣q–

≤
∣
∣
∣
∣
∣


	(β + )

[

‖ψ̃‖∞ + ‖u‖p–
X

·
n–∑

i=

∥
∥ϕi(t)

∥
∥∞

]∣
∣
∣
∣
∣

q–

≤ q–b̃‖ψ̃‖q–
∞ + q–b̃

( n–∑

i=

∥
∥ϕ̃i(t)

∥
∥∞

)q–

· ‖u‖X

= q–b̃‖ψ̃‖q–
∞ + q–b̃c̃ · ‖u‖X . (.)

By the similar proof of (.) and (.), one has

‖Nv‖∞ ≤ b‖ψ‖q–
∞ + bc · ‖v‖X for p ≥ , (.)

‖Nu‖∞ ≤ b̃‖ψ̃‖q–
∞ + b̃c̃ · ‖u‖X for p ≥ . (.)

Let


 =
{

(u, v) ∈ dom L \ Ker L : L(u, v) = λN(u, v),λ ∈ (, )
}

.

First, we give a proof that for  < p ≤ , 
 is bounded.
Let L(u, v) = λN(u, v) ∈ Im L = Ker Q, that is, Lu = λNv ∈ Ker Q and Lv = λNu ∈

Ker Q. By the definition of Ker Q and Ker Q, we have

∞∑

i=

ai · λφq
[
Iβ

+f
(
t, v(t), Dα–

+ v(t), . . . , Dα–(n–)
+ v(t)

)]

t=ξi
= ,

∞∑

i=

bi · λφq
[
Iβ

+g
(
t, u(t), Dα–

+ u(t), . . . , Dα–(n–)
+ u(t)

)]

t=ηi
= .

According to (H), there exist t, t ∈ (, ) such that |u(t)| ≤ A and |v(t)| ≤ A. Again,
Lu = λNv, u ∈ dom L \ Ker L, that is, Dα

+ u = λNv, we have

u(t) =
λ

	(α)

∫ t


(t – s)α–φq

[
Iβ

+f
(
s, v(s), Dα–

+ v(s), . . . , Dα–(n–)
+ v(s)

)]
ds + c.

Substituting t = t into the above equation, we get

u(t) =
λ

	(α)

∫ t


(t – s)α–φq

[
Iβ

+f
(
s, v(s), Dα–

+ v(s), . . . , Dα–(n–)
+ v(s)

)]
ds + c.

So, we obtain

u(t) – u(t) =
λ

	(α)

∫ t


(t – s)α–φq

[
Iβ

+f
(
s, v(s), Dα–

+ v(s), . . . , Dα–(n–)
+ v(s)

)]
ds

–
λ

	(α)

∫ t


(t – s)α–φq

[
Iβ

+f
(
s, v(s), Dα–

+ v(s), . . . , Dα–(n–)
+ v(s)

)]
ds.
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Together with |u(t)| ≤ A and (.), we have

∣
∣u()

∣
∣ ≤ ∣

∣u(t)
∣
∣ +

∣
∣
∣
∣

λ

	(α)

∫ t


(t – s)α–φq

[
Iβ

+f
(
s, v(s), Dα–

+ v(s), . . . , Dα–(n–)
+ v(s)

)]
ds

∣
∣
∣
∣

≤ A +


	(α)

∫ t


(t – s)α–∣∣φq

[
Iβ

+f
(
s, v(s), Dα–

+ v(s), . . . , Dα–(n–)
+ v(s)

)]∣
∣ds

= A +


	(α)
· (q–b‖ψ‖q–

∞ + q–bc · ‖v‖X

) ·
∫ t


(t – s)α– ds

≤ A + q–ab‖ψ‖q–
∞ + q–abc · ‖v‖X . (.)

Similarly, by (.), we obtain

∣
∣v()

∣
∣ ≤ ∣

∣v(t)
∣
∣

+
∣
∣
∣
∣

λ

	(α)

∫ t


(t – s)α–φq

[
Iβ

+g
(
s, u(s), Dα–

+ u(s), . . . , Dα–(n–)
+ u(s)

)]
ds

∣
∣
∣
∣

≤ A +


	(α)

∫ t


(t – s)α–∣∣φq

[
Iβ

+g
(
s, u(s), Dα–

+ u(s), . . . , Dα–(n–)
+ u(s)

)]∣
∣ds

= A +


	(α)
· (q–b̃‖ψ̃‖q–

∞ + q–b̃c̃ · ‖u‖X

) ·
∫ t


(t – s)α– ds

≤ A + q–ãb̃‖ψ̃‖q–
∞ + q–ãb̃c̃ · ‖u‖X . (.)

For (u, v) ∈ 
, by (.) and (.), we have

∥
∥(u, v)

∥
∥

Y =
∥
∥P(u, v) + (I – P)(u, v)

∥
∥

Y ≤ ∥
∥P(u, v)

∥
∥

Y +
∥
∥(I – P)(u, v)

∥
∥

Y

≤ max
{∣
∣u()

∣
∣ + ‖Nv‖∞;

∣
∣u()

∣
∣ + ‖Nu‖∞;

∣
∣v()

∣
∣ + ‖Nv‖∞;

∣
∣v()

∣
∣ + ‖Nu‖∞

}
.

The following proof is divided into four cases.
Case . ‖(u, v)‖Y ≤ |u()| + ‖Nv‖∞.
By (.) and (.), we have

‖v‖X ≤ ∥
∥(u, v)

∥
∥

Y ≤ ∣
∣u()

∣
∣ + ‖Nv‖∞

≤ A + q–ab‖ψ‖q–
∞ + q–abc · ‖v‖X + q–b‖ψ‖q–

∞ + q–bc · ‖v‖X

= A + q–ab‖ψ‖q–
∞ + q–b‖ψ‖q–

∞ +
(
q–abc + q–bc

) · ‖v‖X .

According to (.), we can derive

‖v‖X ≤ A + q–ab‖ψ‖q–
∞ + q–b‖ψ‖q–

∞
 – (q–abc + q–bc)

:= M.

Thus, 
 is bounded.
Case . ‖(u, v)‖Y ≤ |u()| + ‖Nu‖∞.
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By (.) and (.), we have

∥
∥(u, v)

∥
∥

Y ≤ ∣
∣u()

∣
∣ + ‖Nu‖∞

≤ A + q–ab‖ψ‖q–
∞ + q–abc · ‖v‖X + q–b̃‖ψ̃‖q–

∞ + q–b̃c̃ · ‖u‖X

= A + q–ab‖ψ‖q–
∞ + q–b̃‖ψ̃‖q–

∞ + q–abc · ‖v‖X + q–b̃c̃ · ‖u‖X

≤ A + q–ab‖ψ‖q–
∞ + q–b̃‖ψ̃‖q–

∞ +
(
q–abc + q–b̃c̃

) · ∥∥(u, v)
∥
∥

Y .

By (.), we can derive

∥
∥(u, v)

∥
∥

Y ≤ A + q–ab‖ψ‖q–
∞ + q–b̃‖ψ̃‖q–

∞
 – q–abc – q–b̃c̃

:= M.

Then 
 is bounded.
Case . ‖(u, v)‖Y ≤ |v()| + ‖Nv‖∞.
According to (.) and (.), we have

∥
∥(u, v)

∥
∥

Y ≤ ∣
∣v()

∣
∣ + ‖Nv‖∞

≤ A + q–ãb̃‖ψ̃‖q–
∞ + q–ãb̃c̃ · ‖u‖X + q–b‖ψ‖q–

∞ + q–bc · ‖v‖X

= A + q–ãb̃‖ψ̃‖q–
∞ + q–b‖ψ‖q–

∞ + q–ãb̃c̃ · ‖u‖X + q–bc · ‖v‖X

≤ A + q–ãb̃‖ψ̃‖q–
∞ + q–b‖ψ‖q–

∞ +
(
q–ãb̃c̃ + q–bc

) · ∥∥(u, v)
∥
∥

Y .

By (.), we have

∥
∥(u, v)

∥
∥

Y ≤ A + q–ãb̃‖ψ̃‖q–
∞ + q–b‖ψ‖q–

∞
 – (q–ãb̃c̃ + q–bc)

:= M.

Then 
 is bounded.
Case . ‖(u, v)‖Y ≤ |v()| + ‖Nu‖∞.
According to (.) and (.), we have

‖u‖X ≤ ∥
∥(u, v)

∥
∥

Y ≤ ∣
∣v()

∣
∣ + ‖Nu‖∞

≤ A + q–ãb̃‖ψ̃‖q–
∞ + q–ãb̃c̃ · ‖u‖X + q–b̃‖ψ̃‖q–

∞ + q–b̃c̃ · ‖u‖X

= A + q–ãb̃‖ψ̃‖q–
∞ + q–b̃‖ψ̃‖q–

∞ +
(
q–ãb̃c̃ + q–b̃c̃

) · ‖u‖X .

By (.), we get

‖u‖X ≤ A + q–ãb̃‖ψ̃‖q–
∞ + q–b̃‖ψ̃‖q–

∞
 – (q–ãb̃c̃ + q–b̃c̃)

:= M.

Then 
 is bounded.
Therefore, we have proved that 
 is bounded for  < p ≤ . By similar arguments as the

above proof, according to (.), (.) and (.), we can prove that 
 is also bounded
for p > . We omit the proof of it.
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Let


 =
{

(u, v) ∈ Ker L : N(u, v) ∈ Im L
}

.

Let (u, v) ∈ Ker L, so we have u = c, v = d. In view of N(u, v) = (Nv, Nu) ∈ Im L = Ker Q,
we have Q(Nv) = , Q(Nu) = , that is,

∞∑

i=

aiφq
[
Iβ

+f
(
t, v(t), Dα–

+ v(t), . . . , Dα–(n–)
+ v(t)

)]∣
∣
t=ξi

= ,

∞∑

i=

biφq
[
Iβ

+g
(
t, u(t), Dα–

+ u(t), . . . , Dα–(n–)
+ u(t)

)]∣
∣
t=ηi

= .

By (H), there exist constants t, t ∈ [, ] such that

∣
∣u(t)

∣
∣ = |c| ≤ A,

∣
∣v(t)

∣
∣ = |d| ≤ A.

Therefore, 
 is bounded.
Let


 =
{

(u, v) ∈ Ker L : λ(u, v) + ( – λ)QN(u, v) = (, ),λ ∈ [, ]
}

.

For (u, v) ∈ Ker L, so we have u = c and v = d. By the definition of the set 
, we have

λc + ( – λ)QN(d) = , λd + ( – λ)QN(c) = . (.)

If λ = , similar to the proof of the boundedness of 
, we have |c| ≤ A and |d| ≤ A. If
λ = , we have c = d = . If λ ∈ (, ), we also have |c| ≤ A and |d| ≤ A. Otherwise, if
|c| > A or |d| > A, in view of the first part of (H), we obtain

λc
 + ( – λ)c · QN(d) > , λd

 + ( – λ)d · QN(c) > ,

which contradict (.). Thus, 
 is bounded.
If the second part of (H) holds, then we can prove that the set


′
 =

{
(u, v) ∈ Ker L : –λ(u, v) + ( – λ)QN(u, v) = (, ),λ ∈ [, ]

}

is bounded.
Finally, let 
 to be a bounded open set of Y such that

⋃
i= 
i ⊂ 
. By Lemma ., N is

L-compact on 
. Then, by the above arguments, we get
() L(u, v) �= λN(u, v), for every (u, v) ∈ [(dom L \ KerL) ∩ ∂
] × (, );
() N(u, v) /∈ Im L for every (u, v) ∈ Ker L ∩ ∂
;
() Let H((u, v),λ) = ±λI(u, v) + ( – λ)JQN(u, v), where I is the identical operator. Via

the homotopy property of degree, we obtain that

deg(JQN |Ker L,
 ∩ Ker L, ) = deg
(
H(·, ),
 ∩ Ker L, 

)

= deg
(
H(·, ),
 ∩ Ker L, 

)
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= deg(I,
 ∩ Ker L, )

=  �= .

Applying Theorem ., we conclude that Lu = Nu has at least one solution in dom L∩
. �

4 Example
Let us consider the following fractional differential equations with p-Laplacian operator
at resonance:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D.
+ φ(D.

+ u(t)) = f (t, v(t), D.
+v(t), D.

+ v(t)), t ∈ (, ),

D.
+ φ(D.

+ u(t)) = f (t, u(t), D.
+u(t), D.

+ u(t)), t ∈ (, ),

u′() = u′′() = D.
+ u() = , u() =

∑∞
i=


i u( 

i ),

v′() = v′′() = D.
+ v() = , v() =

∑∞
i=


i u( 

i ),

(.)

where

f (t, x, x, x) =
t


+




x
 +

| sin x|


+
| arctan x|

π
,

g(t, y, y, y) =
t


+




y
 +

cos y


+

e–|y|


.

Corresponding to BVP (.), we have that α = ., β = ., α = ., β = ., n = , p = ,
q = ., a = (	(α + ))– = (	(.))– ≈ ., b = (	(β + ))–q = (	(.))–. ≈ ., ã =
(	(α + ))– = (	(.))– ≈ ., b̃ = (	(β + ))–q = (	(.))–. ≈ ., ai = 

i , ξi = 
i ,

bi = 
i , ηi = 

i , i = , , . . . . Then we have
∑∞

i= ai =
∑∞

i= |ai| =
∑∞

i= bi =
∑∞

i= |bi| = . Taking
z = z̃ = , we have

φ(z)φ(z̃) =
∞∑

i=

aiξ
z
i ·

∞∑

i=

biη
z̃
i =

∞∑

i=


i

(

i

)

·
∞∑

i=


i

(

i

)

�= ,

which implies that (H) holds.
By a simple proof, we have

∣
∣f (t, x, x, x)

∣
∣ =

∣
∣
∣
∣

t


+



x

 +
| sin x|


+

| arctan x|
π

∣
∣
∣
∣ ≤ 


+




x
 ,

∣
∣g(t, y, y, y)

∣
∣ =

∣
∣
∣
∣

t


+




y
 +

cos y


+

e–|y|



∣
∣
∣
∣ ≤ 


+




x
 .

Choose ψ(t) = 
 , ϕ(t) = 

 , ϕ = ϕ = , ψ̃(t) = 
 , ϕ̃(t) = 

 , ϕ̃ = ϕ̃ = , then we have
(H) of Theorem . is satisfied.

By a simple computation, we have c = (
∑n–

i= ‖ϕi(t)‖∞)q– = (ϕ)q– =
√

. ≈ ., c̃ =
(
∑n–

i= ‖ϕ̃i(t)‖∞)q– = (ϕ̃)q– =
√

. ≈ ., ãb̃c̃ + bc ≈ ., abc + b̃c̃ ≈ ., abc +
bc ≈ ., ãb̃c̃ + b̃c̃ ≈ .. So, (.) holds.

In addition, by choosing A = , we have if u > , or v > , then f , g are positive functions.
So, the first inequality of (H) is satisfied.

Thus, all the conditions of Theorem . are satisfied; consequently, its conclusion implies
that problem (.) has a solution on [, ].



Hu and Zhang Boundary Value Problems  (2017) 2017:88 Page 15 of 16

5 Conclusion
In this paper, we have obtained the existence of solutions for a coupled system of fractional
differential equations with p-Laplacian operator and infinite-point boundary conditions
at resonance. We base our analysis on the known coincidence degree theory. The issue
on the existence of solutions of infinite-point boundary value problems is interesting. As
applications, an example is presented to illustrate the main results. In the future, we will
consider the positive solutions for the fractional infinite-point boundary value problems
at resonance.
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