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1 Introduction
In this paper, we study the existence of solutions for higher-order nonlinear fractional

differential equations with p-Laplacian operator:

D ¢, (DL u(0)) = f(t, v(t), D22 v(e), ..., D" Vu(e)), te(0,1),
D2 ¢, (D2 V(D)) = g(t, ult), DS u(t), ..., DI " Vu(e)), te(0,1),

/ ) " N (1.1)
wW(0)=---=u"10)=Dgu(0)=0,  u(0)=3_7 au(),
V(0)=--- =" D(0) = DGZu(0) =0, w(0) = 375 biv(m),
where the p-Laplacian operator is defined as ¢,(s) = Is|P~2s, p > 1, ¢q(s) = qb;(s), 117 + % =1,

O0<BBo<ln—1l<o,op<nm0<g<éy<---<§<---<,0<m<mp<--<y < <1,
Y=Y b =1, Y0 |ai| < 00, Y5F, |bi] < o0, DL, DY, D2, D denote the Caputo
fractional derivatives and f, g : [0,1] x R” — R are continuous.

The theory of fractional differential equations is a branch of differential equation theory,
which occurs more frequently in different research areas and engineering, such as fluid
mechanics, control system, viscoelasticity, chemistry, electromagnetic, etc. (see [1-5]). In
the last few decades, many authors devoted their attention to the study of resonant bound-
ary value problems for nonlinear fractional differential equations, see [6—19]. Meanwhile,
some important results relative to the existence of solutions for a coupled system of frac-
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tional differential equations with p-Laplacian operator at resonance have been obtained,
see [11-16].

In [15], Hu et al. considered the two-point boundary value problem for nonlinear frac-
tional differential equations with p-Laplacian operator at resonance:

Df, ¢ (D3, u(t)) = £ (£, v(t), D). ult)),  t€(0,1),
Dy, (D (D)) = g(t, ult), D u(t), te(0,1),
D%, u(0) = D% u(1) = D), v(0) = D}, v(1) = 0,

where ¢,(s) = |s|”~2s, p > 1 is the p-Laplacian operator, 0 <&, <1, 1 <o + B < 2, D, Doﬂ+
Dy, D}, denote the Caputo fractional derivatives and f, g : [0,1] x R?> — R are continuous.

In [16], Cheng et al. considered the two-point boundary value problem for nonlinear
fractional p-Laplacian differential equations with Ker L = n > 2:

Dy, p(Dfsue)) = f (6, 1(1), £ (0,1),
DY, ¢,(Dhv(0) = glt,ult), te(0,1),
D% u(0) = D%, u(1) = D). »(0) = Db, v(1) = 0,

where ¢,(s) = |s|p’zs,p > 11is the p-Laplacian operator, 0 < y <1, n—-1<a, 8 < n, D, Dgﬂ
D}, denote the Caputo fractional derivatives and f,g: [0,1] x R — R are continuous.

In recent years, the subject of infinite-point boundary value problems of fractional dif-
ferential equations which can extend many previous results have attracted more attention.
Most of the results are mainly at nonresonance. For the resonance case, the existing re-
sults of fractional differential equations with infinite-point boundary value problems are
few. We refer the reader to [20-23] and the references cited therein.

From the above work, we see that recent study on a coupled system of fractional p-
Laplacian differential equations is mainly at two-point boundary value problem. The the-
ory for fractional p-Laplacian differential equations with multi-point and even infinite-
point at resonance has yet been sufficiently developed. To the best of our knowledge, this
is the first paper to study higher order fractional differential equations with p-Laplacian
and infinite-point boundary value conditions at resonance. Motivated by the works above,
we consider the existence of solutions for BVP (1.1).

The rest of this paper is organized as follows. In Section 2, we give some necessary nota-
tions, definitions and lemmas. In Section 3, we study the existence of solutions of (1.1) by
the coincidence degree theory due to Mawhin [24]. Finally, an example is given to illustrate
our results in Section 4.

2 Preliminaries
We present the necessary definitions and lemmas from fractional calculus theory that will
be used to prove our main theorems.

Definition 2.1 ([1]) The Riemann-Liouville fractional integral of order « > 0 of a function
f:(0,00) = R is given by

() = ﬁ /0 (-5 (s) ds

provided that the right-hand side is pointwise defined on (0, 00).
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Definition 2.2 ([1]) The Caputo fractional derivative of order o > 0 of a function f €
AC™[0,1] is given by

1 t f(n) (S)

D‘())l+f(t) = F(}’l _ 0[) o (t_s)a—nﬂ 5

where n —1 <« < n, provided that the right-hand side is pointwise defined on (0, c0).

Lemma 2.1 ([1]) Letn—1<a <n, u € AC"[0,1], then
I8 DY u(t) = u(t) + co + crt + - + ¢ t" ™,

wherec; € R,i=0,1,...,n-1.

Lemma 2.2 ([1]) If 8 >0, « + B > 0, then the equation
B0 =157 @)

is satisfied for an integrable function f.

Lemma 2.3 ([23]) For any u,v > 0, then

G +v) <p() + 9p(v) ifp<2;

Gp(u+v) <207 (pp () + Bp(v)) ifp=2.

Firstly, we briefly recall some definitions on the coincidence degree theory. For more
details, see [14].

Let Y, Z be real Banach spaces, L : domL C Y — Z be a Fredholm map of index zero
andP:Y — Y, Q: Z — Z be continuous projectors such that

KerZ =ImP, ImL =KerQ, Y =KerL & KerP, Z=ImL&®ImQ.
It follows that
Llgomrnkerp: domLNKerP — ImL

is invertible. We denote the inverse of this map by Kp.
If Q is an open bounded subset of Y, the map N will be called L-compact on £ if QN (£2)
is bounded and Kp oN = Kp(I - Q)N : Q — Y is compact.

Theorem 2.1 Let L be a Fredholm operator of index zero and N be L-compact on Q. Sup-
pose that the following conditions are satisfied:
(1) Lx # ANx for each (x,A) € [(dom L\ Ker L) N 3] x (0,1);
(2) Nx ¢ ImL for each x € Ker L N 9L2;
(3) deg(JON|ker, 2N KerL,0) #0, where Q:Z — Z is a continuous projection as above
with ImL = Ker Q and J : Im Q — Ker L is any isomorphism.
Then the equation Lx = Nx has at least one solution in dom L N Q.
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3 Main results

In this section, we begin to prove the existence of solutions to problem (1.1). Consider
the functions ¢;(z) = Y, a;&7, =Y X bin?, z € [0,00). According to Y ) |a;| < 00,
> 1 1bi| < 00, one has the series are (umformly) convergent and thus ¢, ¢, are continuous
on [0, 00).

The following assumption will be used in our main results:
(Ho) There exist zg, Zg with zo > a1, Zg > a5 such that ¢(z) - ¢2(2Zo) # 0.

The following lemma is fundamental in the proofs of our main results.

Lemma 3.1 Problem (1.1) is equivalent to the following equation:

D u(t) = gy LI (2, (£), D27 w(), ..., DX " D)), e (0,1),
DEv(t) = ¢yl g(t, u(t), DY lu(t),...,Dal “Vu@), te(0,1),
w(0)=---= ub (0) =0, u(0) = Zi:l a;u(&),
V(0)=---=v"D0)=0,  v(0)=3X bv(n).

(3.1)

Proof By Lemma 2.1,D L (Do u(e)) = f(t,v(t), Dy2 1v(t),.‘.,D‘()ﬁ*(”fl)v(t)) has the follow-
ing solution:

0y (DL u(t)) = 5 f (£, v(£), D2 u(8), ..., D" (@) +¢, ceR.
Substituting ¢ = 0 into the above formula, by Dy} 4(0) = 0, we obtain ¢ = 0. Then we have
b (DL ult)) = I5f (£, v(®), D27 WD), ..., D" Du(e)). (3.2)
Applying the operator ¢, to the both sides of (3.2) respectively, we have
Du(t) = g [ (6,06, D3 (0., D) ]
By a similar argument, we have
D2, (D2 w(e)) = g(t,ue), D u(@), ..., DA " Vu(r))
is equivalent to
D(t) = ¢g[ 152 (t,u(t), D ule), ..., DY "M u()].

Therefore, BVP (1.1) is rewritten by (3.1)
It is easy to verify that equation (1.1) has a solution (x, v) if and only if (i, v) solves equa-
tion (3.1). O

Let E = C[0,1] with the norm ||x| = maxo<;<1 |x(t)|. Now, we set X3 = {u(t) : u(z),
D3 'u(t) € E,i=1,2,...,n -1} with the norm

D ul

llell, = max{ [[2lo, o) )
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and X, = {v(¢) : v(t),Dgf’Av(t) €E,i=1,2,...,n—1} with the norm

D]

VIl = max{[IVll oo, DRy ).

ISSXERS

Let Y = X; x X, with the norm ||(z, v) ||y = max{||u||x,, |vllx,} and Z = E x E with the norm

16 91z = max{lxlloc, ¥lloc}-
Clearly, X and Y are Banach spaces.
Define the linear operator L, : dom L; — E by setting

domlL; = {u eXq

W (0) = =u"(0) = 0,u(0) = Zaiu(&)}

i=1

and
Liu=Dg u, uedomlL,.

Define the linear operator L, from dom L, — E by setting

V(0) =+ =v"(0) = 0,¥(0) = Y bv(nm:)

i=1

dOIan = {V (S] X2

and
Lyv=Dy%v, vedomlL,.
Define the operator L : dom L — Z with
domL = {(u, v)eYluedomlL,,ve domLz}
and
L(u,v) = (Liu, Lyv).
Let N : Y — Z be the Nemytskii operator
N(u,v) = (N1v, Naus),
where N; : X — E is defined by
Nin(t) = ¢g[18f (£,9(8), DG (), ..., D" P v(1)) ]
and N; : X — E is defined by
Noul?) = ¢y [152g (8, u(®), DF u(t), ..., DG " Vu(t))].

Then BVP (3.1) can be written as L(u, v) = N(u, v).
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Lemma 3.2 L is defined as above, then
KerL = {(u, v) € X : (u,v) = (co,dp), co,dg € ]R}, (3.3)

ImL = [ (x,y) € Z: Za olx(&;) = 0; Zblgfy(n,) 0 (3.4)

i=1 =

Proof For (u,v) € KerL, then Lju = Lyv = 0. By Lemma 2.1, the equation D u(¢) = 0 has
solution

ult)=co+crt+--+cpqt"t

In view of #?(0)=0,i=1,2,...,n—1,weget ¢;=0,i=1,2,...,n — 1. Then u(t) = co. Simi-
larly, for v € Ker L,, we have v(¢) = dy € R. Thus, we obtain (3.3).
Next we prove that (3.4) holds. Let (x,y) € Im L, so there exists (¢, v) € domL such that
x(¢) = Dy u(t), y(t) = Dy2v(t). By Lemma 2.1, we have

n- n-1
w6+ Y at, v =I%y(e) + Y dit', cidieR.
i i=0
In view of u®(0) =v®(0) = 0,i=1,2,...,n—1,wegetc;=d; =0,i=1,2,...,n — 1. Hence,

u(t) = Iotx(¢) + co, w(t) = Io2y(¢) + do.

According to u(0) = > a;u(§;) and v(0) = Y7, bv(n;), we have

oo

u(0) = Ip;x(0) + ¢ = Za wg) =Y ai(lgx(E) + co) = Y adgix(&) + co,
i=1

= i=1

3

(0) = I2(0) +do = Y biv(&:) = Y bi(Io2y(mi) + co) = Y bilg?y(n:) + do,
1

i=1 i= i=1

that is,

Zailgix(&) =0, Zbilgfy(m) =0
i1 i1

On the other hand, suppose that (x,y) satisfies the above equations. Let u(¢) = I3 x(¢) and
v(t) = I;2y(t), we can prove (u,v) € dom L and L(u, v) = (x,y). Then (3.4) holds. (N

Lemma 3.3 The mapping L:domL C Y — Z is a Fredholm operator of index zero.

Proof The linear continuous projector operator P(u,v) = (Pyu, P,v) can be defined as
Pru = u(0), Pyv =v(0).

Obviously, P} = Py and P = P,.
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It follows from (u,v) = (4,v) — P(u,v) + P(u,v) that Y = Ker P + Ker L. For (1, u) € KerL N
KerP, then u = ¢y, v = dy, co,do € R. Furthermore, by the definition of Ker P, we have

¢o = do = 0. Thus, we get
Y =KerL & KerP.

By (Hp), the linear operator Q(x,y) =

— 0. M _ 401 .
Qux(t) = ¢ S () E) t
QZJ’(t) — . Zz 1 +y ni) _

Y5 bi( azt"z( )

where 0) =z — a1, 05 = Zp — as.

Obviously, Q(x,y) = (Qux(2), Quy(t)) = R?

For x(¢) € E, we have

F'd+oq+61)

Q(@a0) = 4T 2

F(l + o] + 91
" $i(zo)T (1 +6y) 4

F(l + 07 + 91)

¢1 Zo 1+9
1+(11 +01 i
" p1(z0)T (L +61)

F(l + o7 +91)
¢1 Z() 1+9

Z g1
Z ilgix
o F(1+Oll+91) Z

¢1(z0)T(1+6y) 4
= Qux(2).

_ F(l +0; + 91)
~ pi(z0)T(1+6)) 4

b1(z0)T (1 +61)

Z dorx(&;) - £ -

(Q1x, Q,y) can be defined as

F'(d+o+6)

Z Ao x(&),

Tl+ar+6) .
2(Zo) (L + 6,) £ Z ido;y(n:),

Z dotx(E) - Qu(7)

I'd+a;+6)

oo
Y ai(Ihe) &)
Gz T +6) &

Z doix(&) -

T(L+6)5a%0
F(l + 0o+ 91)

[e¢]

F(1+oz1 +(91) ) F(1+91)€,‘Z0
G T Z;“ F(l+ o +6y)
€)1 Fd+o+6)  ¢i(z0)T(1+61)
' D1(zo)T1+6) T(A+ar+6)
ilgr (&)

Similarly, Q3 = Q,, that is to say, the operator Q is idempotent. It follows from (x,y) =

(x,y) -
get ImL NImQ = {(0,0)}. Hence,

Z=ImL&ImQ.

Now, IndL = dimKer L — codimImLZ = 0, so L is a Fredholm mapping of index zero.

Q(x,9) + Qx,y) that Z = ImL + Im Q. Moreover, by KerQ = ImL and Q3 = Q,, we

O
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For every (u,v) € Y,

|1P(u,v)|, = max{ [Py, | Pvllx, } = max{|u(0)

v(0)|}. (3.5)

Furthermore, the operator Kp : ImL — dom L N Ker P can be defined

Kp(x,y) = (Iox,15;9)-
For (x,y) € ImL, we have

LKp(x,y) = L(Igyx,15:9) = (Do dos% D3 lot) = (x,9)- (3.6)
On the other hand, for (¢, v) € dom L N Ker P, according to Lemma 2.1, we have

I Lyu(t) = I§ D  u(t) = u(t) + co + et + -+ + ¢ at™,

I Lyv(t) = I D32 v(t) = v(t) + do + dyt + -+ + dyy 1"

+

By the definitions of dom L and Ker P, one has #®(0) = v(0), i = 0,1,...,n — 1, which im-
plies that ¢; =d;, i =0,1,...,n — 1. Thus, we obtain

KyL(x,y) = (Ig: D3 %, Ig2Dg2y) = (x, ). (37)

Combining (3.6) and (3.7), we get Kp = (LaomrKerp) '
For (x,y) € Im L, we have

[KeGenly = | Gomd52) [y = max{[Toix] 3 [ a2, }

a1 —(n-1)
Dy, " g

o1—1 yoq
Dy, 10+x||oo,...,

DG I - 1D I )

= max{ [%lloc; |/l oo }- (3.8)

< max{max{||lgix| ,

oo

max{ |53y

Again, for (u,v) € 1, (4,v) € dom(L) \ Ker(L), then (I — P)(i,v) € domL N KerP and
LP(u,v) = (0,0), thus from (3.8) we have

| = P)(w,v)||, = |KeLU = P)(w,V) ||, = | Kp(Lrut, Lyv) |,

< max{[|N Voo N2 }. (3.9)

By similar arguments as in [11] or [12], we have the following lemma. We omit the proof
of it.

Lemma 3.4 Kp(l — Q)N :Y — Y is completely continuous.

For simplicity of notation, we set

1 1 -1 . 1 - 1 a-1
T T+1) b:[l"(ﬂwl)}; T Tl +1) b:[r(ﬁﬂn}'
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Theorem 3.1 Assume that (Hy) and the following conditions hold.

(H1) There exist nonnegative functions v (t), ¥ (£), ¢;(t), §;(t) € E, i = 1,2

e, =1, such
that for t € [0,1], (u1, u, .

o Uy), (v, v, ..., v,) € R, one has

[ft s, vz, )| <Y (6) + 1Ol + -+ + @1 (D),

gt vi,vaye v ST + GO + -+ G Dyl

(H2) There exists A > 0 such that if |u| > A or |v| > A, Vt € [0,1], one has

E

i=1

{ng I (£, v(0), DE 7 w(e), ...,Dgf_(”_l)v(t))]|t=sii| >0,

i=1

v |:Zb | 0+g(t u(®), DL u(t), ..., DY o 1)"‘(t))]| :|>0’

or

“l‘

[qu Sf (6, v(@), D7 u(e), ..., D), } <0,

<

i=1

[Zb $alI028 (6, 0), DG 1u<t>,--.,Dzr‘”'“u@))]u:m} <O

Then BVP (3.1) has at least a solution in X provided that

max{2q_lizl~95 +297 be, 29 abe + 2971 b,
29 abe + 297 be, 2971 abE + 2‘1’155} <1l forp<2, (3.10)

max{ab¢ + be, abc + be, abc + be, abe + bé) < 1 forp=>2 (3.11)

where ¢ = (17 100 loo)? ™ and & = (X1 168 [10)4 ™

Proof According to the definitions of Nj and N,, we have the following inequalities
For1<p <2, one has

INWlloo = g [64f (£ v(8), D (8), ..., D" u(e)]]

0+

n-1
———— | Iy lloo+ IvIs, - D [ei®) m]

n-1 -1
<27y |5 + 2q-lh<2||<m(t) ||oo> vl

i=1

= maxilgif(s, v(s), D22 v(s), ... ,D22~n=D) v(s)) |q_1

q-1

=27b|ly |4 + 27 be - [vx, (3.12)

Page 9 of 16
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and

INa2tll o = || b2 (8 ut), DY ue), ..., D" Pu®)]]

= max|[22g (¢, u(®), DL u(?), ..., DA Pu(e))| "

n-1
oo + el >l eite) ||oo}
=T + )[ ¥ Zl

gq-1

n-1 q-1
<277b|| | + 2”‘119(2”@(0 ||oo> Nlullx,
i=1
= 2071 | + 297202 - |ux, . (3.13)
By the similar proof of (3.12) and (3.13), one has

INVlloo < bIWIL! +be- [V, forp>2, (3.14)

IN2ulloo < BIF I +BE - ully,  forp=>2. (315)
Let
Q1 = {(u,v) edomL \ KerL: L(u,v) = AN (,v), A € (0,1)}.
First, we give a proof that for 1 < p <2, Q; is bounded.

Let L(u,v) = AN(u,v) € ImL = KerQ, that is, Liu = AN1v € KerQ; and Lyv = ANu €
Ker Q,. By the definition of Ker Q; and Ker Q,, we have

Za, 3q[I0Lf (6,8, D v(), ..., D" (e)],, = 0,

S by A2 (60, D5 w0, D2V u0)] =0,

t=n;
i=1

According to (H2), there exist £y, € (0, 1) such that |u(t))| < A and |v(f)| < A. Again,
Liu = ANyv, u € domL; \ KerLy, that is, Dy} u = ANjv, we have

u(t) =

F(Ofl)/o (t—S)Dtl—ld)q[ f(S, V(S) Daz IV(S) otz (n—l)v(s))]ds_'_c()'

Substituting ¢ = £, into the above equation, we get

I ( 1)/0 (o — ) g [IELf (5, v(5), D2 w(s), .., D" Vo(s)) ] ds + co.

So, we obtain

ue) - ult) = 1 / (£ = 97 101 (5,909, D V(o) .., DR " ()] s

/ N (to —s)“l’lqbq[lﬁlf(s, (s), D327 W(s), ..., D2 (- 1)v(s))]
0

D)
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Together with |u(ty)] < A and (3.12), we have

|u(0)] < \u(to)|+‘—r(t 5 fo (to — ) G [IE £ (5, v(5), D2 (s), ..., D2 " Vo(s)) ] ds

ot

1 fo 02— pr2-n=
5“%/0 (o — )7 b [Z5f (5, (), D2 (o), .., D" Vw(s)) ] ds

1 fo
=A (277D ||t + 29 e - / to—s)“71d
* T TDIvILT + ¢ Ivllx,) A (to =)' ds

<A+270ab||y | Lt + 27 abe - ||v|x,- (3.16)

Similarly, by (3.13), we obtain

[v(0)| < |v(to)|

AP w1, B2 -1 pean-1)
+ ‘F(az) /(; (tg — ) ¢q[1 g(s, u(s), Dy, u(s),..., Dy} u(s))]ds

+ F(itz) /Oto (to — )27 | ¢ [152¢ (5, u(s), DY ucs), ..., DIV u(s))] | ds

1 o ) .
=4t S(TBIPNE! +2776E - lulx,) - / (to —5)2 " ds
['(a2) |

< A+2970Gb|| g |5 + 2971 abE - ||ul|x, . (3.17)

For (u,v) € ©, by (3.5) and (3.9), we have

|Gy = [P@v) + T =Py, < [P )], + [ € =P,

< max{|u(0)| + [IN1V] o3

u(0)] + [Nyt oo
[v(0)] + IN1Vl oo

v(0)] + IN2u]l oo -

The following proof is divided into four cases.
Case 1. ||, V)ly =< 1u(0)] + [N1V]loo-
By (3.12) and (3.16), we have

Wi, < [ @60y < [100)] + 1NVl
< A+ 2070 ab| Y 15" + 27 abe - vilx, + 27 bl + 27 e - Ivilx,

=A+27ab||y |15 + 277 ||y |2t + (27 abe + 277 be) - vl x, -
According to (3.10), we can derive

A+217ab |y | 5" + 297 )|y |4

v <
I, < 1 - (24-tabc + 24-1bc)

= Ml.

Thus, €2; is bounded.
Case 2. ||(ut, V) |ly < |u(0)] + [INatt]|oo-
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By (3.13) and (3.16), we have

[, < [w(0)] + IN2u]| oo
<A+270ablly || L+ 27 abe - [v]x, + 277 Bl Lt + 277 be - (lullx,
= A+ 27 ablly |t + 297D 14 + 27 abe - [vilx, + 277 be - lully,

<A+270ab|| |Gt + 297 Bl 155 + (297 abe + 2971 BE) - || (w,v)]) -
By (3.10), we can derive

A+ 27|y |15 + 2B %
1-24-1abc — 29-1b¢ '

el < i

Then €2; is bounded.
Case 3. ||(u,v)|ly < [V(0)] + [|N1V|| o
According to (3.12) and (3.17), we have

[, < [v(0)] + IN1V ]l
<A+ 270 ab|\ N4 + 297 GhE - lullx, + 297 Bl I + 27 be - |Ivlx,
= A+ 297Gb||1Y ||t + 277 bW 145 + 277 ke - ullx, + 29 be - VIix,

<A+ 27|t + 297 bl 145 + (297 abE + 297 be) - || (V)] -
By (3.10), we have

A+ 2B YIS + 27BN
= = 3.
1—(297'abc + 2471 bc)

|G w]y =<

Then ; is bounded.
Case 4. ||(w,v)[|ly < V(0)| + [N2tt]| oo
According to (3.13) and (3.17), we have

lullx, < ||y < V(O] + IN2ulloo
<A+ 297 Gb| |4 + 277 abe - |ullx, + 297 DIV IIL + 297 bE - |lullx,

= A +2770Gb ||y |55 + 297 B | + (277 abe + 297 BT - |lully, .
By (3.10), we get

A+ 207D P15 + 2B &
1— (24-1ab¢ + 29-157) '

”u”Xl = M4,.

Then €2; is bounded.
Therefore, we have proved that €2; is bounded for 1 < p < 2. By similar arguments as the

above proof, according to (3.11), (3.14) and (3.15), we can prove that €2; is also bounded
for p > 2. We omit the proof of it.
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Let
Qs = {(u,v) e KerL: N(u,v) € ImL}.

Let (u#,v) € Ker L, so we have u = ¢y, v = dy. In view of N (i, v) = (N1v, Nou) € ImL = Ker Q,
we have Q;(Nyv) = 0, Qa(N>u) = 0, that s,

Y aidg [0 (v, DG v®), ... DE " v)]] ., =0,
i=1

Y big[12g (6 u®), DG ute), ..., DGV u@)]],-, =0

i=1

By (H2), there exist constants £y, ; € [0,1] such that
|u(to)| = lcol < A, [v(t1)] = |do| < A.

Therefore, 25 is bounded.
Let

Q3 = {(u,v) € KerL: A(u,v) + (1 - )QN(%,v) = (0,0), 1 € [0,1]}.
For (u,v) € KerL, so we have u = ¢y and v = dj. By the definition of the set 23, we have
)\,C() + (1 — )\,)QlNl(dQ) = 0, )\,do + (1 — )\)Q2N2(CQ) =0. (318)

If & = 0, similar to the proof of the boundedness of 2;, we have |co| < A and |dy| < A. If
A =1, we have ¢y =dp = 0. If > € (0,1), we also have |¢y| < A and |dy| < A. Otherwise, if
lco| > A or |dy| > A, in view of the first part of (H2), we obtain

A+ (1= A)co - QiNi(dp) > 0, A3+ (1= 2)do - QuNa(co) > 0,

which contradict (3.18). Thus, 23 is bounded.
If the second part of (H2) holds, then we can prove that the set

Q= {(u,v) e KerL: =1 (u,v) + (1 - A)QN(»,v) = (0,0), » € [0,1]}

is bounded.
Finally, let €2 to be a bounded open set of Y such that Uil Q; C Q. By Lemma 3.4, N is
L-compact on 2. Then, by the above arguments, we get
(1) L(u,v) # AN(u,v), for every (u,v) € [(domL \ KerL) N 3K2] x (0,1);
(2) N(u,v) ¢ ImL for every (u,v) € KerL N 9;
(3) Let H((u#,v),A) = £AI(u,v) + (1 — L)JQN(u, v), where I is the identical operator. Via
the homotopy property of degree, we obtain that

deg(JQN [ker, @ NKer L, 0) = deg(H(-,0), 2 N KerL,0)
=deg(H(-,1), 2 NKerL,0)
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=deg(l,2NKerL,0)

=1+0.
Applying Theorem 2.1, we conclude that Lu = Nu has at least one solution in dom LN Q. [J

4 Example
Let us consider the following fractional differential equations with p-Laplacian operator
at resonance:

DY ¢s(DE0u(t)) = (¢, v(t), Dgv(t), DYEv(t)), te(0,1),
DY ¢3(DgBu(t)) = £ (¢, u(t), Dyu(t), DYSu(t)), te(0,1),

(4.1)
W(0)='(0) = D§u(0) =0,  u(0) = L% Hu(k),
v(0)=v"(0)=Dgiv(0) =0,  ¥(0)=X7, Ful3),
where
t 1 , |sinxy| |arctanxs|
t) ) ) =15 10 ’
f(t, %1, %2, %3) 07109 50 Y T 104
2 1, COSZyz e sl

t! ) ) A~ A~ .
gty1,92,93) = 20 "20Mt 20 T @0

Corresponding to BVP (1.1), we have that o3 =2.6, 51 = 0.6, 22 =2.8, 8, =0.7,n=3,p =3,
g=15a=T(a;+1))" =(I'(3.6)) 1 2 0.269, b = (I'(B; + 1))7 = (I'(1.6)) %> ~ 1 058, Zz =
(r(oc2 + 1))—1 =(I'(3.8))1~0.213, b = (T(By + 1)1 = (['(1.7)) 05 ~ 1.049, a; = ,, &=,

b; = 3l i = ,l =12,....Thenwehave Y > a; = > o lail = Y o bi =Y iy |bi| = 1. Taking
Zo = Zp = 3, we have

20 EANRSETRAY
1(20)¢2 ZO)‘Z:‘“é me, Z2’<2l> Z?(g) 70
i=1

which implies that (Ho) holds.
By a simple proof, we have

V(t )| t 1 , [sinxy| |arctanxs| 1,
3 X1, X2, X! =|— 4+ —X7 + + = —X7,
PAIT10 T 107 T T 20 107 5 101
£2 2 ~ly3l
1 , cos®y, e 1 1
t ) ’ S_ A
ety = |55+ 5%+ =50 * 20| S5 * 20

Choose ¥ (t) = 1, ¢1(t) = 55, @2 = 93 = 0, ¥(¢) = &, ¢1(t) = 55, §2 = @3 = 0, then we have
(H1) of Theorem 3.1 is satisfied.

By a simple computation, we have ¢ = (Z:’:_ll l@i(O)lls)? = (1)1 = V01~ 0.316, ¢ =
I 18O loo)T™ = (@177 = +/0.05 &~ 0.224, abé + be ~ 0.287, abe + bt ~ 0.298, abc +
be~ 0.301, abé + be ~ 0.240. So, (3.11) holds.

In addition, by choosing A =1, we have if u > 1, or v > 1, then f, g are positive functions.
So, the first inequality of (H2) is satisfied.

Thus, all the conditions of Theorem 3.1 are satisfied; consequently, its conclusion implies
that problem (4.1) has a solution on [0, 1].
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5 Conclusion

In this paper, we have obtained the existence of solutions for a coupled system of fractional
differential equations with p-Laplacian operator and infinite-point boundary conditions
at resonance. We base our analysis on the known coincidence degree theory. The issue
on the existence of solutions of infinite-point boundary value problems is interesting. As
applications, an example is presented to illustrate the main results. In the future, we will
consider the positive solutions for the fractional infinite-point boundary value problems
at resonance.
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