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Abstract
In this paper, we consider the Robin problem for a wave equation with nonlinear
source containing nonlocal term. Using the Faedo-Galerkin method and the
linearization method for nonlinear term, the existence and uniqueness of a weak
solution are proved. An asymptotic expansion of high order in a small parameter of a
weak solution is also discussed.
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1 Introduction
In this paper, we consider the Robin problem for a wave equation as follows:

utt – uxx = f
(
x, t, u(x, t), u(η, t), . . . , u(ηq, t), ut(x, t)

)
,  < x < ,  < t < T , (.)

ux(, t) – hu(, t) = ux(, t) + hu(, t) = , (.)

u(x, ) = ũ(x), ut(x, ) = ũ(x), (.)

where f , ũ, ũ are given functions and h, h ≥ , η,η, . . . ,ηq are given constants with
h + h > ,  ≤ η < η < · · · < ηq ≤ .

In some special cases, when the nonlinear term has various forms, the following non-
linear wave equation

utt – �u = F(x, t, u, ut), (.)

where � is a Laplace operator, has been extensively studied by many authors, for exam-
ple, we refer to [–] and the references given therein. In these works, many interesting
results about existence, nonexistence, uniqueness, nonuniqueness, regularity, asymptotic
behavior, asymptotic expansion, and decay of solutions were obtained.

In [], Bergounioux considered Prob. (.)-(.) with the following boundary conditions:

ux(, t) = P(t), ux(, t) + Ku(, t) + λut(, t) = , (.)
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where f , ũ, ũ are given functions, K, λ are given constants and the unknown u(x, t) and
the unknown boundary value P(t) satisfy the following Cauchy problem for an ordinary
differential equation:

⎧
⎨

⎩
P′′(t) + ωP(t) = hutt(, t),  < t < T ,

P() = P, P′() = P,
(.)

where ω > , h ≥ , P, P are given constants and K , λ are given nonnegative constants.
Prob. (.)-(.), with F(x, t, u, ut) = f (x, t) – Ku – λut , describes the shock between a

solid body and a linear viscoelastic bar resting on a viscoelastic base with linear elastic
constraints at the side, constraints associated with a viscous frictional resistance.

With F(x, t, u, ut) = f (x, t)–h(ut), Jokhadze, in [], considered existence, uniqueness, and
nonuniqueness, and nonexistence of a global classical solution for wave equations with
nonlinear damping term.

In [], the authors established the unique existence, stability, and asymptotic expansion
of Prob. (.)-(.) with the nonlocal boundary conditions

⎧
⎨

⎩
ux(, t) = g(t) +

∫ t
 k(t – s)u(, s) ds,

–ux(, t) = g(t) +
∫ t

 k(t – s)u(, s) ds,
(.)

where F(x, t, u, ut) = –λut – f (u), with λ is a given constant and f , g, g, k, k are given
functions. The existence and exponential decay for a nonlinear wave equation with a non-
local boundary condition were also proved in [].

Beilin, see [], investigated the existence and uniqueness of a generalized solution for
the following wave equation with an integral nonlocal condition:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u + c(x, t)u = f (x, t), (x, t) ∈ � × (, T),
∂u
∂η

+
∫ t


∫
�

k(x, ξ , τ )u(ξ , τ ) dξ dτ = , (x, t) ∈ ∂� × (, T),

u(x, ) = ũ(x), ut(x, ) = ũ(x), x ∈ �,

(.)

where � is a bounded domain inR
N with a smooth boundary, η is the unit outward normal

on ∂�, f , ũ, ũ, k(x, ξ , τ ) are given functions. Nonlocal conditions come up when values
of the function on the boundary are connected to values inside the domain. There are
various types of nonlocal boundary conditions of integral form for hyperbolic, parabolic
or elliptic equations, the ones were introduced in [].

In recent years, some close forms of Eq. (.), with power-type nonlinearities containing
integer power-type, fractional power-type or variable exponent, have been paid attention
to by many researchers [, –]. Benaissa and Messaoudi, in [], considered the following
problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u + g(ut) + f (u) = , (x, t) ∈ � × (, T),

u = , x ∈ ∂�, t ≥ ,

u(x, ) = ũ(x), ut(x, ) = ũ(x), x ∈ �,

(.)

where f (u) = –b|u|p–u, g(ut) = a( + |ut|m–ut), a, b > , m, p >  and � is a bounded do-
main in R

N with a smooth boundary ∂�. The authors showed that for suitably chosen
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initial data, (.) possesses a global weak solution, which decays exponentially even if
m > . The proof of global existence is based on the use of the potential well theory. In
[], Bhattarai proved the existence and stability of solitary-wave solutions of a system
of -coupled nonlinear Schrödinger equations with power-type nonlinearities. By using
variational methods, Repovs̆, in [], established several existence results for Schrödinger-
type equations containing Laplace-type operators with variable exponent. Moreover, by
using the fractional homotopy analysis transform method, Kumar [] proposed a modi-
fied and simple algorithm for fractional modeling arising in unidirectional propagation of
long wave in dispersive media.

In [], the authors considered a one-dimensional nonlocal nonlinear strongly damped
wave equation with dynamical boundary conditions. In other words, they looked to the
following problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt – uxx – αutxx + εf (u(, t), ut (,t)√
ε

) = ,

u(, t) = ,

utt(, t) = –ε[ux(, t) + αutx(, t) + rut(, t)] – εf (u(, t), ut (,t)√
ε

),

(.)

with  < x < , t > , α, r > , and ε > . Prob. (.) models a spring-mass-damper system,
where the term εf (u(, t), ut (,t)√

ε
) represents a control acceleration at x = . By using the

invariant manifold theory, the authors proved that for small values of the parameter ε, the
solution of (.) attracted to a two-dimensional invariant manifold.

In [], Long and Diem studied Prob. (.)-(.) with the nonlinear term of the form

f (x, t, u, ux, ut) + εg(x, t, u, ux, ut), (.)

associated with the mixed homogeneous boundary conditions

ux(, t) – hu(, t) = ux(, t) + hu(, t) = . (.)

In the case of f ∈ C([, ]× [,∞)×R
) and g ∈ C([, ]× [,∞)×R

), an asymptotic
expansion of order  in ε is obtained for ε sufficiently small.

We consider the following wave equation with the source containing nonlocal term:

utt – uxx = F
(

x, t, u(x, t),
∫ 


g
(
u(y, t)

)
dy

)
,  < x < ,  < t < T , (.)

where F , g are given continuous functions. Then, if the function u(x, t) is continuous in x,
the integral

∫ 
 g(u(y, t)) dy can be approximated by its Riemann sum

∫ 


g
(
u(y, t)

)
dy ≈

q∑

i=


q

g
(
u(ηi, t)

)
, (.)

with q is large enough and ηi = i/q, i = , , . . . , q.
Therefore, the nonlinear term in (.) can be considered as an approximation of the one

that appeared in (.) as follows:

F
(

x, t, u(x, t),
∫ 


g
(
u(y, t)

)
dy

)
≈ F

(

x, t, u(x, t),
q∑

i=


q

g
(
u(ηi, t)

)
)

. (.)
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The approximation given in (.) and the aforementioned works lead to the ideas to
study the existence and asymptotic expansion for the Robin problem for a wave equation
with nonlinear source containing nonlocal term (.)-(.). The paper consists of four sec-
tions. In Section , we present some preliminaries. In Section , we associate with Prob.
(.)-(.) a linear recurrent sequence which is bounded in a suitable space of functions.
The existence of a local weak solution and the uniqueness are proved by using the Faedo-
Galerkin method and the weak compact method. In Section , we establish an asymptotic
expansion of a weak solution uε(x, t) of order N +  in a small parameter ε for the equation

utt – uxx = f
(
x, t, u(x, t), u(η, t), . . . , u(ηq, t), ut(x, t)

)

+ εf
(
x, t, u(x, t), u(η, t), . . . , u(ηq, t), ut(x, t)

)
, (.)

 < x < ,  < t < T , associated with (.), (.). The results obtained here may be considered
as a relative generalization of the results obtained in [, –, ], and [].

2 Preliminaries
Put � = (, ). We will omit the definitions of the usual function spaces and denote them
by Lp = Lp(�), Hm = Hm(�). Let 〈·, ·〉 be either the scalar product in L or the dual pairing
of a continuous linear functional and an element of a function space. The notation ‖ · ‖
stands for the norm in L, and we denote by ‖ · ‖X the norm in the Banach space X. We
call X ′ the dual space of X. We denote Lp(, T ; X),  ≤ p ≤ ∞ the Banach space of real
functions u : (, T) → X measurable, such that ‖u‖Lp(,T ;X) < +∞, with

‖u‖Lp(,T ;X) =

⎧
⎨

⎩
(
∫ T

 ‖u(t)‖p
X dt)/p, if  ≤ p < ∞,

ess sup<t<T‖u(t)‖X , if p = ∞.

Let u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = �u(t), uxx(t) = �u(t), denote
u(x, t), ∂u

∂t (x, t), ∂u
∂t (x, t), ∂u

∂x (x, t), ∂u
∂x (x, t), respectively.

With f ∈ Ck([, ] ×R+ ×R
q+), f = f (x, t, y, . . . , yq+), we put Df = ∂f

∂x , Df = ∂f
∂t , Di+f =

∂f
∂yi

with i = , . . . , q + , and Dαf = Dα
 · · ·Dαq+

q+ f , α = (α, . . . ,αq+) ∈ Z
q+
+ , |α| = α + · · · +

αq+ = k, D(,...,)f = f .
On H, we shall use the following norm:

‖v‖H =
(‖v‖ + ‖vx‖)/.

We put

a(u, v) =
∫ 


ux(x)vx(x) dx + hu()v() + hu()v(), u, v ∈ H. (.)

We have the following lemmas, the proofs of which are straightforward, hence we omit
the details.

Lemma . ([], Theorem ., pp.-) The imbedding H ↪→ C(�) is compact and

‖v‖C(�) ≤ √
‖v‖H for all v ∈ H. (.)
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Lemma . Let h, h ≥ , with h +h > . Then the symmetric bilinear form a(·, ·) defined
by (.) is continuous on H × H and coercive on H, i.e.,

(i)
∣
∣a(u, v)

∣
∣ ≤ a‖u‖H‖v‖H ,

(ii) a(v, v) ≥ a‖v‖
H ,

(.)

for all u, v ∈ H, where a =  + h + h and

a =



min
{

, max{h, h}
}

. (.)

Remark . It follows from (.) that on H, v −→ ‖v‖H , v −→ ‖v‖a =
√

a(v, v) are two
equivalent norms satisfying

√
a‖v‖H ≤ ‖v‖a ≤ √

a‖v‖H , ∀v ∈ H. (.)

Lemma . Let h ≥ . Then there exists the Hilbert orthonormal base {w̃j} of L consisting
of the eigenfunctions w̃j corresponding to the eigenvalue λj such that

⎧
⎨

⎩
 < λ ≤ λ ≤ · · · ≤ λj ≤ · · · , limj→+∞ λj = +∞,

a(w̃j, v) = λj〈w̃j, v〉 for all v ∈ H, j = , , . . . .

Furthermore, the sequence {w̃j/
√

λj} is also a Hilbert orthonormal base of H with respect
to the scalar product a(·, ·).

On the other hand, we also have w̃j satisfying the following boundary value problem:

⎧
⎨

⎩
–�w̃j = λjw̃j, in (, ),

w̃jx() – hw̃j() = w̃jx() + hw̃j() = , w̃j ∈ C∞(�).

The proof of Lemma . can be found in ([], p., Theorem .), with H = L and
V = H, a(·, ·) as defined by (.).

Remark . The weak formulation of the initial-boundary value problem (.)-(.) can
be given in the following manner: Find u ∈ W̃ = {u ∈ L∞(, T ; H) : ut ∈ L∞(, T ; H), utt ∈
L∞(, T ; L)} such that u satisfies the following variational equation:

〈
utt(t), w

〉
+ a

(
u(t), w

)
=

〈
f
(·, t, u(t), u(η, t), . . . , u(ηq, t), ut(t)

)
, w

〉
(.)

for all w ∈ H, a.e., t ∈ (, T), together with the initial conditions

u() = ũ, ut() = ũ. (.)

3 The existence and uniqueness
We make the following assumptions:

(H) (ũ, ũ) ∈ H × H, ũx() – hũ() = ũx() + hũ() = ;
(H) f ∈ C([, ] ×R+ ×R

q+).
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FixT∗ > . For each M >  given, we set the constant KM(f ) as follows:

KM(f ) =
q+∑

i=

K(M, Dif ),

where
⎧
⎨

⎩
K(M, f ) = sup(x,t,y,...,yq+)∈A(M)|f (x, t, y, . . . , yq+)|,
A(M) = [, ] × [, T∗] × [–

√
M,

√
M]q+.

For every T ∈ (, T∗] and M > , we put

⎧
⎪⎪⎨

⎪⎪⎩

W (M, T) = {v ∈ L∞(, T ; H) : vt ∈ L∞(, T ; H), vtt ∈ L(QT ),

with max{‖v‖L∞(,T ;H),‖vt‖L∞(,T ;H),‖vtt‖L(QT )} ≤ M},
W(M, T) = {v ∈ W (M, T) : vtt ∈ L∞(, T ; L)},

in which QT = � × (, T).
Now, we establish the recurrent sequence {um}. The first term is chosen as u ≡ ũ,

suppose that

um– ∈ W(M, T), (.)

we associate Prob. (.)-(.) with the following problem.
Find um ∈ W(M, T) (m ≥ ) satisfying the linear variational problem

⎧
⎨

⎩
〈u′′

m(t), w〉 + a(um(t), w) = 〈Fm(t), w〉, ∀w ∈ H,

um() = ũ, u′
m() = ũ,

(.)

where

Fm(x, t) = f [um–](x, t)

= f
(
x, t, um–(x, t), um–(η, t), . . . , um–(ηq, t), u′

m–(x, t)
)
. (.)

Then we have the following theorem.

Theorem . Let (H), (H) hold. Then there exist positive constants M, T >  such that,
for u ≡ ũ, there exists a recurrent sequence {um} ⊂ W(M, T) defined by (.)-(.).

Proof The proof consists of several steps.
Step . The Faedo-Galerkin approximation (introduced by Lions []). Consider the basis

{wj} for H as in Lemma .. Put

u(k)
m (t) =

k∑

j=

c(k)
mj (t)wj, (.)
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where the coefficients c(k)
mj satisfy the system of linear differential equations

⎧
⎨

⎩
〈ü(k)

m (t), wj〉 + a(u(k)
m (t), wj) = 〈Fm(t), wj〉,  ≤ j ≤ k,

u(k)
m () = ũk , u̇(k)

m () = ũk ,
(.)

where Fm(x, t) is defined as in (.) and

⎧
⎨

⎩
ũk =

∑k
j= α

(k)
j wj → ũ strongly in H,

ũk =
∑k

j= β
(k)
j wj → ũ strongly in H.

(.)

The system of equations (.) can be rewritten in the form

⎧
⎨

⎩

c̈(k)
mj (t) + λjc(k)

mj (t) = 〈Fm(t), wj〉,
c(k)

m () = α
(k)
j , ċ(k)

mj () = β
(k)
j ,  ≤ j ≤ k.

(.)

It is not difficult to show that (.) has a unique solution c(k)
mj (t) in [, T] as follows:

c(k)
mj (t) = α

(k)
j cos(

√
λjt) + β

(k)
j

sin(
√

λjt)
√

λj

+
∫ t



sin(
√

λj(t – s))
√

λj

〈
Fm(s), wj

〉
ds,

 ≤ t ≤ T ,  ≤ j ≤ k. (.)

Therefore, (.) has a unique solution u(k)
m (t) in [, T].

Step . A priori estimates. First, for all j = , . . . , k, multiplying (.) by ċ(k)
mj (t), summing

on j, and integrating with respect to the time variable from  to t, we have

X(k)
m (t) = X(k)

m () + 
∫ t



〈
Fm(s), u̇(k)

m (s)
〉
ds, (.)

where

X(k)
m (t) =

∥
∥u̇(k)

m (t)
∥
∥ +

∥
∥u(k)

m (t)
∥
∥

a. (.)

Next, by replacing wj in (.) by – 
λj

�wj, we obtain that

a
(
ü(k)

m (t), wj
)

+
〈
�u(k)

m (t),�wj
〉

=
〈
Fm(t), –�wj

〉
,  ≤ j ≤ k,

similar to (.), it gives

Y (k)
m (t) = Y (k)

m () + 
〈
Fm(),�ũk

〉
– 

〈
Fm(t),�u(k)

m (t)
〉

+ 
∫ t



〈
F ′

m(s),�u(k)
m (s)

〉
ds, (.)
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where

Y (k)
m (t) =

∥
∥u̇(k)

m (t)
∥
∥

a +
∥
∥�u(k)

m (t)
∥
∥. (.)

Put

S(k)
m (t) = X(k)

m (t) + Y (k)
m (t) +

∫ t



∥∥ü(k)
m (s)

∥∥ ds

=
∥∥u̇(k)

m (t)
∥∥ +

∥∥u̇(k)
m (t)

∥∥
a +

∥∥u(k)
m (t)

∥∥
a +

∥∥�u(k)
m (t)

∥∥ +
∫ t



∥∥ü(k)
m (s)

∥∥ ds, (.)

then we deduce from (.), (.), and (.) that

S(k)
m (t) = S(k)

m () + 
〈
Fm(),�ũk

〉
+ 

∫ t



〈
Fm(s), u̇(k)

m (s)
〉
ds

– 
〈
Fm(t),�u(k)

m (t)
〉
+ 

∫ t



〈
F ′

m(s),�u(k)
m (s)

〉
ds +

∫ t



∥∥ü(k)
m (s)

∥∥ ds

≡ S(k)
m () + 

〈
Fm(),�ũk

〉
+

∑

j=

Ij. (.)

We estimate all terms on the right-hand side of (.) as follows:

I = 
∫ t



〈
Fm(s), u̇(k)

m (s)
〉
ds ≤ TK

M(f ) +
∫ t


S(k)

m (s) ds; (.)

I = –
〈
Fm(t),�u(k)

m (t)
〉

≤ 
∥∥Fm()

∥∥ + T
(√

T
[
 + (q + )

√
M

] + M
)K

M(f ) +



S(k)
m (t); (.)

I = 
∫ t



〈
F ′

m(s),�u(k)
m (s)

〉
ds

≤ T
([

 + (q + )
√

M
] + M)K

M(f ) +
∫ t


S(k)

m (s) ds. (.)

We note that Eq. (.) can be written as follows:

〈
ü(k)

m (t), wj
〉
–

〈
�u(k)

m (t), wj
〉

=
〈
Fm(t), wj

〉
,  ≤ j ≤ k. (.)

Hence, after replacing wj with ü(k)
m (t), we obtain

∥∥ü(k)
m (t)

∥∥ =
〈
�u(k)

m (t), ü(k)
m (t)

〉
+

〈
Fm(t), ü(k)

m (t)
〉

≤ [∥∥�u(k)
m (t)

∥
∥ +

∥
∥Fm(t)

∥
∥]∥∥ü(k)

m (t)
∥
∥

≤ [∥∥�u(k)
m (t)

∥
∥ +

∥
∥Fm(t)

∥
∥],

so

I =
∫ t



∥∥ü(k)
m (s)

∥∥ ds ≤ 
∫ t



∥∥�u(k)
m (s)

∥∥ ds + 
∫ t



∥∥Fm(s)
∥∥ ds

≤ 
∫ t


S(k)

m (s) ds + TK
M(f ). (.)



Nhan et al. Boundary Value Problems  (2017) 2017:87 Page 9 of 20

It follows from (.)-(.), (.) that

S(k)
m (t) ≤ D(k)

 (f , ũ, ũ, ũk , ũk) + D(M, T) + 
∫ t


S(k)

m (s) ds, (.)

where

⎧
⎪⎪⎨

⎪⎪⎩

D(k)
 (f , ũ, ũ, ũk , ũk) = S(k)

m () + 〈Fm(),�ũk〉 + ‖Fm()‖,

D(M, T) = [ + (
√

T[ + (q + )
√

M] + M)

+ ([ + (q + )
√

M] + M)]TK
M(f ).

(.)

By means of the convergence in (.), we can deduce the existence of a constant M > 
independent of k and m such that

D(k)
 (f , ũ, ũ, ũk , ũk) ≤ 


M for all m, k ∈N. (.)

We choose T ∈ (, T∗] such that

(



M + D(M, T)
)

eT ≤ M (.)

and

kT =
(

 +
√a

)√
TeT (q + )KM(f ) < . (.)

Finally, it follows from (.), (.), and (.) that

S(k)
m (t) ≤ Me–T + 

∫ t


S(k)

m (s) ds. (.)

By using Gronwall’s lemma, we deduce from (.) that

S(k)
m (t) ≤ Me–T et ≤ M (.)

for all t ∈ [, T], for all m and k. Therefore, we have

u(k)
m ∈ W (M, T) for all m and k. (.)

Step . Limiting process. From (.), we deduce the existence of a subsequence of {u(k)
m },

still so denoted, such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(k)
m → um in L∞(, T ; H) weak∗,

u̇(k)
m → u′

m in L∞(, T ; H) weak∗,

ü(k)
m → u′′

m in L(QT ) weak,

um ∈ W (M, T).

(.)
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Passing to limit in (.), we have um satisfying (.), (.) in L(, T). On the other hand,
it follows from (.) and (.) that u′′

m = �um + Fm ∈ L∞(, T ; L), hence um ∈ W(M, T)
and the proof of Theorem . is complete. �

We use the result given in Theorem . and the compact imbedding theorems to prove
the existence and uniqueness of a weak solution of Prob. (.)-(.). Hence, we get the main
result in this section as follows.

Theorem . Let (H), (H) hold. Then
(i) Prob. (.)-(.) has a unique weak solution u ∈ W(M, T), where the constants M > 

and T >  are chosen as in Theorem ..
(ii) The recurrent sequence {um} defined by (.)-(.) converges to the solution u of Prob.

(.)-(.) strongly in the space

W(T) =
{

v ∈ L∞(
, T ; H) : v′ ∈ L∞(

, T ; L)}. (.)

Furthermore, we also have the estimation

‖um – u‖W(T) ≤ CT km
T for all m ∈N, (.)

where the constant kT ∈ [, ) is defined as in (.) and CT is a constant depending only
on T , h, h, f , ũ, ũ, and kT .

Proof (a) Existence of the solution. First, we note that W(T) is a Banach space with respect
to the norm (see Lions []).

‖v‖W(T) = ‖v‖L∞(,T ;H) +
∥
∥v′∥∥

L∞(,T ;L). (.)

We shall prove that {um} is a Cauchy sequence in W(T). Let wm = um+ – um. Then wm

satisfies the variational problem

⎧
⎨

⎩
〈w′′

m(t), w〉 + a(wm(t), w) = 〈Fm+(t) – Fm(t), w〉, ∀w ∈ H,

wm() = w′
m() = .

(.)

Taking w = w′
m in (.), after integrating in t, we get

Zm(t) = 
∫ t



〈
Fm+(s) – Fm(s), w′

m(s)
〉
ds, (.)

where

Zm(t) =
∥
∥w′

m(t)
∥
∥ +

∥
∥wm(t)

∥
∥

a. (.)

By (H) it is clear that

∥
∥Fm+(t) – Fm(t)

∥
∥ ≤ KM(f )

[√
(q + )

∥
∥wm–(t)

∥
∥

H +
∥
∥w′

m–(t)
∥
∥]

≤ √
(q + )KM(f )‖wm–‖W(T). (.)
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Hence

Zm(t) ≤ T(q + )K
M(f )‖wm–‖

W(T) +
∫ t


Zm(s) ds. (.)

Using Gronwall’s lemma, we deduce from (.) that

‖wm‖W(T) ≤ kT‖wm–‖W(T) ∀m ∈N, (.)

where kT ∈ (, ) is defined as in (.), which implies that

‖um – um+p‖W(T) ≤ ‖u – u‖W(T)( – kT )–km
T ∀m, p ∈N. (.)

It follows that {um} is a Cauchy sequence in W(T). Then there exists u ∈ W(T) such
that

um → u strongly in W(T). (.)

Note that um ∈ W(M, T), then there exists a subsequence {umj} of {um}such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

umj → u in L∞(, T ; H) weak∗,

u′
mj

→ u′ in L∞(, T ; H) weak∗,

u′′
mj

→ u′′ in L(QT ) weak,

u ∈ W (M, T).

(.)

We also note that

∥∥Fm – f
(·, t, u(t), u(η, t), . . . , u(ηq, t), u′(t)

)∥∥
L∞(,T ;L)

≤ √
(q + )KM(f )‖um– – u‖W(T). (.)

Hence, from (.) and (.), we obtain

Fm → f
(·, t, u(t), u(η, t), . . . , u(ηq, t), u′(t)

)
strongly in L∞(

, T ; L). (.)

Finally, passing to limit in (.)-(.) as m = mj → ∞, it implies from (.), (.),,
and (.) that there exists u ∈ W (M, T) satisfying (.), (.).

On the other hand, from assumption (H) we obtain from (.), (.), and (.) that

u′′ = uxx + f
(·, t, u(t), u(η, t), . . . , u(ηq, t), u′(t)

) ∈ L∞(
, T ; L), (.)

thus we have u ∈ W(M, T). The existence proof is completed.
(b) Uniqueness of the solution. Let u, u ∈ W(M, T) be two different weak solutions of

Prob. (.)-(.). Then u = u – u satisfies the variational problem
⎧
⎨

⎩
〈u′′(t), w〉 + a(u(t), w) = 〈F(t) – F(t), w〉, ∀w ∈ H,

u() = u′() = ,
(.)

where Fi(x, t) = f (x, t, ui(x, t), ui(η, t), . . . , ui(ηq, t), u′
i(x, t)), i = , .
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We take w = u′ in (.) and integrate in t to get

∥
∥u′(t)

∥
∥ +

∥
∥u(t)

∥
∥

a ≤
√


a

(q + )KM(f )
∫ t



(∥∥u′(s)
∥
∥ +

∥
∥u(s)

∥
∥

a

)
ds. (.)

Using Gronwall’s lemma, it follows that ‖u′(t)‖ + ‖u(t)‖
a ≡ , i.e., u ≡ u.

So (i) is proved and (ii) follows. Theorem . is proved completely. �

4 Asymptotic expansion of the solution with respect to a small parameter
In this section, let (H), (H) hold. We make the following additional assumption:

(H ′
) f ∈ C([, ] ×R+ ×R

q+).

We consider the following perturbed problem, where ε is a small parameter such that,
|ε| ≤ :

(Pε)

⎧
⎪⎪⎨

⎪⎪⎩

utt – uxx = Fε[u](x, t),  < x < ,  < t < T ,

ux(, t) – hu(, t) = ux(, t) + hu(, t) = ,

u(x, ) = ũ(x), ut(x, ) = ũ(x),

where

⎧
⎪⎪⎨

⎪⎪⎩

Fε[u](x, t) = f [u](x, t) + εf[u](x, t),

f [u](x, t) = f (x, t, u(x, t), u(η, t), . . . , u(ηq, t), u′(t)),

f[u](x, t) = f(x, t, u(x, t), u(η, t), . . . , u(ηq, t), u′(t)).

First, we note that if the functions f , f satisfy (H), (H ′
), then the a priori estimates of

the Galerkin approximation sequence {u(k)
m } in the proof of Theorem . for Prob. (.)-

(.) corresponding to f = Fε[u], |ε| ≤ , satisfy u(k)
m ∈ W(M, T), where M, T are constants

independent of ε. We also note that the positive constants M and T are chosen as in (.)-
(.) with |f (·, , ũ, ũ(η), . . . , ũ(ηq), ũ)|, KM(f ), stand for

∣∣f
(·, , ũ, ũ(η), . . . , ũ(ηq), ũ

)∣∣ +
∣∣f

(·, , ũ, ũ(η), . . . , ũ(ηq), ũ
)∣∣,

KM(f ) + KM(f),

respectively.
Hence, the limit uε in suitable function spaces of the sequence {u(k)

m } as k → +∞, after
m → +∞, is a unique weak solution of the problem (Pε) satisfying uε ∈ W(M, T).

Then we can prove, in a manner similar to the proof of Theorem ., that the limit u

in suitable function spaces of the family {uε} as ε →  is a unique weak solution of the
problem (P) (corresponding to ε = ) satisfying u ∈ W(M, T).

We shall study the asymptotic expansion of the solution of the problem (Pε) with respect
to a small parameter ε.
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We use the following notations. For a multi-index α = (α, . . . ,αN ) ∈ Z
N
+ , and x =

(x, . . . , xN ) ∈R
N , we put

⎧
⎪⎪⎨

⎪⎪⎩

|α| = α + · · · + αN , α! = α! · · ·αN !,

α,β ∈ Z
N
+ , α ≤ β ⇐⇒ αi ≤ βi ∀i = , . . . , N ,

xα = xα
 · · ·xαN

N .

Next, we need the following lemma.

Lemma . Let m, N ∈N and x = (x, . . . , xN ) ∈R
N , ε ∈R. Then

( N∑

i=

xiε
i

)m

=
mN∑

k=m

P(m)
k [N , x]εk , (.)

where the coefficients P(m)
k [N , x], m ≤ k ≤ mN depending on x = (x, . . . , xN ) are defined by

the formulas

P(m)
k [N , x] =

⎧
⎨

⎩

xk ,  ≤ k ≤ N , m = ,
∑

α∈A(m)
k (N)

m!
α! xα , m ≤ k ≤ mN , m ≥ ,

(.)

where A(m)
k (N) = {α ∈ Z

N
+ : |α| = m,

∑N
i= iαi = k}.

The proof of Lemma . is easy, hence we omit the details.
Now, we assume that

(H (N)
 ) f ∈ CN+([, ] ×R+ ×R

q+), f ∈ CN ([, ] ×R+ ×R
q+).

Let u be a unique weak solution of the problem (P) corresponding to ε = , i.e.,

(P)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′′
 – �u = f [u] ≡ F,  < x < ,  < t < T ,

ux(, t) – hu(, t) = ux(, t) + hu(, t) = ,

u(x, ) = ũ(x), u′
(x, ) = ũ(x),

u ∈ W(M, T).

Let us consider the sequence of weak solutions uk ,  ≤ k ≤ N , defined by the following
problems:

(P̃k)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′′
k – �uk = Fk ,  < x < ,  < t < T ,

ukx(, t) – huk(, t) = ukx(, t) + huk(, t) = ,

uk(x, ) = u′
k(x, ) = ,

uk ∈ W(M, T),

where Fk ,  ≤ k ≤ N , are defined by the formulas

Fk =

⎧
⎨

⎩
�̄[N , f ] + f[u], k = ,

�̄k[N , f ] + �̄k–[N – , f],  ≤ k ≤ N ,
(.)
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with �̄k[N , f ] = �̄k[N , f , u, u′
, �u, �u′],  ≤ k ≤ N , are defined by the formulas

�̄k[N , f ] =

⎧
⎨

⎩
f [u], k = ,
∑

≤|γ |≤k

γ ! D

γ f [u]�k[γ , N , �u, �u′],  ≤ k ≤ N ,
(.)

where

�k
[
γ , N , �u, �u′]

=
∑

(β,...,βq+)∈Ã(γ ,N),
β+···+βq+=k

P(γ)
β

[
N , �u(x, t)

]
P(γ)

β

[
N , �u(η, t)

] · · ·

× P(γq+)
βq+

[
N , �u(ηq, t)

]
P(γq+)

βq+

[
N , �u′(x, t)

]
, (.)

with
⎧
⎨

⎩
Ã(γ , N) = {(β, . . . ,βq+) ∈ Z

q+
+ : γi ≤ βi ≤ Nγi,  ≤ i ≤ q + },

γ = (γ, . . . ,γq+) ∈ Z
q+
+ ,  ≤ |γ | ≤ N ,

(.)

and �u(x, t) = (u(x, t), . . . , uN (x, t)), �u′(x, t) = (u̇(x, t), . . . , u̇N (x, t)).
Then, we have the following theorem.

Theorem . Let (H) and (H (N)
 ) hold. Then there exist constants M >  and T >  such

that, for every ε ∈ [–, ], the problem (Pε) has a unique weak solution uε ∈ W(M, T) sat-
isfying the asymptotic estimation up to order N +  as follows:

∥
∥∥
∥∥

uε –
N∑

k=

ukε
k

∥
∥∥
∥∥

W(T)

≤ CT |ε|N+, (.)

where the functions uk ,  ≤ k ≤ N , are the weak solutions of the problems (P), (P̃k),  ≤
k ≤ N , respectively, and CT is a constant depending only on N , T , f , f, uk ,  ≤ k ≤ N .

Remark . By the fact that it is very difficult to find uε of the problem (Pε), we try to
search the weak solutions uk ,  ≤ k ≤ N , of the problems (P), (P̃k). Clearly, they are found
much more easily than uε and uε can be approximated by uk via (.).

In order to prove Theorem ., we need the following lemmas.

Lemma . Let �̄k[N , f ],  ≤ k ≤ N , be the functions defined by formulas (.)-(.). Put
h =

∑N
k= ukε

k , then we have

f [h] =
N∑

k=

�̄k[N , f ]εk + |ε|N+R̂N
[
f , u, �u, �u′, ε

]
, (.)

with ‖R̂N [f , u, �u, �u′, ε]‖L∞(,T ;L) ≤ C, where C is a constant depending only on N , T , f , uk ,
u̇k ,  ≤ k ≤ N .
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Proof of Lemma . (i) In the case of N = , the proof of (.) is easy, hence we omit the
details, which we only prove with N ≥ . Put h = u +

∑N
k= ukε

k ≡ u + h, we rewrite as
follows:

f [h](x, t)

= f
(
x, t, h(x, t), h(η, t), . . . , h(ηq, t), ḣ(x, t)

)

= f
(
x, t, u(x, t) + h(x, t), u(η, t) + h(η, t), . . . ,

u(ηq, t) + h(ηq, t), u̇(x, t) + ḣ(x, t)
)
. (.)

By using Taylor’s expansion of the function f [h] around the point

[u] ≡ (
x, t, u(x, t), u(η, t), . . . , u(ηq, t), u̇(x, t)

)

up to order N + , we obtain

f [h] = f [u] +
∑

≤|γ |≤N


γ !

Dγ f [u]hγ
 (x, t)hγ

 (η, t) · · ·

× hγq+
 (ηq, t)ḣγq+

 (x, t) + RN [f , u, h], (.)

where

RN [f , u, h]

=
∑

|γ |=N+

N + 
γ !

∫ 


( – θ )N Dγ f [u + θh]hγ

 (x, t)hγ
 (η, t) · · ·

× hγq+
 (ηq, t)ḣγq+

 (x, t) dθ

= |ε|N+R()
N [f , u, h, ε], (.)

γ = (γ, . . . ,γq+) ∈ Z
q+
+ ,

|γ | = γ + · · · + γq+,

γ ! = γ! · · ·γq+!,

Dγ f = Dγ
 Dγ

 · · ·Dγq+
q+ f ,

Dγ f [u] = Dγ f
(
x, t, u(x, t), u(η, t), . . . , u(ηq, t), u̇(x, t)

)
.

By formula (.), we get

hγ
 (x, t) =

( N∑

k=

uk(x, t)εk

)γ

=
Nγ∑

k=γ

P(γ)
k

[
N , �u(x, t)

]
εk ,

hγ
 (η, t) =

( N∑

k=

uk(η, t)εk

)γ

=
Nγ∑

k=γ

P(γ)
k

[
N , �u(η, t)

]
εk ,
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... (.)

hγq+
 (ηq, t) =

( N∑

k=

uk(ηq, t)εk

)γq+

=
Nγq+∑

k=γq+

P(γq+)
k

[
N , �u(ηq, t)

]
εk ,

ḣγq+
 (x, t) =

( N∑

k=

u̇k(x, t)εk

)γq+

=
Nγq+∑

k=γq+

P(γq+)
k

[
N , �u′(x, t)

]
εk ,

where �u(x, t) = (u(x, t), . . . , uN (x, t)), �u′(x, t) = (u̇(x, t), . . . , u̇N (x, t)).
Hence, we deduce from (.), that

hγ
 (x, t)hγ

 (η, t) · · ·hγq+
 (ηq, t)ḣγq+

 (x, t)

=
N∑

k=|γ |
�k

[
γ , N , �u, �u′]εk +

|γ |N∑

k=N+

�k
[
γ , N , �u, �u′]εk , (.)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�k[γ , N , �u, �u′]

=
∑

(β,...,βq+)∈Ã(γ ,N),β+···+βq+=k P(γ)
β

[N , �u(x, t)]P(γ)
β

[N , �u(η, t)] · · ·
× P(γq+)

βq+
[N , �u(ηq, t)]P(γq+)

βq+
[N , �u′(x, t)],

Ã(γ , N) = {(β, . . . ,βq+) ∈ Z
q+
+ : γi ≤ βi ≤ Nγi,  ≤ i ≤ q + }.

(.)

We deduce from (.), (.) that

f [h] = f [u] +
∑

≤|γ |≤N


γ !

Dγ f [u]
N∑

k=|γ |
�k

[
γ , N , �u, �u′]εk + |ε|N+R̂N

[
f , u, �u, �u′, ε

]

= f [u] +
N∑

k=

( ∑

≤|γ |≤k


γ !

Dγ f [u]�k
[
γ , N , �u, �u′]

)
εk + |ε|N+R̂N

[
f , u, �u, �u′, ε

]

= f [u] +
N∑

k=

�̄k[N , f ]εk + |ε|N+R̂N
[
f , u, �u, �u′, ε

]
, (.)

where �̄k[N , f ],  ≤ k ≤ N , are defined by (.)-(.) and

|ε|N+R̂N
[
f , u, �u, �u′, ε

]

=
∑

≤|γ |≤N


γ !

Dγ f [u]
|γ |N∑

k=N+

�k
[
γ , N , �u, �u′]εk + |ε|N+R()

N [f , u, h, ε]. (.)

By the boundedness of the functions uk , u̇k ,  ≤ k ≤ N , in the function space L∞(, T ;
H), we obtain from (.), (.), and (.) that ‖R̂N [f , u, �u, �u′, ε]‖L∞(,T ;L) ≤ C, where C
is a constant depending only on N , T , f , uk , u̇k ,  ≤ k ≤ N . Thus, Lemma . is proved. �

Remark . Lemma . is a generalization of the formula contained in ([], p., for-
mula (.)) and then Lemma . follows. These lemmas are the key to establishing the
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asymptotic expansion of the weak solution uε of order N +  in a small parameter ε as
below.

Let u = uε ∈ W(M, T) be the unique weak solution of the problem (Pε). Then v = uε –
∑N

k= ukε
k ≡ uε – h satisfies the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v′′ – �v = f [v + h] – f [h] + ε(f[v + h] – f[h])

+ Eε(x, t),  < x < ,  < t < T ,

vx(, t) – hv(, t) = vx(, t) + hv(, t) = ,

v(x, ) = v′(x, ) = ,

(.)

where

Eε(x, t) = f [h] – f [u] + εf[h] –
N∑

k=

Fkε
k , (.)

and Fk ,  ≤ k ≤ N , are defined by formulas (.).
Then we have the following lemma.

Lemma . Let (H) and (H (N)
 ) hold. Then there exists a constant C∗ such that

‖Eε‖L∞(,T ;L) ≤ C∗|ε|N+, (.)

where C∗ is a constant depending only on N , T , f , f, uk ,  ≤ k ≤ N .

Proof of Lemma . In the case of N = , the proof of Lemma . is easy, hence we omit
the details, which we only prove with N ≥ .

By using formula (.) for the function f[h], we obtain

f[h] = f[u] +
N–∑

k=

�̄k[N – , f]εk + |ε|N R̂N–
[
f, u, �u, �u′, ε

]
, (.)

where ‖R̂N–[f, u, �u, �u′, ε]‖L∞(,T ;L) ≤ C, with C is a constant depending only on N , T , f,
uk ,  ≤ k ≤ N .

By (.), we rewrite εf[h] as follows:

εf[h] = εf[u] +
N∑

k=

�̄k–[N – , f]εk + ε|ε|N R̂N–
[
f, u, �u, �u′, ε

]
. (.)

Hence, we deduce from (.) and (.) that

f [h] – f [u] + εf[h]

=
(
f[u] + �̄[N , f ]

)
ε +

N∑

k=

(
�̄k[N , f ] + �̄k–[N – , f]

)
εk

+ |ε|N+R̃N
[
f , f, u, �u, �u′, ε

]
, (.)
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where

|ε|N+R̃N
[
f , f, u, �u, �u′, ε

]
= |ε|N+R̂N

[
f , u, �u, �u′, ε

]
+ ε|ε|N R̂N–

[
f, u, �u, �u′, ε

]
. (.)

Combining (.), (.), and (.) leads to

Eε(x, t) = |ε|N+R̃N
[
f , f, u, �u, �u′, ε

]
. (.)

By the boundedness of the functions uk , u′
k ,  ≤ k ≤ N , in the function space L∞(, T ;

H), we obtain from (.), (.), (.), and (.) that

‖Eε‖L∞(,T ;L) ≤ C∗|ε|N+, (.)

where C∗ is a constant depending only on N , T , f , f, uk , u′
k ,  ≤ k ≤ N .

The proof of Lemma . is complete. �

Proof of Theorem . Consider the sequence {vm} defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v ≡ ,

v′′
m – �vm = f [vm– + h] – f [h] + ε(f[vm– + h] – f[h])

+ Eε(x, t),  < x < ,  < t < T ,

vmx(, t) – hvm(, t) = vmx(, t) + hvm(, t) = ,

vm(x, ) = v′
m(x, ) = , m ≥ .

(.)

By multiplying two sides of (.) with v′
m and after integration in t, we have

Zm(t) = 
∫ t



〈
Eε(s), v′

m(s)
〉
ds + 

∫ t



〈
f [vm– + h] – f [h], v′

m(s)
〉
ds

+ ε

∫ t



〈
f[vm– + h] – f[h], v′

m(s)
〉
ds

= J̄ + J̄ + J̄, (.)

where Zm(t) = ‖v′
m(t)‖ + ‖vm(t)‖

a.
We estimate the integrals on the right-hand side of (.) as follows.
Estimating J̄. By using Lemma ., we deduce that

J̄ = 
∫ t



〈
Eε(s), v′

m(s)
〉
ds ≤ TC

∗|ε|N+ +
∫ t


Zm(s) ds. (.)

Estimating J̄. We note that

∥
∥f [vm– + h] – f [h]

∥
∥ ≤ √

(q + )KM∗ (f )‖vm–‖W(T), (.)

with M∗ = (N + )M.
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It follows from (.) that

J̄ ≤ 
∫ t



∥∥f [vm– + h] – f [h]
∥∥∥∥v′

m(s)
∥∥ds

≤ T(q + )K
M∗ (f )‖vm–‖

W(T) +
∫ t


Zm(s) ds. (.)

Estimating J̄. Similarly,

J̄ ≤ 
∫ t



∥∥f[vm– + h] – f[h]
∥∥∥∥v′

m(s)
∥∥ds

≤ T(q + )K
M∗ (f)‖vm–‖

W(T) +
∫ t


Zm(s) ds. (.)

Combining (.), (.), (.), and (.) leads to

Zm(t) ≤ T(q + )[K
M∗ (f ) + K

M∗ (f)
]‖vm–‖

W(T)

+ TC
∗|ε|N+ + 

∫ t


Zm(s) ds. (.)

By using Gronwall’s lemma, we deduce from (.) that

‖vm‖W(T) ≤ σT‖vm–‖W(T) + δT (ε), for all m ≥ , (.)

where

σT =
√

(q + )
(

 +
√a

)√
K

M∗ (f ) + K
M∗ (f)

√
TeT ,

δT (ε) = C∗
(

 +
√a

)√
TeT |ε|N+.

We can assume that

σT < , with the suitable constant T > . (.)

We require the following lemma whose proof is immediate.

Lemma . Let the sequence {γm} satisfy

γm ≤ σγm– + δ for all m ≥ , γ = , (.)

where  ≤ σ < , δ ≥  are the given constants. Then

γm ≤ δ/( – σ ) for all m ≥ . (.)

Applying Lemma . with γm = ‖vm‖W(T), σ = σT < , δ = δT (ε), it follows from (.)
that

‖vm‖W(T) ≤ δT (ε)
 – σT

= CT |ε|N+, (.)

where CT is a constant depending only on T .



Nhan et al. Boundary Value Problems  (2017) 2017:87 Page 20 of 20

On the other hand, the linear recurrent sequence {vm} defined by (.) converges
strongly in the space W(T) to the solution v of problem (.). Hence, letting m → +∞
in (.), we get

‖v‖W(T) ≤ CT |ε|N+. (.)

This implies (.). The proof of Theorem . is complete. �
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