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Abstract
We study the upper semicontinuity of a uniform attractor for a nonautonomous
nonclassical diffusion equation with critical nonlinearity. In particular, we prove that
the uniform (with respect to (w.r.t.) g ∈ �) attractorAε

� (ε ≥ 0) for equation (1.1)
satisfies limε→ε0 distH10(�)(Aε

� ,A
ε0
� ) = 0 for any ε0 ≥ 0.
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1 Introduction
This paper is devoted to studying the following nonautonomous nonclassical diffusion
equation:

{
∂tu – ε�∂tu – �u + f (u) = g(x, t), in � × (τ ,∞),
u(x, τ ) = uτ , u(x, t) |∂�×[τ ,∞)= ,

(.)

in a bounded domain � ⊂ R
N (N ≥ ) with smooth boundary ∂� and perturbed param-

eter ε ≥ .
For the nonlinearity f ∈ C(R), we assume it satisfies the following growth and dissipa-

tion conditions:

f ′(s) ≤ C
(
 + |s| 

N–
)
, (.)

lim inf|u|→∞ f ′(u) > –λ, (.)

where C >  and λ is the first eigenvalue of –� on H
(�).

For the external force g(x, t), we assume

g(x, t), ∂tg(x, t) ∈ L
b
(
R; L(�)

)
, (.)

where the translation bounded space L
b(R; L(�)) is defined by the following norm:

∥∥g(x, t)
∥∥

L
b

:= sup
t∈R

∥∥g(x, t)
∥∥

L(t,t+;L(�)). (.)
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Nonclassical diffusion equations arise in fluid mechanics, solid mechanics, and the the-
ory of heat conduction; they describe that the diffusing species behave as a linearly viscous
fluid (see, e.g., [, ]). Asymptotic behavior of equations analogous to (.) has been inves-
tigated in many literature works during the last years (see, e.g., [–] and the references
therein).

Since equation (.) reduces to a usual reaction-diffusion equation when ε = , it is nat-
ural to examine the limiting behavior of solutions to equation (.) when ε goes to . This
problem has been considered by some authors. In [], the authors study the existence
of global attractors in H(�) ∩ H

(�) (generated by strong solutions), and their upper
semicontinuity in H

(�) for the autonomous case of equation (.) (that is, the external
force g is independent of t) with subcritical nonlinearity. In [], the upper semicontinuity
of pullback attractors in L(�) for equation (.) with subcritical nonlinearity was con-
sidered. In [], the upper semicontinuity of global attractors in H(Rn) for equation (.)
defined in unbounded domains with subcritical nonlinearity was considered. As far as we
know, there are no results as to the upper semicontinuity of uniform attractors generated
by (weak) solutions in H

(�) for equation (.) with critical nonlinearity.
In order to construct uniform attractors for equation (.), it is necessary to define a

proper symbol space generated by external force g(x, t) (see, e.g., []). Let L
w,loc(R; L(�))

denote the locally square integrable (in time) space L
loc(R; L(�)) endowed with the lo-

cally weak convergence topology. For every g ∈ L
b(R; L(�)), we define a set of functions

obtained by all time shifts of g as follows:

� =
{

(x, t) → g(x, t + h) | h ∈R
}

.

The hull of g, denoted by � = H(g), is defined as a closure of � in the topology of
L

w,loc(R; L(�)) (see, e.g., [], Section V..). We choose � as the symbol space for equation
(.).

From [, ], we know that equation (.) is globally well-posed in H
(�) for every ε ≥ ,

g ∈ �, the solution operator Uε
g (t, τ ) forms a process (see (.), (.)) in H

(�) and satisfies
the following assumptions (translation identity):

Uε
T(s)g(t, τ ) = Uε

g (t + s, τ + s), ∀g ∈ �, s ≥ , t ≥ τ , τ ∈R; (.)

T(s)� = �, ∀s ≥ , (.)

where {T(s)}s≥ is the translation semigroup on �.
The existence of uniform (with respect to (w.r.t.) g ∈ �) attractors in different kinds of

phase spaces for equations analogous to equation (.) (ε =  or ε > ) with more general
nonlinearities and external forces have been investigated in many literature works (see,
e.g., [, –] and the references therein). We can summarize the following result (see,
e.g., [, , , ] and the references therein).

Theorem . Let (.), (.) be satisfied. Assume that g ∈ L
b(R; L(�)) and � is the hull

of g in L
w,loc(R; L(�)). For each ε ≥ , the family of processes {Uε

g (t, τ )}, g ∈ � associ-
ated with equation (.) possesses a compact uniform (w.r.t. g ∈ �) attractor Aε

� in H
(�).
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Moreover, this attractor satisfies that

Aε
� = ωε

τ ,�(B) =
⋃
g∈�

Kε
g (s), ∀τ , s ∈R, (.)

where B is a uniformly (w.r.t. g ∈ �) absorbing set, which is independent of ε (see Corol-
lary .) and ωε

τ ,�(B) is the ω-limit set of B, Kε
g (s) is the kernel section of the process

{Uε
g (t, τ )} at time t = s.

The aim of this paper is to obtain the upper semicontinuity of uniform attractors in
H

(�) for equation (.), especially the nonlinear term f has a critical exponent (see (.)).
More precisely, the main result of this paper can be stated as follows, which will be proved
in Section  later.

Theorem . Let (.), (.) be satisfied. Assume g, ∂tg ∈ L
b(R; L(�)) and � is the hull

of g in L
w,loc(R; L(�)). Let Aε

� (ε ≥ ) be the uniform attractor given by Theorem ., then
it satisfies that for every ε ≥ ,

lim
ε→ε

distH


(
Aε

� , Aε
�

)
= , (.)

and

lim
ε→ε

distH


(
Kε

g (s),Kε
g (s)

)
= , ∀g ∈ �,∀s ∈R, (.)

where distH


denotes the standard Hausdorff semidistance in H
(�).

Hereafter, we denote by 〈·, ·〉 and ‖ · ‖ the inner product and the norm in L(�), respec-
tively. The symbols C and Q stand for a generic positive constant and a generic positive
increasing function, respectively. Young’s and Hölder’s inequalities will be applied without
explicit mention.

2 Preliminaries
In this section, we recall some basic concepts and results of the theory of uniform attrac-
tors, we refer to [, ] and the references therein for more details.

Let X be a Banach space and � be a parameter set. The set of operators {Ug(t, τ )}, g ∈ �

is called a family of evolution processes in X with symbol space � if, for any g ∈ �, it
satisfies

Ug(t, τ ) = Ug(t, s)Ug(s, τ ), ∀t ≥ s ≥ τ , τ ∈R; (.)

Ug(τ , τ ) = Id (Identity), ∀τ ∈R. (.)

Definition . (see []) A bounded subset B of X is said to be uniformly (w.r.t. g ∈ �)
absorbing for the family of processes {Ug(t, τ )}, g ∈ � if, for any τ ∈ R and any bounded
subset B ⊂ X, there exists T = T(B) ≥ τ such that

⋃
t≥T

⋃
g∈� Ug(t, τ )B ⊂ B.

Definition . (see []) A closed set A� of X is said to be a uniform (w.r.t. g ∈ �) attrac-
tor of the family of processes {Ug(t, τ )}, g ∈ � if
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(i) A� is uniformly (w.r.t. g ∈ �) attracting, that is, for any τ ∈R and any bounded
subset B ⊂ X , limt→∞ supg∈� distX(Ug(t, τ )B,B) = (attracting property);

(ii) A� is contained in any closed uniformly attracting set (minimality property).

Definition . (see []) A family of processes {Ug(t, τ )}, g ∈ � on X is said to be uni-
formly (w.r.t. g ∈ �) asymptotically compact if and only if, for any τ ∈ R, {gn}n∈N ⊂ �,
{tn}n∈N ⊂ [τ ,∞) with tn → ∞ (n → ∞) and any bounded sequence {xn}n∈N ⊂ X, the se-
quence {Ugn (tn, τ )xn}n∈N is relatively compact in X.

Definition . (see []) For any bounded subset B of X, the uniform (w.r.t. g ∈ �) ω-limit
set ωτ ,�(B) for the family of processes {Ug(t, τ )}, g ∈ � is defined by

ωτ ,�(B) =
⋂
t≥τ

⋃
g∈�

⋃
s≥t

Ug(s, τ )B
X

.

Assumption I Let {T(s)}s≥ be a family of operators acting on � and satisfying
(i) T(s)� = �, ∀s ≥ ;

(ii) translation identity

Ug(t + s, τ + s) = UT(s)g(t, τ ), ∀g ∈ �, t ≥ τ , τ ∈R, s ≥ .

We recall (see, e.g., []) that the kernel K of the process {U(t, τ )} acting on X consists of
all bounded complete trajectories of {U(t, τ )}, i.e.,

K =
{

u(·) | ∥∥u(t)
∥∥

X ≤ Cu, U(t, τ )u(τ ) = u(t),∀t ≥ τ , τ ∈R
}

,

and K(s) = {u(s) | u(·) ∈K} is said to be the kernel section at time t = s, s ∈R.

Definition . A family of processes {Uσ (t, τ )}, g ∈ � is said to be (X × �, X)-weakly
continuous if, for arbitrary fixed t ≥ τ , τ ∈ R, the mapping (u, g) → Ug(t, τ )u is weakly
continuous from X × � to X.

Assumption II Let � be a weakly compact set and {Ug(t, τ )}, g ∈ � be (X ×�, X)-weakly
continuous.

Theorem . (see [, ]) Under Assumptions I, II, if {Ug(t, τ )}, g ∈ �

(i) has a uniformly (w.r.t. g ∈ �) absorbing set B;
(ii) is uniformly (w.r.t. g ∈ �) asymptotically compact,
then {Ug(t, τ )}, g ∈ � has a compact uniform (w.r.t. g ∈ �) attractor A� satisfying

A� = ωτ ,�(B) =
⋃
g∈�

Kg(s), ∀τ , s ∈ R,

where Kg is the kernel section of the process Ug(t, τ ) and Kg(s) is the kernel section at t = s.
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3 Upper semicontinuity of uniform attractors
The following result about the existence and uniqueness of solutions of equation (.) can
be obtained by the standard Faedo-Galerkin methods, here we only formulate the result.

Theorem . Let (.), (.) be satisfied and g(x, t) ∈ L
loc(R; L(�)). For any ε ≥ , I =

[τ , T] and uτ ∈ H
(�), equation (.) admits a unique solution u satisfying

u ∈ C
(
I; H

(�)
)
, ∂tu ∈ L(I; H

(�)
)
.

Moreover, the solution continuously depends on the initial data in H
(�).

By Theorem ., for each ε ≥  and g ∈ L
b(R; L(�)), we define a process as follows:

Uε
g (t, τ )uτ = u(t) for all t ≥ τ and uτ ∈ H

(�),

and the mapping Uε
g (t, τ ) : H

(�) → H
(�) is continuous.

Lemma . Let (.), (.) be satisfied. Assume g ∈ L
b(R; L(�)) and � is the hull of g in

L
w,loc(R; L(�)). There exists δ >  such that for any τ ∈R and any initial data uτ ∈ H

(�),
the solutions of equation (.) satisfy: for all ε ≥ , t ≥ τ and g ∈ �,

∥∥∇u(t)
∥∥ ≤ e–δ(t–τ )Q

(‖∇uτ‖
)

+ M, (.)∫ t+

t

(∥∥∂tu(s)
∥∥ + ε

∥∥∇∂tu(s)
∥∥)ds ≤ Q

(‖∇uτ‖
)

+ M, (.)

where M >  depends on ‖g‖L
b
, but is independent of ε.

Proof The proof is classical (see, e.g., [–]), we only sketch the main steps of the rea-
soning. Multiplying the first equation of (.) by ∂tu + δu and integrating over �, we have

d
dt

(
δ‖u‖ + ( + εδ)‖∇u‖ + 

〈
F(u), 

〉)
+ ‖∂tu‖ + ε‖∇∂tu‖

+ δ‖∇u‖ + δ
〈
f (u), u

〉
= 

〈
g(x, t), ∂tu + δu

〉
, (.)

where F(u) =
∫ u

 f (s) ds and δ >  is sufficiently small which will be given precisely later.
Observe that


〈
g(x, t), ∂tu + δu

〉 ≤ 
∥∥g(x, t)

∥∥ +
∥∥∂tu

∥∥+δ∥∥u
∥∥. (.)

Thus

d
dt

E(t) + δE(t) + ‖∂tu‖ + ε‖∇∂tu‖ + �(t) ≤ 
∥∥g(x, t)

∥∥, (.)

where

E(t) = δ‖u‖ + ( + εδ)‖∇u‖ + 
〈
F(u), 

〉
+ Cρ
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and

�(t) = δ‖∇u‖ + δ
〈
f (u), u

〉
– δ‖u‖ – δE(t).

Thanks to (.) and (.), we estimate that

〈
f (u), u

〉 ≥ –ρ‖u‖ – Cρ , (.)

〈
F(u), 

〉 ≥ –


ρ‖u‖ – Cρ , (.)

〈
f (u), u

〉
–

〈
F(u), 

〉 ≥ –


ρ‖u‖ – Cρ , (.)

〈
F(u), 

〉 ≤ C
(‖∇u‖ N

N– + 
)

(.)

for some positive constants ρ < λ and Cρ .
Let  < δ ≤ –ρλ–


+λ–


, then

E(t) ≥  and �(t) ≥ –C, (.)

where C = δCρ . Moreover, from (.), (.), there exist positive constants C, C such
that

C‖∇u‖ ≤ E(t) ≤ C
(‖∇u‖ N

N– + 
)
. (.)

Hence, by (.) and (.), we get

d
dt

E(t) + δE(t) + ‖∂tu‖ + ε‖∇∂tu‖ ≤ 
∥∥g(x, t)

∥∥ + C. (.)

Note that [], Proposition V.., implies that ‖g‖L
b
≤ ‖g‖L

b
,∀g ∈ �. Applying Gronwall’s

inequality to (.), we obtain

E(t) ≤ e–δ(t–τ )E(τ ) + C
(‖g‖

L
b

+ 
)
, ∀g ∈ �,

and this together with (.) implies (.).
Finally, integrating (.) over [t, t + ] with δ =  leads to (.). �

By Lemma ., we can construct a uniformly (w.r.t. g ∈ �, ε ∈ [,∞)) absorbing set, which
is independent of ε, for the family of processes {Uε

g (t, τ ) | g ∈ �, ε ∈ [,∞)}.

Corollary . Under the assumptions of Lemma ., there exists a bounded uniformly
(w.r.t. g ∈ � and ε ∈ [,∞)) absorbing set B of H

(�) for the family of processes {Uε
g (t, τ ) |

g ∈ �, ε ∈ [,∞)} associated with equation (.), that is, for any τ ∈ R and any bounded
subset B ⊂ H

(�), there exists T = T(B) ≥ τ such that
⋃

ε≥
⋃

g∈� Uε
g (t, τ )B ⊂ B for all

t ≥ T .
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Lemma . Let (.), (.) be satisfied. Assume g, ∂tg ∈ L
b(R; L(�)) and � is the hull of

g in L
w,loc(R; L(�)). For any τ ∈R, T > τ , any initial data uτ ∈ H

(�) and any g ∈ �, the
solutions of equation (.) satisfy the following estimate:

∥∥∂tu(t)
∥∥ + ε

∥∥∇∂tu(t)
∥∥ ≤ Q

(t – τ ) , ∀t ∈ (τ , T],∀ε ≥ , (.)

where Q depends on τ , T , ‖∇uτ‖, ‖g‖L
b

and ‖∂tg‖L
b
, but is independent of ε.

Proof From Lemma ., we observe that

∫ T

τ

(∥∥∂tu(t)
∥∥ + ε

∥∥∇∂tu(t)
∥∥)dt ≤ M, (.)

where M depends on τ , T , ‖∇uτ‖ and ‖g‖L
b
.

Differentiate the first equation of (.) with respect to t and let v = ∂tu, then v satisfies
the following equality:

∂tv – ε�∂tv – �v + f ′(u)v = ∂tg(x, t). (.)

Multiplying (.) by v and integrating over �, using (.), after standard transformations,
we obtain

d
dt

Gε(t) + ‖∇v‖ ≤ lGε(t) + λ–


∥∥∂tg(x, t)
∥∥ (.)

for some l ≥ λ, where Gε(t) = ‖v(t)‖ + ε‖∇v(t)‖.
Multiplying (.) by (t – τ ), we obtain

d
dt

(t – τ )Gε(t)

≤ l(t – τ )Gε(t) + (t – τ )Gε(t) + λ–
 (t – τ )∥∥∂tg(x, t)

∥∥

≤ (l + )(t – τ )Gε(t) + Gε(t) + λ–
 (t – τ )∥∥∂tg(x, t)

∥∥.

Then, by Gronwall’s inequality, [], Proposition V.., (.) and noting that

∫ T

τ

∥∥∂tg(x, s)
∥∥ ds ≤ (

[T – τ ] + 
)‖∂tg‖

L
b
≤ (

[T – τ ] + 
)‖∂tg‖

L
b
,

we obtain (.) immediately. �

Lemma . Under the assumptions of Lemma ., for any τ ∈ R, any bounded subsets
B ⊂ H

(�) and I ⊂ [,∞), the following estimate holds true:

sup
g∈�

∥∥∇(
Uε

g (t, τ )u – Uε
g (t, τ )u

)∥∥≤ Q
(∥∥∇(u – u)

∥∥ + |ε – ε|
)
,

∀t ≥ τ ,∀u, u ∈ B,∀ε, ε ∈ I,

where Q depends on t, τ , ‖g‖L
b
, ‖∂tg‖L

b
, |I| and H

-bounds of B.
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Proof Let ui(t) = Uεi
g (t, τ )ui be the solution of problem (.) with ε = εi and the initial data

ui(τ ) = ui (i = , ).
Set w(t) = u(t) – u(t), then the following equality holds true:

∂tw – �w – ε�∂tw – (ε – ε)�∂tu + f (u) – f (u) = , (.)

with the initial data w(τ ) = u – u.
Multiplying equation (.) by w and integrating over �, gives

d
dt

(‖w‖ + ε‖∇w‖) + ‖∇w‖

+ (ε – ε)〈–�∂tu, w〉 + 
〈
f (u) – f (u), w

〉
= . (.)

Observing that

∣∣(ε – ε)〈–�∂tu, w〉∣∣ ≤ (ε – ε)


‖∇∂tu‖ +



‖∇w‖ (.)

and by (.), we have

〈
f (u) – f (u), w

〉 ≥ –l‖w‖ (.)

for some l ≥ λ.
Collecting (.)-(.), we arrive at

d
dt

(‖w‖ + ε‖∇w‖) ≤ l
(‖w‖ + ε‖∇w‖) + (ε – ε)‖∇∂tu‖.

Thus, by Gronwall’s inequality and noting that λ‖u‖ ≤ ‖∇u‖, we have

∥∥w(t)
∥∥ + ε

∥∥∇w(t)
∥∥ ≤ C

(‖∇(u – u)
∥∥ + (ε – ε)

∫ t

τ

∥∥∇∂tu(s)
∥∥ ds

)
, (.)

where C depends on t, τ and |I|.
Now we divide the argument into two cases.
Case : εε �= . Without loss of generality, let ε ≥ ε > , from Lemma . and (.),

we readily get

sup
g∈�

∥∥∇(
Uε

g (t, τ )u – Uε
g (t, τ )u

)∥∥

≤ C
(∥∥∇(u – u)

∥∥ + (ε – ε) · ε

∫ t

τ

∥∥∇∂tu(s)
∥∥ ds

)

≤ Q
(∥∥∇(u – u)

∥∥ + (ε – ε)
)
, (.)

where Q depends on t, τ , ‖g‖L
b
, ‖∂tg‖L

b
and H

-bounds of B.
Case : εε = . Without loss of generality, let ε = , then (.) can be simplified as

∥∥w(t)
∥∥ ≤ C

(∥∥∇(u – u)
∥∥ + ε



∫ t

τ

∥∥∇∂tu(s)
∥∥ ds

)
. (.)
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Multiplying (.) by w and using (.), we obtain

∥∥∇w(t)
∥∥ ≤ C

(∥∥∂tw(t)
∥∥∥∥w(t)

∥∥ + ε

∥∥∇∂tu(t)

∥∥ +
∥∥w(t)

∥∥). (.)

Hence, on account of Lemmas ., . and (.), similar to (.), we find

sup
g∈�

∥∥∇(
Uε

g (t, τ )u – Uε
g (t, τ )u

)∥∥≤ Q
(∥∥∇(u – u)

∥∥ + ε
)
. (.)

Combining (.) and (.), we can get the expected result. �

Proof of Theorem . If (.) is not correct, we can find δ > , ε ≥  and {εn}n∈N ⊂ [,∞)
with εn → ε such that

distH


(
Aεn

� ,Aε
�

) ≥ δ, ∀n ∈N.

Hence, there exists {yn}n∈N ⊂Aεn
� such that

distH


(
yn,Aε

�

) ≥ δ, ∀n ∈N. (.)

Let B be the uniformly (w.r.t. σ ∈ �, ε ∈ [,∞)) absorbing set given by Corollary .. Then
we can choose m >  sufficiently large to guarantee that

⋃
ε≥

⋃
g∈�

Uε
g (t, )B ⊂ B, ∀t ≥ m, (.)

and

sup
g∈�

dist
(
Uε

g (m, )B,Aε
�

) ≤ δ


.

From Theorem . we know Aεn
� = ω

εn
,�(B) (n ∈ N). Therefore, there exist sequences

{gn}n∈N ⊂ �, {xn}n∈N ⊂ B and {tn}n∈N ⊂ R
+ with tn → ∞, without loss of generality, we

let tn ≥ m satisfy

∥∥Uεn
gn (tn, )xn – yn

∥∥
H


≤ δ


, ∀n ∈N.

Let x̃n = Uεn
gn (tn – m, )xn and g ′

n = T(tn – m)gn, by (.), (.), (.) and noticing that tn ≥
m, we have

{̃xn}n∈N ⊂ B

and

Uεn
gn (tn, )xn = Uεn

gn (tn, tn – m)̃xn = Uεn
g′

n
(m, )̃xn.

On the other hand, due to Lemma ., we can choose N ∈N large enough such that

∥∥UεN
g′

N
(m, )̃xN – Uε

g′
N

(m, )̃xN
∥∥ ≤ δ


.
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Therefore, from the above analysis we find

distH


(
yN ,Aε

�

)
≤ distH



(
yN , UεN

g′
N

(m, )̃xN
)

+ distH


(
UεN

g′
N

(m, )̃xN , Uε
g′

N
(m, )̃xN

)
+ distH



(
Uε

g′
N

(m, )̃xN , Uε
g′

N
(m, )B

)
+ distH



(
Uε

g′
N

(m, )B,Aε
�

)
≤ δ


+

δ


+  +

δ


=

δ


,

which contradicts (.).
Next, we prove (.). If it is not correct, we can find δ > , t ∈ R, g ∈ �, ε ≥  and

{εn}n∈N ⊂ [,∞) with εn → ε such that

distH


(
Kεn

g (t),Kε
g (t)

) ≥ δ, ∀n ∈N. (.)

Let Kε
g be the kernel of the process Uε

g (t, τ ). By (.), for every n ∈N, there exists a com-
plete trajectory un(·) ∈Kεn

g satisfying

distH


(
un(t),Kε

g (t)
) ≥ δ, ∀n ∈N, (.)

and

un(t) = Uεn
g (t, τ )un(τ ), ∀t ≥ τ ,∀τ ∈R. (.)

For every s ∈ R, since un(s) ∈ Kεn
g (s) ⊂ Aεn

� , by (.), (.) and the compactness of Aε
� ,

there exists u(s) ∈Aε
� such that

∥∥un(s) – u(s)
∥∥

H


n→∞−→ . (.)

Consequently, Lemma . yields

∥∥Uεn
g (t, τ )un(τ ) – Uε

g (t, τ )u(τ )
∥∥

H


n→∞−→ , ∀t ≥ τ ,∀τ ∈ R. (.)

Combining (.) and (.), taking n → ∞ in (.), we find

u(t) = Uε
g (t, τ )u(τ ), ∀t ≥ τ ,∀τ ∈ R, (.)

that is, u(·) ∈Kε
g and u(t) ∈Kε

g (t) (∀t ∈R ).
Hence

distH


(
un(t),Kε

g (t)
) ≤ distH



(
un(t), u(t)

) n→∞−→ , (.)

and this contradicts (.). The proof is completed. �
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