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Abstract
This paper deals with a semilinear parabolic equation with variable source under the
case that the initial energy is less than the potential well depth. We deduce a sharp
threshold for blow-up and global existence of solutions. Furthermore, we conclude
that the global solution decays as the time goes to infinity.
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1 Introduction
In this paper, we consider an initial boundary value problem for the semilinear parabolic
equation with variable exponent:

⎧
⎪⎪⎨

⎪⎪⎩

ut = �u + |u|p(x)–u, x ∈ �, t > ,

u(x, t) = , x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �,

(.)

where � is a bounded smooth domain of RN (N ≥ ), u ∈ H
(�), and p(x) is a continuous

and bounded function satisfying

 < p– := inf
x∈�

p(x) ≤ p+ := sup
x∈�

p(x) < ∗ =
N

N – 
. (.)

Eq. (.) has been used to model a variety of important physical processes, such as elec-
trorheological fluids (where u is the velocity of moving fluids in electro-magnetic fields)
[], thermo-rheological flows or population dynamics [, ]. There is a substantial amount
of work concerning the case p(x) ≡ p, see, for example, [–].

To deal with the variable source, it is convenient to introduce a Lebesgue space Lp(·)(�),
defined as the space of measurable functions u in � satisfying

∫

�
|u|p(x) dx < ∞. We men-

tion that this kind of Lebesgue space or general Sobolev space with variable exponent and
their applications have got a lot of attention, see the monograph [] and some recent work
[–] for instance.
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With the norm

‖u‖p(·) := ‖u‖Lp(·) (�) = inf

{

λ >  :
∫

�

∣
∣
∣
∣
u
λ

∣
∣
∣
∣

p(x)

dx ≤ 
}

,

the space Lp(·)(�) is a Banach space and

inf
{‖u‖p+

p(·),‖u‖p–

p(·)
} ≤

∫

�

|u|p(x) dx ≤ max
{‖u‖p+

p(·),‖u‖p–

p(·)
}

, (.)

see []. Combining Corollary . in [] and the Poincaré inequality, we have

‖u‖p(·) ≤ B‖∇u‖. (.)

Regarding variable sources, Pinasco [] proved that the solution of (.) blows up in
finite time provided that p– >  and the initial data is large enough. This result was then
extended to p+ >  by Ferreira et al. in []. For some positive initial energy, Wu et al. []
gave a blow-up condition.

Proposition . (Theorem . in []) Let

E =:


p–

(
p+ – 


Bp+

α
p+


 +
p– – 


Bp–

α
p–




)

, (.)

and

E =:
(

p+ – 
p– – 

) 
p+ {

α


–


p–

[

Bp+
(

p+ – 
p– – 

) p+–
p+

α
p+


 + Bp–
(

p+ – 
p– – 

) p––
p–

α
p–




]}

< E,

where α is defined by


p–

(
Bp+

p+α
p+–


 + Bp–

p–α
p––




)
= . (.)

Assume  <
√

p+ –  < p– ≤ p+ ≤ N+
N– and  < E(u) < E. If ‖∇u‖

 > α, then the solution
of Eq. (.) blows up in finite time.

Later, another blow-up condition was derived by Wang and He [].

Proposition . (Theorem  in []) Assume  < p– ≤ p+ ≤ N+
N– and  < E(u) < E =

p––
p– B

– p–
p––

 with B ≥ max{B, }. If ‖∇u‖
 > α = B

– p–
p––

 , then the solution of Eq. (.) blows
up in finite time.

Motivated by the above research, in this paper we have the main purpose to look for a
sharp threshold for blow-up and global existence of solutions of (.) in general case (.)
and (.) (in Section , we show E > E and E ≥ E). We mainly use the potential well
method, which was used to study the case p(x) ≡ p by Payne and Sattinger [], and was
widely used to consider other parabolic models during the last years, see, for example, [–
]. Similar to [], local existence and uniqueness of solutions of (.) can be obtained by
the Banach fixed point theorem as follows.
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Proposition . Assume that (.) holds. Then (.) admits a unique solution u ∈
C([, Tmax); H

(�)) ∩ C((, Tmax); L(�)), where Tmax >  denotes the maximal existence
time. Either Tmax < +∞ and limt→Tmax ‖u‖

H
(�) = +∞ (we say that the solution blows up in

finite time), or Tmax = +∞ (we say that the solution is global in time).

Denote the energy functional

E(u) =
∫

�

[


∣
∣∇u(x, t)

∣
∣ –


p(x)

∣
∣u(x, t)

∣
∣p(x)

]

dx

and the Nehari manifold

N =
{

u ∈ H
(�)|N(u) = , u = 

}

with

N(u) =
〈
E′(u), u

〉
=

∫

�

[∣
∣∇u(x, t)

∣
∣ –

∣
∣u(x, t)

∣
∣p(x)]dx.

In this paper, we assume that the initial energy is less than the potential well depth, namely

E(u) < E := inf
u∈N

E(u). (.)

Now, we introduce our main results as follows.

Theorem . Assume that (.) and (.) hold. Then
() if N(u) < , then the solution of Eq. (.) blows up in finite time;
() if N(u) ≥ , then the solution u of Eq. (.) is global in time and u(t) →  strongly in

H
(�) as t → ∞.

Finally, we consider applications of Theorem . and derive the following results.

Corollary . Assume (.) and  < E(u) < E. The solution to Eq. (.) is global in time if
‖∇u‖

 ≤ α.

Corollary . Assume (.) and  < E(u) < E. The solution of Eq. (.) is global in time if
‖∇u‖

 ≤ α.

Remark . Combined with Proposition . and Proposition ., the above corollaries
imply that the blow-up conditions in [] and [] are also sharp there.

This paper is organized as follows. In Section , we determine the blow-up condition
of solutions of Eq. (.). In Section , we deal with global existence condition and then
conclude that the global solution decays as the time goes to infinity. In Section , we prove
Corollaries . and .. Finally, we summarize the main results of the current paper.

In the sequel, we use ‖ · ‖p to denote Lp(�) norm, and denote the inner product in L(�)
by the symbol (·, ·).
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2 Finite time blow-up
In this section, we pay attention to studying blow-up of solutions to Eq. (.). To deal with
Theorem .(), we first give some preliminary lemmas.

Lemma . It holds E > .

Proof For u ∈N , that is
∫

�
|∇u| dx =

∫

�
|u|p(x) dx, we have

∫

�

|∇u| dx ≤
∫

�

|u|p–
dx +

∫

�

|u|p+
dx.

We then apply the Poincáre inequality to find that

∫

�

|∇u| dx ≤
∫

�

|u|p–
dx +

∫

�

|u|p+
dx

≤ C
((∫

�

|∇u| dx
) p–


+

(∫

�

|∇u| dx
) p+


)

,

thereby obtaining the inequality

(∫

�

|∇u| dx
) p–

 –

+
(∫

�

|∇u| dx
) p+

 –

≥ 
C

.

This implies

∫

�

|∇u| dx ≥ min

{(


C

) 
p––

,
(


C

) 
p+–

}

.

Therefore, we deduce

E(u) ≥ 


∫

�

|∇u| dx –


p–

∫

�

|u|p(x) dx

=
(




–


p–

)∫

�

|∇u| dx +


p– N(u)

≥ p– – 
p– min

{(


C

) 
p––

,
(


C

) 
p+–

}

.

Due to the arbitrariness of u ∈N , we conclude E > . �

Lemma . Fix u ∈ H
(�), u =  and define uλ := λu with λ > . Then

() There exists a unique positive constant λ >  such that uλ ∈N and
E(uλ ) = maxλ> E(uλ);

() λ <  if and only if N(u) < ;
() λ =  if and only if N(u) = .

Proof A direct computation yields

d
dλ

E
(
uλ

)
= λ

∫

�

|∇u| dx –
∫

�

λp(x)–|u|p(x) dx =

λ

N(λu),
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and

d

dλ E
(
uλ

)
=

∫

�

|∇u| dx –
∫

�

(
p(x) – 

)
λp(x)–|u|p(x) dx.

Set f (λ) := d
dλ

E(λu). There exists a unique λ >  such that
(i) f (λ) = maxλ> f (λ),

(ii) f () = ,
(iii) f (λ) increases in (,λ) and decreases in (λ, +∞). Conclusions ()-() are easy

consequences of (i)-(iii). �

Denote

Eε := inf
{

E(u) : N(u) = –ε, u ∈ H
(�)

}

with ε > .

Lemma . Let (.) hold. Then Eε ≥ E – ε
 .

Proof Choose a minimized sequence (ui) ⊆ H
(�) such that

N(ui) = –ε and E(ui) → Eε (as i → ∞).

It follows from Lemma . that there exists a positive constant μi ∈ (, ) such that

N(μiui) = .

Therefore

E ≤ E(μiui) =



N(μiui) +
∫

�

(



–


p(x)

)
∣
∣μiui(x, t)

∣
∣p(x) dx

=
∫

�

(



–


p(x)

)
∣
∣μiui(x, t)

∣
∣p(x) dx

≤
∫

�

(



–


p(x)

)
∣
∣ui(x, t)

∣
∣p(x) dx

= E(ui) –



N(ui)

= E(ui) +
ε


.

Let i → ∞, then E ≤ Eε + ε
 . �

Lemma . (Lemma . []) d
dt E(u) = –

∫

�
u

t dx ≤ .

Now we can prove Theorem .() via the potential well method [] and the Kaplan
method [].

Proof of Theorem .() By Lemma ., we have E(u) ≤ E(u) < E. We claim that the solu-
tion u blows up in finite time provided that N(u) < . Otherwise, assume that u is global
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in time. Choose ε = min{E – E(u), –N(u)}/. Then N(u) ≤ –ε < –ε, E(u) ≤ E – ε <
E – ε

 ≤ Eε by Lemma .. Consequently, N(u) < –ε for all t > . Indeed, if there exists
t >  such that N(u(t)) = –ε, then E(u(t)) ≥ Eε by the definition of Eε . This is impossi-
ble since E(u) < Eε and Lemma ..

Let M(t) = 

∫

�
|u(x, t)| dx. Then by (.) we get that

M′(t) =
∫

�

u(x, t)ut(x, t) dx

= –
∫

�

∣
∣∇u(x, t)

∣
∣ dx +

∫

�

∣
∣u(x, t)

∣
∣p(x) dx

= –N(u) > ε. (.)

Consequently, we have

lim
t→∞ M(t) = +∞. (.)

Next, we derive a contradiction by showing that M(t) blows up in finite time. We deal
with variable source as

∫

�

|u|p(x) dx =
∫

|u|≤
|u|p(x) dx +

∫

|u|≥
|u|p(x) dx

≥
∫

|u|≤
|u|p+

dx +
∫

|u|≥
|u|p–

dx

≥
∫

|u|≥
|u|p–

dx

=
∫

|u|≤
dx +

∫

|u|≥
|u|p–

dx – |�|

≥
∫

|u|≤
|u|p–

dx +
∫

|u|≥
|u|p–

dx – |�|

≥
∫

�

|u|p–
dx – |�|,

where |�| is the measure of �. By the Hölder inequality, we have

∫

�

|u|p(x) dx ≥ |�| –p–


(∫

�

|u| dx
) p–


– |�|

= |�| –p–
 M(t)

p–
 – |�|.

Therefore, by Lemma ., we rewrite M′(t) in (.) as

M′(t) = –E(u) +
∫

�

(

 –


p(x)

)

|u|p(x) dx

≥ –E(u) +
(

 –


p–

)∫

�

|u|p(x) dx

≥
(

 –


p–

)

|�| –p–
 M(t)

p–
 –

(

 –


p–

)

|�| – E(u).
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It follows from (.) that there exists t >  such that
(

 –


p–

)

|�| –p–
 M(t)

p–
 ≥ 

[(

 –


p–

)

|�| + E(u)
]

,

for t ≥ t. Thus M′(t) ≥ 
 ( – 

p– )|�| –p–
 M(t)

p–
 . This immediately implies that M(t) blows

up in finite time, a contradiction. �

3 Global existence of solutions
In this section, we consider global existence of solutions to Eq. (.) and study asymptotic
behavior of the global solution.

Proof of Theorem .() We divide the proof into two cases: (i) N(u) = , (ii) N(u) > .
If N(u) = , then u = . Otherwise, if u = , then E(u) ≥ E. This is a contradiction to
the assumption condition (.). By uniqueness of solutions to (.), we have the solution
u(t) =  for all t ≥ .

If N(u) > , if u(t) =  for some t, then u(s) =  for s ≥ t by uniqueness, and the con-
clusion is true. Hereafter, we assume that u(t) =  for all t ∈ (, T). We claim that N(u) > 
as long as the solution u exists. Otherwise, there exists t such that N(u(t)) = . By
Lemma ., E(u(t)) ≤ E(u) < E, which contradicts the definition of E. Therefore,

E > E(u) ≥ 


∫

�

|∇u| dx –
∫

�


p– |u|p(x) dx

=
(




–


p–

)∫

�

|∇u| dx +


p– N(u) >
(




–


p–

)∫

�

|∇u| dx.

This with the Poincaré inequality yield that ‖u‖H
(�) is uniformly bounded. By Proposi-

tion ., there exists a global solution of Eq. (.).
Next, we investigate long time behavior of the global solution to Eq. (.). Basing on the

above process, if N(u) = , then u(t) =  for all t ≥ . The conclusion is true. If N(u) > ,
then the global solution u is uniformly bounded in H

(�) and N(u) ≥ . Consequently,
E(u) ≥ . Noting the equality

∫ t



∫

�

u
t dx ds + E(u) = E(u)

by (.), we have

∫ ∞



∫

�

u
t dx ds ≤ E(u).

Therefore, there exists a time sequence {ti}∞i= with ti → ∞, as i → ∞, such that
‖ut(ti)‖

 → . Since u(ti) is bounded in H
(�) and thus |u|p(·)–u(ti) is bounded in H–(�),

going to a subsequence if necessary, still denoted by u(ti),

u(ti) ⇀ ϕ weakly in H
(�), (.)

u(ti) → ϕ strongly in Lq(�)
(
 ≤ q < ∗), (.)

∣
∣u(ti)

∣
∣p(·)–u(ti) ⇀ |ϕ|p(·)–ϕ weakly in H–(�). (.)



Yang and Yu Boundary Value Problems  (2017) 2017:80 Page 8 of 12

Multiplying (.) by v ∈ H
(�) and integrating, we have

(
ut(ti), v

)
+

(∇u(ti),∇v
)

=
〈|u|p(·)–u(ti), v

〉
. (.)

Letting i → ∞ in the above equality, we obtain that

(∇ϕ,∇v) =
〈|ϕ|p(·)–ϕ, v

〉
.

Choosing v = ϕ in the above equality, we have N(ϕ) = . By (.) and the mean value the-
orem, we derive that

lim
i→∞

∫

�

∣
∣u(ti)

∣
∣p(x) dx =

∫

�

|ϕ|p(x) dx. (.)

By the weak semi-continuity of H
(�) norm and (.), we have

E(ϕ) ≤ lim inf
i→∞ E

(
u(ti)

)
< E.

This with N(ϕ) =  yield that ϕ = . Setting v = u(ti) in (.), observing that

∣
∣
(
ut(ti), u(ti)

)∣
∣ ≤ ∥

∥ut(ti)
∥
∥



∥
∥u(ti)

∥
∥

 → ,

we get that

lim
i→∞

∥
∥∇u(ti)

∥
∥

 –
∫

�

∣
∣u(ti)

∣
∣p(x) dx = . (.)

This with (.) imply that

lim
i→∞

∥
∥∇u(ti)

∥
∥

 = lim
i→∞

∫

�

∣
∣u(ti)

∣
∣p(x) dx =

∫

�

|ϕ|p(x) dx = .

Consequently, E(u(ti)) →  as i → ∞. This with the fact that E(u(t)) is decreasing with
respect of time t and E(u(t)) ≥  imply that limt→∞ E(u(t)) = .

Rewrite E(u(t)) as

E
(
u(t)

)
=




N
(
u(t)

)
+

∫

�

(



–


p(x)

)
∣
∣u(t)

∣
∣p(x) dx.

It follows from N(u(t)) ≥  that
∫

�

∣
∣u(t)

∣
∣p(x) dx ≤ p–

p– – 

∫

�

(



–


p(x)

)
∣
∣u(t)

∣
∣p(x) dx

≤ p–

p– – 
E
(
u(t)

) → , as t → ∞.

Therefore,

∥
∥∇u(t)

∥
∥

 = E
(
u(t)

)
+

∫

�


p(x)

∣
∣u(t)

∣
∣p(x) dx → , as t → ∞.

This with the Poincáre inequality imply that u(t) →  strongly in H
(�). �
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4 Proof of Corollaries 1.1 and 1.2
To compare our results to those in [, ], we begin with analyzing E defined in (.)
more precisely.

Lemma . Set

E := inf
{

max
λ>

E(λu) : u ∈ H
(�), and u = 

}
.

It holds E = E.

Proof For any u ∈N , by Lemma ., we have that

E(u) = max
λ>

E(λu) ≥ E.

Therefore, E ≥ E. On the other hand, for any u ∈ H
(�), u(x) = , by Lemma .,

there exists λ >  such that maxλ> E(λu) = E(λu) and N(λu) = . This implies that
maxλ> E(λu) ≥ E. Because of the arbitrariness of u, we have E ≥ E. The proof is com-
plete. �

Next, we compare E with E and E, where E is defined in Proposition . and E de-
fined in Proposition ., respectively.

Lemma . E > E and E ≥ E.

Proof For any u ∈ H
(�), u = , define uλ = λu with λ > . It follows from (.) and the

Poincaré inequality (.) that

E(λu) = E
(
uλ

)

≥ 

∥
∥∇uλ

∥
∥

 –


p–

∫

�

∣
∣uλ

∣
∣p(x) dx

≥ 

∥
∥∇uλ

∥
∥

 –


p–

∥
∥uλ

∥
∥p–

p(·) –


p–

∥
∥uλ

∥
∥p+

p(·)

≥ 

∥
∥∇uλ

∥
∥

 –


p– Bp–∥
∥∇uλ

∥
∥p–

 –


p– Bp+∥
∥∇uλ

∥
∥p+



=: h
(∥
∥∇uλ

∥
∥



)
.

Choose λ >  such that ‖∇uλ‖ = α, defined in (.), and h(‖∇uλ‖) = E. Thus

max
λ>

E(λu) ≥ E(λu) ≥ h
(∥
∥∇uλ

∥
∥



)
= E.

This with Lemma . yield that E ≥ E. Since E > E, we have E > E.
Now we prove E ≥ E. For any nontrivial function u ∈N , by (.), we have

‖∇u‖
 =

∫

�

|u|p(x) dx

≤ max
{‖u‖p+

p(·),‖u‖p–

p(·)
} ≤ max

{
Bp+

 ‖∇u‖p+

 , Bp–

 ‖∇u‖p–


}

.
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Therefore, ‖∇u‖ ≥ B
– p+

p+–
 , or ‖∇u‖ ≥ B

– p–
p––

 . As B >  and p+ ≥ p–, we get ‖∇u‖ ≥
B

– p–
p––

 . Consequently,

E(u) ≥
(




–


p–

)

‖∇u‖
 ≥ p– – 

p– B
– p–

p––
 = E.

Due to the arbitrariness of u ∈N , we conclude E ≥ E. �

Finally, we prove Corollaries . and ..

Proof of Corollary . Assume ‖∇u‖
 ≤ α, where α is defined in (.). Then


p–

(
Bp+

p+‖∇u‖p+–
 + Bp–

p–‖∇u‖p––


) ≤ .

Consequently,

‖∇u‖
 ≥ 

p–

(
Bp+

p+‖∇u‖p+

 + Bp–
p–‖∇u‖p–


)

≥ Bp+‖∇u‖p+

 + Bp–‖∇u‖p–

 .

By (.) and the Poincaré inequality (.), we have

‖∇u‖
 ≥ ‖u‖p+

p(·) + ‖u‖p–

p(·)

≥
∫

�

|u|p(x) dx,

thereby we obtain N(u) ≥ . Combining Lemma . and Theorem .(), we see that the
solution of Eq. (.) is global. �

Proof of Corollary . Since ‖∇u‖
 ≤ α = B

– p–
p––

 , B ≥  and p– ≤ p+, then B
– p–

p––
 ≥

B
– p+

p+–
 and

‖∇u‖
 ≤ min

{
B

– p–
p––

 , B
– p+

p+–


}
.

Consequently,

‖∇u‖
 ≥ max

{
Bp–

 ‖∇u‖p–

 , Bp+

 ‖∇u‖p+


}

.

Using (.) and the Poincaré inequality (.), we obtain that

‖∇u‖
 ≥ max

{‖u‖p–

p(·),‖u‖p+

p(·)
}

≥
∫

�

|u|p(x) dx.

This implies that N(u) ≥ . The rest is the same as the proof of Corollary ., and hence
is omitted. �
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5 Conclusions
The main aim of the current work is to study asymptotic behavior of solutions to the
parabolic equation (.). We prove that, when the initial energy is smaller than the moun-
tain pass level corresponding to the stationary equation of (.) (see (.) and Lemma .),
the initial Nehari functional plays an important role in determining asymptotic behavior
of the solution of (.), see Theorem .. That is, if the initial Nehari functional is negative,
then the solution of (.) blows up in finite time, while there exists a global solution if the
initial Nehari functional is nonnegative. Moreover, the global solution decays as the time
goes to infinity. This result generalizes the ones in [] and [], see Lemma . for dif-
ferences between them. As applications of Theorem ., we derive two corollaries which
yield that the blow-up conditions in [] and [] are also sharp there, see Corollaries .,
. and Remark ..

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the manuscript was completed in cooperation with the same responsibility. All authors read and
approved the final manuscript.

Acknowledgements
JY was partially supported by NSF of Jiangxi Province (GJJ161112), NNSF of China, No:61461032 and the Project of
Nanchang Institute of Technology, No:2014KJ020. HY was partially supported by the STRP of Jiangxi Province,
No:20151BAB211009.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 February 2017 Accepted: 18 May 2017

References
1. Acerbi, E, Mingione, G: Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal. 164,

213-259 (2002)
2. Antontsev, SN, Rodrigues, JF: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 52,

19-36 (2006)
3. Pao, CV: Nonlinear Parabolic and Elliptic Equations. Plenum, New York (1992)
4. Deng, K, Levine, HA: The role of critical exponents in blow-up theorems: the sequel. J. Math. Anal. Appl. 243, 85-126

(2000)
5. Qi, YW: On the equation ut =�uα + uβ . Proc. R. Soc. Edinb., Sect. A 123, 373-390 (1993)
6. Quittner, P, Souplet, P: Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States. Birkhäuser, Basel

(2007)
7. Radulescu, V, Repovs, D: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative

Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015)
8. Bisci, GM, Repovs, D: Multiple solutions for elliptic equations involving a general operator in divergence form. Ann.

Acad. Sci. Fenn., Math. 39, 259-273 (2014)
9. Fu, Y, Shan, Y: On the removability of isolated singular points for elliptic equations involving variable exponent. Adv.

Nonlinear Anal. 5, 121-132 (2016)
10. Mihailescu, M, Radulescu, V: Neumann problems associated to nonhomogeneous differential operators in

Orlicz-Sobolev spaces. Ann. Inst. Fourier (Grenoble) 58, 2087-2111 (2008)
11. Mihailescu, M, Radulescu, V, Repovs, D: On a non-homogeneous eigenvalue problem involving a potential: an

Orlicz-Sobolev space setting. J. Math. Pures Appl. 93, 132-148 (2010)
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