Jiang and Kosmatov Boundary Value Problems (2017) 2017:81 @ BOU nda ry Va I ue PrOblem S
DOI 10.1186/513661-017-0811-z a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Solvability of a third-order differential
equation with functional boundary
conditions at resonance

Weihua Jiang'" and Nickolai Kosmatov?

“Correspondence:
jianghua64@163.com Abstract
'College of Sciences, Hebei

University of Science and By using the coincidence degree theory due to Mawhin and constructing suitable

Technology Shijiazhuang, Hebei, operators, we study the existence of solutions for a third-order functional boundary
050018, PR. China o value problem at resonance with dimKerL = 1.

Full list of author information is

available at the end of the article MSC: 34B15

Keywords: coincidence degree theory; functional boundary condition; three-order
differential equation; resonance; Fredholm operator

1 Introduction

A boundary value problem is said to be at resonance if the corresponding homogeneous
boundary value problem has a non-trivial solution. Boundary value problems at resonance
have been studied by many authors. We refer the readers to [1-9] and the references cited
therein. In [10], the authors discussed the second-order differential equation

®'(6) =f(t,x(t), 6/ (1)), te(0,1),
with functional boundary conditions
I'(x) =0, (%) =0

where T}, Ty are linear functionals on C'[0,1] satisfying the general resonance condition
(&) (1) = T1(1)2(2). (The authors also studied the non-resonant scenario under con-
dition (A;): T1(£)['2(1) # I'1(1)T'2(2).) To be specific, the following resonant cases received

attention:

(A2) T1(),T1(1),I2(1) = 0, Ta(2) #0;
(A3) T1(2),T1(1), T2(2) = 0, T2 (1) #0;
(Ag) T1(1),To(2), T2(1) = 0, I'y(2) # 05
(As5) T1(2), T2(1),T2(2) = 0, r‘1(1) #0;
(Ag) T1(1),I'1(2), T2(1), Ta(2) =

The cases (Ay) and (A4) resultin ker L = {c: c € R}, and (A3) and (As) correspond to ker L =
{ct: c € R}. The case (Ag) describes a resonance with ker L = {cit + ¢, : ¢1,¢2 € R}. In [6],

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


http://dx.doi.org/10.1186/s13661-017-0811-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-017-0811-z&domain=pdf
mailto:jianghua64@163.com

Jiang and Kosmatov Boundary Value Problems (2017) 2017:81 Page 2 of 20

the authors extended the results of [10] as well as [3, 9] in several respects including the
study of the case ker L = {c(at + D) : c € R}, where a,b # 0.

This paper is a study of third-order functional boundary value problems (FBVPs) at res-
onance. It improves and generalizes the results of [1, 7] and the results of [2] applicable to

third-order problems. We consider

x7(t) = f(t,x(t), % (£),x"(2)), te(0,1),
01(x) = @a(x) = 3(x) =0,

(1.1)

where ¢, : C?[0,1] — R, i = 1,2,3, are bounded linear functionals. To the best of our
knowledge, this is the first paper devoted to a third-order FBVP at resonance. We present
several generalizations to the existing results and improvements to the method based on
Mawhin’s coincidence degree theory.

The framework of this paper is as follows. In Section 2, we present some notations and
the fundamentals of coincidence degree theory. In Section 3, we study problem (1.1) under

the conditions
¢i(f)=0, i=1,23,€{0,1,2}, (1.2)

respectively. In Section 4, we show the existence of a solution for problem (1.1) under the

condition

o) o) @)

9 el ep0) 1.3)

(Here, if ¢, (#) = 0 for some j € {0,1,2}, then also ¢ (#) = 0.)

2 Preliminaries

For convenience, we denote

o) @) @) o[y (E=9y(s)ds)  @i(t)  @(1)
A=pa(?) ) e0)], A1) = |pa(fy (£ =5)y(s)ds)  @a(t)  a(1)],
() w3(t) @) o3([o(t = 9%(s)ds)  @3(t) @s(1)

0t ([t -9*y(s)ds)  @i(1)
M) = |0a(?) o[yt —5)y(s)ds)  @2(1)
03(8)  w3(f(t—9)%¥(s)ds)  @s()

0t @) @i(fy(t—9)*y(s)ds)
As(y) = |2 (8?)  @a(2) <P2(f0t(t—5)23/(3)d3)~
038 @3(t)  @s(f,(t—5)*y(s)ds)

From the last three determinants we can define and derive the following three relations:

@1(=x"(0)% = 2x'(0) - 2x(0))  @1(8) (1)
Ay (Lx) = | (—x"(0)8% — 2x'(0) — 2x(0))  @2(8)  @2(1)| = =" (0)A, (2.1)
@3(—x"(0)82 - 2x/(0)t — 2x(0))  @3() @s(1)
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o182 @i(=x"(0)£* — 2x/(0)t — 2x(0))  ¢1(1)
Ar(Lx) = [@a(£?)  @a(—x"(0)£2 — 2x'(0)t — 2x(0)) o (1)| = =2x'(0)A, (2.2)
@3()  @3(=x"(0)82 - 24/ (0)t — 2x(0))  @3(1)

and Az(Lx) = -2x(0)A. Also, Ay, i,j = 1,2,3, Ax(y)ij, ik =1,2,3,j € {1,2,3} \ {k}, are the
cofactors of ¢;(£37) in A, Ar(y), k =1,2, 3, respectively.

We introduce some notations and a theorem. For more details, see [11].

Let X and Y be real Banach spaces and L : domL C X — Y be a Fredholm operator of
index zero, P: X — X, Q: Y — Y be projectors such that

ImP =Kerl, KerQ=1ImlL, X =KerL @ KerP, Y=ImL®ImQ. (2.3)
It follows that
Ll|gomznkerp : domL NKerP — ImL

is invertible. We denote the inverse by Kp.

If Q is an open bounded subset of X, domL N Q # ¢, the map N : X — Y is called L-
compact on Q if QN(R) is bounded and Kp(I — Q)N : Q — X is compact. We rely on
Mawhin’s theorem for coincidences [8].

Theorem 2.1 LetL:domL C X — Y be a Fredholm operator of index zeroand N : X — Y
be L-compact on Q. Assume that the following conditions are satisfied:
(1) Lx # ANx for every (x,1) € [(domL \ KerL) N a2] x (0,1);
(2) Nx ¢1ImL for every x € KerL N 0<2;
(3) deg(JON|kerz, 2N KerL,0) #0, where Q:Y — Y is a projection such that
ImL =KerQ, and J : Im Q — KerL is an isomorphism.
Then the equation Lx = Nx has at least one solution in dom L N Q.

We work in X = C?[0,1] with the norm x| = max{||%]loe, 1% lloos |¥” || sc }, where ||%]|oo =
max,c[o1] |%(£)|. We define Y = L}[0,1] with the norm ||y|; = fol ly(£)| dt.
In this paper, we always suppose that the following condition holds:

(C) There exist constants k; > 0, i = 1,2, 3, such that |¢;(x)| < k;||x||, » € X and the function
f(t, u, v, w) satisfies the Carathéodory conditions, that is, f (-, &, v, w) is measurable for each
fixed (u,v,w) € R3, (¢, -,-,-) is continuous for a.e. £ € [0,1].

3 Solvability of (1.1) with condition (1.2)
Casel. ;(1)=0,i=1,2,3.

Clearly, A = 0. In this case, we assume that there exists j € {1,2,3} such that A3 #0.In
what follows, we choose and fix such j.

Lemma 3.1 There exists a function g3 € Y such that As(gs) = 1.

Proof Suppose the contrary. Then

o) @) eyt -s)7s"ds)
As(t") = |@a(®)  @at)  @a([fy(t—5)?s"ds)| =0, n=0,1,....
032 @3(t)  @s(fy(t—s)%s" ds)
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Hence
o) @) @)
0@ o@) e =0, n=0,1,....
@3(%)  @3(t)  @s(E™?)

It follows from Aj3 # 0 and ¢;(1) = 0, i = 1,2, 3, that there exist constants 2 and b such that

<pj(ti) = awk(ti) + b(pl(ti) = (api + bgo;)(ti), i=0,12,...,
where k, ! € {1,2,3}, k,I #j, k # 1. Hence ¢;(x) = (a@k + bg;)(x), x € X. This is a contradiction
because ¢, 2, @3 are linearly independent on X. Hence, there exists a function / € Y with

As(h) #0 and, as a result, g5 = mh € Y with As(gs) =1. O

Define operators L :domL C X — Y, N: X — Y as follows:
Lx(t) =x"(2),  Nx(t) =f(¢,%(), % (£),5"(2)),

wheredomL ={x e X:x" €Y,¢p;(x)=0,i=1,2,3}.
If x € dom L with Lx = 0, then x = at® + bt + ¢, a,b,c € R and ¢;(x) = 0, i = 1,2, 3, that is,

agi (£%) + bei (t) = 0,
agy(£*) + bey(t) = 0,

ags (Ifz) + b(p3(t) =0.
Since Aj3 #0, we have a = b = 0. So, x =, that is, KerL = {c: c € R}.
Lemma3.2 ImL={yeY:As(y) =0}

Proof If x € dom L, Lx = y, then there exist constants a, b, ¢ such that the following equal-
ities hold:

1 t
x(t) = 2 / (t —5)*y(s)ds + at® + bt +c,
0

)= 50 ( / (= 9y(s) ds) +ap () + bn(0) =0,
0

0s(x) = %wz( /0 (- 57y(s) ds> + ags(£) + bga(t) = 0,

@3(x) = %(pg (/(; (t —5)*y(s) ds) +ags(£) + bes(t) = 0.

So, y satisfies Az(y) = 0.
Inversely, if y € Y with As(y) = 0, we let

A1) 2 Az(Y)j:—st
273 205

x(t) = %/Ot(t —5)%y(s) ds —
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ObViOUSlY, x”’(t) = y(t). Considering Al (y)13 = —Ag ()/)]‘1, AZ(,)/)]S = Ag()/)jz, A]3 = Ag(y)]g and

1 ‘ 2 M) oy Al
‘pj(x)—z%(/o (t-s) y(S)dS>— 205 (%) - A, (1),

we have

@i(x) = 22—]3 |:90j(t2) Az — 0 (O) Az(y)p + %‘(/0 (t - )*y(s) dS) As()’)js]

1
- As(p)=0.
205 30)

Clearly, ¢;(x) = 0, i #J, i € {1,2,3}, which implies that x € dom L and, consequently, y €
ImL. O

Define the operators P; : X — X, Q3 : Y — Y by
P3x = x(0), Qsy = As(y)gs.

Clearly, P3, Qs are projectors such that (2.3) hold.
Define the operator Kp, : Y — X by

B Ar1()j3 2 Ar(¥);3 .

1 t
Kp,y=— | (t=5)*y(s)d
wy=g [ G-oPyods Tl

Lemma 3.3 Kp, = (L|domLrkerp;) ™

Proof Let x € domL NKerPs. Then ¢;(x) =0,i=1,2,3, and x(0) = 0. So, we get

1t A1 (Lx); Ay(Lx);
Kp, Lx(2) = 5/ (t = s7La(s) ds— 23 o B2l
0

205 205
x"(0 A1(Lx); Ao (Lx);
:x(t)— ( )tz—x’(O)t— 1( )13t2— 2( )13t
2 203 205

It follows from (2.1), (2.2) that Al(Lx)/g = —x”(O)A,g, Az(Lx)jg = —2x/(0)A,~3. So, 1<p3Lx =X.
Inversely, y € Im L results in A3(y) = 0. As the proof of Lemma 3.2, ¢;(Kp,y) = 0,i=1,2,3.
Clearly, (Kp,y)"” = y. Thus, Kp,y € domL and LKp,y =y, y € ImL. O

We introduce the constants I3 = k| A3| + ky|Agsz| + k3| A3z and
l= max{/qkz, /(1/(3, kgkg}. (31)

The latter is frequently used in the remainder of the paper.

The next assumption is fulfilled in the main results by virtue of appropriate assumptions

onf(t, )

(H1) For any r > 0, there exists a function 4, € Y such that |[f(¢x(2), (), 2" (£))| < h,(2),
xeX, x| <.



Jiang and Kosmatov Boundary Value Problems (2017) 2017:81 Page 6 of 20

Lemma 3.4 If (H,) holds and Q C X is bounded, then N is L-compact on Q.

Proof Take r € R large enough such that ||x|| < r, x € Q. Then

t
|A3(N®)| < (ki|Ass] + ko] Ao +/<3|A33|)H/ (t - $)*Na(s) ds|| < L3l |1
0

So, |QsNx||1 < I3]|/, |1 l|g3]l1, which shows that Q3N (L) is bounded. For y € Y, we have

1Koyl < Il + —= 20yl + — ) (1 8 )n l
PN =Y+ ——21YIh + ——<4lYll = + — |yl
° [Aj3] 2| A3 [Aj]

where, for convenience, we define, using (3.1), the constant

8/

Ap =1+ .
’ [Aj]

Then

|Kp, (I - Q3)Nx|| < Ap, | (I - Q3)Nx |, < Apy (1+ Lsllgslly) 172, 1.

Thus, Kp, (I — Q3)N(Q) is bounded.
For0 <t <t <1,x € Q, we have

|(Kpy (I = Q3)Nx)"(£2) — (Kpy (I - Q3)Nx)" (1) =

/ (I - Qu)Nx(s) ds

ty 2
< / I (s)dis + s [ / ()| ds,
5]

5

that is, (Kp,(I — Q3)N)"(R) is equicontinuous on [0,1] as well as (Kp, (I — Q3)N)'(Q2) and
(Kp,(I = Q3)N) (R) by the mean value theorem. Therefore, by the Arzela-Ascoli theorem,
Kp,(I - Q3)N (RQ) is compact. O

In order to obtain the main results, we impose the following conditions:

(H2) There exist nonnegative functions a, b, c,d € Y such that |[f (¢, u, v, w)| < a(t) +b(t)|u| +
c®)vl +d(t)|wl|, t € [0,1], u,v,w € R;

(H3) There exists a constant Mos > 0 such that A3(Nx) # 0 if |x(¢)| > Mos, t € [0,1];

(Hs) There exists a constant M;3 > 0 such that if |c| > M3, then one of the following two

inequalities holds:

c¢As(Nc) > 0, (3.3)
or

¢A3(Nc) < 0. (3.4)

(Here Nc=£(¢,¢,0,0), ce R.)
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Lemma 3.5 Assume that (H,), (H3) hold and let
1
Apy (118111 + liclly + lldlly) < > (3.5)

where Ap, satisfies (3.2). Then Q13 = {x € domL \ KerL : Lx = ANx, A € (0,1)} is bounded.

Proof Since x € 13, then A3(Nx) = 0. By (Hs), there exists £, € [0,1] such that |x(z)| <
Mys. Now,

|7 = P3)x| = | Kp,L(Z = P3)x|| = IIKp, L]l < Ap, | L]
and
|P3x(to)| = |#(t0) — (I — P3)x(to)| < Mos + Ap, || Lix|1.
Thus, || Psx|| = [Psx(to)| < Moz +Ap, ||ILx]l1. It follows from x = Psx + (I — P3)x and (Hy) that

lell < Moz + 2Ap, || Lx|ly < Moz + 2Ap, | Nx||1

< Mo + 2Ap; (lally + (1Bl + licly + ld1h) I1x11)-

So,
Moz + 2Ap, ||ally
llxll < .
1-2Ap, (15111 + Il + lI41l1)
Therefore, Q13 is bounded by (3.5). |

Lemma 3.6 Assume that (Hy) holds. Then Q93 = {x € Ker L : Nx € Im L} is bounded.

Proof If x € Qy3, then x = ¢ and Q3(Nc) = 0, that is, A3z(Nc) = 0. By (Hy), it follows that
|c| < Mi3. Thus, 253 is bounded. O

Lemma 3.7 Assume that (Hy) holds. Then

Q33 = {x: pAx+ (1 - 1) A3(Nx) = 0,x € KerL, A € [0,1]}

is bounded, where p = {1_’1, ?frgii Z’;éflij

Proof Let x € Q33. Then x =c € R and pic + (1 — A)A3(Nc) = 0. If » = 0, then A3(Nc) =
0. By (Ha), |c| < Mi3. If = 1, then ¢ = 0. If A € (0,1), then ¢ = =1 A3(Nc). Hence, ¢* =
—%CAB(NC)- If |c| > M3, by (Hy), we obtain

, 1-1

=— ¢A3(Nc) <0,
Ap

which is a contradiction. Therefore, |c| < M3 and Q233 is bounded. O
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Theorem 3.8 Assume that (H,)-(Hy) and (3.5) hold. Then problem (1.1) has at least one
solution.

Proof Let Q D Q13 U Q3 U Q33 be bounded. It follows from Lemmas 3.5 and 3.6 that
Lx # ANx, x € (domL \ KerL) N9, A € (0,1) and Nx ¢ ImL, x € Ker L N 3LQ2. Let

H(x,)) = Apox + (1 - A)J3Q3Nx,

where /3 : Im Q3 — Ker L is an isomorphism defined by J3(cg3) = ¢, ¢ € R. By Lemma 3.7, we
know H(x, 1) #0,x € 3Q2NKerL, A € [0,1]. Since the degree is invariant under a homotopy;,

deg(/3Q3Nkerz, 2 NKerL,0) = deg(H(-,0), 2 NKerL,0) = deg(H(-,1), 2 N KerL,0)

=deg(p,2NKerL,0)#0.

By Theorem 2.1, Lx = N has a solution in dom L N Q. 0

Casell. ¢;(t)=0,i=1,2,3.

In this case, assume there exists j € {1,2,3} such that Aj, # 0. With an adjustment of the
method of Lemma 3.1, we can assert the existence of a function g, € Y such that A,(go) = 1.

Clearly, A = 0 and KerL = {ct : ¢ € R}. Similar to the proof of Lemma 3.2, we can show
thatImL ={y € Y : Ay(y) = 0}.

Define the operators P, : X — X, Q,: Y — Y by

Pyx =x'(0)t, Quy = A2 (9)g.

Obviously, P, and Q, are continuous linear projectors satisfying (2.3).
Define the operator Kp, : ¥ — X as

A1()j2 2 Az(y)j2
2Ap 20

1 t
szy:E/o (t—s)2y(s)ds—

As above, we can obtain that Kp, = (L|gomLnkerp,) " and [|[Kp,y|l < Ap, |ly]l1, where

8/
+ )
[Aj]

Ap, =1

Suppose that the following conditions hold:

(Hs) There exists Mgy > 0 such that Ay(Nx) # 0, if |x/(¢)| > Moo, t € [0,1];
(Hg) There exists Miy > 0 such that if |c| > M1y, then either

cAy(N(et)) >0, (3.7)
or

cAy(N(et)) <0. (3.8)
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Lemma 3.9 Assume that conditions (H,), (Hs) hold and let

Ap, (1Bl + llclly + lIdll) < % 3.9)
where Ap, satisfies (3.6). Then the set

Qp = {x € dom L\ KerL: Lx = ANx, X € (0, 1)}

is bounded.

Proof 1If x € Q15, then Ay(Nx) = 0. By (Hs), there exists a constant #; € [0,1] such that
| (t1)| < Moy Since x(t) = Pyx(t) + (I — Po)x(2), x'(t1) = x'(0) + (({ - P2)x)'(t1) and

|1 = Po)x|| = | Ko, LU = Po)x| = IKp,Lx|l < Ap, | LxI1 < Ap, [Nx]1,
we have

|%'(0)] < Moz + | (I = P2)x|| < Moz + Ap, | Nx|l1.

So,

Il < [1Pox]| + | (I = Py)x|| < Moo + 2Ap, | Nl

< Moy +2Ap, (lalls + (1611 + llcly + 1411) I1x]).
Thus,
Moz + 2Ap, ||lally
llxll < 2 ,
1=24p,([161l1 + liclly + 14111

which proves that €, is bounded. O

Lemma 3.10 Assume that (Hg) holds. Then the set
Qgp ={xeKerL:NxeImlL}

is bounded.

Proof Since x € Q3, x = ct, c € Rand A, (N(ct)) = 0. By (Hs), we have |c| < M. So, ||x|| =
|c|] < Mi,, that is, 24, is bounded. O

Lemma 3.11 Assume that (Hg) holds. Then the set

Q35 = {x e KerL: pix + (1-1),QNx=0,1 € [0,1]}

is bounded, where J, : Im Q, — KerL, J>(cg2)(t) = ct, c€ R, and p = { ", ;’:g;; Z%ij
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Proof If x € Q35, then x = ¢t, c € R and Apc + (1 — 1)/2Q2(N(ct)) = 0. So,
Apc+ (1—A)A, (N(ct)) =0.

If X =0, then A(N(ct)) = 0. By (He), |c|] < Mip. If A =1, thenc=0.If A € (0,1), ¢ =
—% Ay (N(ct)). So,

1-A
A=- v cAz(N(ct)).

If || > My, by (Hg), we obtain ¢? < 0, a contradiction. So, |c| < M, that is, Q3; is
bounded. O

Under assumption (H;), N is L-compact on a bounded set Q as in the proof of
Lemma 3.4.

Theorem 3.12 Assume that (H,), (Hs), (Hg) and (3.9) hold. Then FBVP (1.1) has at least
one solution.

The proof is similar to that of Theorem 3.8.

Case L ¢;(t2) = 0,i=1,2,3.

In this case, assume that there exists j € {1,2, 3} such that A; #0.

Similarly, there exists a function g; € Y such that A;(g;) = 1.

Obviously, A = 0 and KerL = {ct? : ¢ € R}. Similar to the proof of Lemma 3.2, we can
obtain ImL ={y € Y: A;(y) =0}.

Define the operators P; : X — X, Q;: Y — Y as

1 !
Pix = 5% (0)£%, Quy = Ai(¥)gr-

Clearly, P; and Q; are continuous linear projectors. Introduce the operator Kp, : ¥ — X
by

1 [t Ao As(a
Kpy== [ (t-5)y(s)ds— e —=
nYy 2/0 (t=97y(s)ds 24, 24,

As above, it is easy to show that Kp, = (L|domLrkerr;) ™ and [|Kp,y|| < Ap, [lyll1, where

4]
=1+

A .
h [Aj]

(3.10)

By the same method we used in Lemma 3.4, we can show that N is L-compact on Q.
To prove the main result, we need the following hypotheses:

(H7) There exists Mg > 0 such that Aj(Nx) # 0 if |x”(£)| > M1, t € [0,1];
(Hg) There exists M such that if |c| > M1, then either cA; (N (ct?)) > 0 or cA1(N(ct?)) < 0.

Lemma 3.13 Assume that (H,), (H7) hold. In addition, assume that

1
Ap (116111 + llelly + lIdll1) < > (3.11)
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where Ap, is given by (3.10). Then the set
Qn = {x € domL\KerL: Lx = ANx, A € (0,1)}
is bounded.

Proof For x € Q11, we have A(Nx) = 0. By (H7), there exists ¢, € [0,1] such that [x”(£,)| <
Moy. Since x = Pyx + (I = Py)x, |(I = P)x|| < Ap, ||Lx|l1 < Ap, [|INx]|1,

[(Px) ()| = |« (82) — (I = P)x)" (&2)] < Mo + || (I - Pr)x|
and (Pyx)"(t,) = x”(0), we get

[27(0)] = |(P¥)"(t2)| < Moy + || = Py)x| < Moy + Ap, | Lixlls.
Combining the inequalities above, we get

llll < Moy + 24, (lally + (16112 + licls + dll) ll«l)).-

Thus,

] < Moy + 2Ap, ||ally
T 1-2Ap, (10111 + liclly + 14]l1)

In view of (3.11), ©1; is bounded. O

Similarly, if (H7) and (Hg) hold, we can prove that Qy = {x € KerL : Nx € ImL} and
Q3 ={x e KerL: pix+ (1 - A1);QiNx = 0,1 € [0,1]}, with an isomorphism J; : ImQ —
KerL, Ji(cg)(t) = ct?, ¢ € R, are bounded.

Theorem 3.14 Assume that (H,), (H7), (Hg) and (3.11) hold. Then FBVP (1.1) has at least
one solution.

4 Solvability of (1.1) with condition (1.3)
We define, for convenience,

o(®) o @) .
= = =k, A;#0, 1,2,3}. 4.1
@ o) e Av70/eh23) 1)

By the same method as we used in the proof of Lemma 3.1 (see also [6]), there exists
g € Y such that

(1 — kea) ( / (t —s)*g(s) ds) =1
0

It is easy to see that

KerL = {C(Autz —Apt+ Alg) iCcE R}
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Lemma 4.1

ImL = {y eY:p (/t(t—s)zy(s) ds) = koo (/t(t—s)%/(s) ds) } (4.2)
0 0

Proof In fact, if x € domL, Lx = y, then
1 t
x(t) = 5 / (t—s)*y(s)ds + at® + bt + ¢
0
and ¢;(x) =0,i=1,2,3. So, we have

%(pl </ (t —5)y(s) ds) +ag, (tz) + by (£) + c1(1) = 0,
0

l<pz (/ (t—5)*y(s) ds) +ag; (tz) + by (t) + cpr(1) = 0.
2 0
In view of (4.1),

! a2 _ ! Y
<p1(/0 (t—5s) y(s)ds) k(pz(/o (t—3s) y(s)ds).

On the other hand, if y € Y satisfies the identity on the right-hand side of (4.2), we choose

Ar(Y)u . Asz(y)u

1 [t 5
S . - . if Ay #0,
x(0)= /0 (t=5y6)ds = S0 - SED, it a0
1t 5 A2 5, Az
t)=— t— ds — t° - , ifA;=0A 0,
() 2/0( SPysyds - S VR 8y~ 0,80 7
B A1)z 5 B As(P13

1 t
x(t) == / (t —S)2_)/(S) ds t, if Au = A12 =0, Alg #O
0

2 2A13 2A13

Obviously, Lx = y. If Ayy #0, then

1 ¢ A A
wl(x>:5¢1( /O (t—S)Zy(S)dS>— ;X’l“gola)- 2321)111%(1).

Considering Ay = A1(y)11, A2V = A1, Az = —A1(¥)h13 and A;(y) = 0, we get

1 t
o1(x) = A [<P1 </ (t - 5)*y(s) dS) A1) — 1AL + Wl(l)Al(Y)ls]
11 0
1
= A =0.
2A1 10)

Similarly, ¢ (x) = —ﬁAz(y) =0,if Ajp #0 and ¢;(x) = ﬁAg(y) =0,if A3 #0. It is easy
to check ¢(x) = @3(x) = 0.

Thus, x € dom L, that is, y € Im L. So, (4.2) holds. O
Define operators P: X — X, Q: Y — Y by

Anx”(0) — Apx'(0) + A3x(0)

Px(t) =
204 + AL + AL

(Ant® - Apt + A),
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Qy(t) = (o1 — kgs) ( /O (t —5)*y(s) dS)g(t),

where g is introduced at the beginning of the section. Moreover, / : Im Q — Ker L is defined
by

J(cg)(t) = c(Ant® — At + Ass). (4.3)
We define Kp: Y — X as follows:

1 [t A A
Kpy(t) = 5/ (£ — $)y(s) ds — 222’)11’: B 232/)11
0 11 11

AAz(y)n - AnAx()u
2011204 + AL + AL

A2 2 Az(Yh2

(Aut® - Apt+ Ag), if Ay #0,

Keylt) = 5 /0 (t - 5Py(s) ds -

A3As(Wha

———————(-Anpt+A), ifA1=0,A1#0,
2A12(A%2 + A%S

Ar1(Y)13 2 As(P13

t, ifAy1=A1p=0A 0.
275 2A5 1 12 137

1 t
Kpy(t) = = / (t —5)*y(s) ds —
2 Jo
Lemma 4.2 Kp = (L|gomrkerp) ' and

16/ .
IKpyll < Apliyla, Ap=1+ m, Ay #0,j€{1,2,3). (4.4)
1
Proof If A3 # 0, for x € domL N Ker P, considering Ay(Lx);; = —x"(0)A12 — 24'(0) A1,
As(Lx)nn = x"(0) Az — 2x(0) A11, Aux”(0) — Apax’(0) + A13x(0) = 0, we have

B Az(Lx)ut_ As(Lx)n
2Aqn 2An

Az Az(Lx)n — A As(Lx)n
2A1(2A% + AL + AL)

KpLx(t) = % /:(t —8)2Lx(s)ds

(Autz - Aut + Alg)
=x(t).

Inversely, if y € ImL, then A;(y) = 0, i = 1,2,3. This, together with Ay(y)11 = A1(W)12,
Az = -A1(M13, A = A1(¥)11, A =0, implies that

Az
e

t
@1(2) 244

Ar(¥)n
DA 1(1)

o1(Kpy) = %(m(/o (t —5)*y(s) ds> -

AAz()u — AAs()n
2A1(2A% + AL + AL)

[Anei(£?) - Angi(2) + Azer(1)]

= 2211 |:(,01 <A (t - S)zy(S) dS) Al(y)ll - ‘Pl(t)A1()’)12 + §01(1)A1(y)13]

AAs()n — AAr(n A
2A11(2A% + AL + AL)
1 AAs()n = ApAo(Wu ,

- Ar(y) + A=0.
2A; 1 2A1(2A% + A2, + AZ)
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Obviously, ¢, (Kpy) = ¢3(Kpy) = 0. So, Kpy € dom L. By a simple calculation, we can ob-
tain Kpy € KerP and LKpy = y. Therefore, Kp = (Lldomznkerp) ™™ If Ay =0, Ay #0 or
A = A =0, Az #0, we can similarly get the result.

If Ay #0, then

1Koyl < Iyl + 2yl + —— 211
Pyl = 1+t o 1+t o 1
=W oAl =P Ay W

2lAul + [A] + [A)( A +|A])

22|yl
2|A1n|2A% + A2, + AL)
<(1 16/ )n l
< + .
|Aqnl i
If Au =0, A12 7"0, then
2.21 2.2 (IA12] + |A13])| As]
IKey < Wyl + 5o -2l + 2yl + ALy
[Agg] 2| A1y |A12|(A12 + A13
< (1 8,8 >|| || (1 16l )n ||
< + + = + .
VANTY IPANDY i [Ag] Iy
Similarly, if Au = Au =0, Alg 7’0, then
16/
IKpyll < 1+ Iyl 0
VASEY

Lemma 4.3 Assume that (Hy) holds and Q C X is bounded. Then N is L-compact on Q.

Proof For x € Q, there exists a constant r > 0 such that |x| < r. By (H;), we get

| QNx||, = ‘(wl - k(ﬂz)(/o (£ — S (s,%(s), %' (s), 2" (5)) dS> gl

< (ki + kk) llgllx

/t(t - s)zf(s,x(s),x/(s),x”(s)) ds
0

=< (ki + kko) 1Ayl N1l
that is, QN() is bounded. Hence,
|Kp(I - QNx|| < Ap(IINx[ly + [|QNxll1) < Ap(1 + (ky + kko)lllla) /a1
So, Kp(I - Q)N() is bounded.

By the same method as used in the proof of Lemma 3.3, we can demonstrate that Kp(/ —
Q)N() is compact. Thus N is L-compact. O

When Ay # 0, we assume that the following conditions hold:

(Hy) There exists a constant My > 0 such that if |x”(£)| > My, then

(@ —/«m)( / (¢ - 5)2Nis) ds> ~0;
0
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(Hyp) There exists a constant M; > 0 such that if |c| > M, either

e — kgoz)</0 (t - $)>N(c(Ans® - Apas + Ags)) ds) >0, (4.5)

or

c(or — k(pz)(/o (t —S)ZN(C(AHS2 — Aps+ Alg)) ds) <0. (4.6)

Lemma 4.4 Assume that Ay # 0, (H,), (Hy) and

2[Aq|
D0y + liclly + lId]lx < 4.7)
Ap(4|Anl + |Ap] +|A])

hold. Then the set
Q) = {x edomL\KerL, Lx = ANx, 1 € (0,1)}
is bounded.

Proof Since x € €, then QNx = 0. By (Hy), there exists £, € [0,1] such that |x"(¢)| < M.
Since x = Px + (I — P)x,

|(Z - P)x|| < AplINx|1, (4.8)
and x”(¢) = (Px)"(¢) + ((I = P)x)"(¢), it follows that
(Px)(t0)] = " (t0) = (( = P)x)" (t)| < Mo + Ap|INx|s.

Considering

Aux"(0) — A12x'(0) + A3x(0)
2A% + A2, + A2

(Px)"(to) = <2Aqy,

we have

Apx"(0) — Appx’(0) + Ag3x(0) _
203 + A% + AL T 2Aq

(Mo + Ap||Nx|1).

This, together with (4.8) and (H3), means

llxll < 1Px]| + || (7 = P)x|

My + Ap||Nx||
< T (2] Al + | Anl + [Ass]) + ApINxl
2|An]
My 2|Aqn| + [Ap| + |Agz]
= 2|A A A 1 )Ap|IN:
2|A11|(| ul+ A + | 13|)+( 312y +1)Ap|INx|ly
My
< ——(2|Aul + |An| +|Am|
2|A11|( )

. <(4|A11| + Al +[As])

A .
2| An| ) pllal+ (181 + llelly + 1) !
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So,
Il < MoQ2|An| + [Arz| + |As]) + Apllalli (4] An | + | Al + |Az])
T 2]Anl -Ap(dlAnl + [Apl + 1AEDUEIL + il + I4]l)
Therefore, ©; is bounded due to (4.7). O

Lemma4.5 Assume that Ay, # 0 and (Hyg) holds. Then the set Q; = {x € KerL : Nx € Im L}
is bounded.

Proof For x € Q,, we have x = c(Ap£? — At + Ag3) and QNx = 0. By (Hyp), we get that
|c|] < M;. So, 2, is bounded. O

_ ¢, if(4.5) holds,
Let p ={} ifa6)holds.

Lemma 4.6 Assume that Ay # 0 and (Hyo) holds. The set
Q3 ={xeKerL:px+(1-A)JQNx =0,A € [0,1]}
is bounded, where ] : Im Q — Ker L is defined by (4.3).

Proof If x € Q3, then Apx + (1 = A)JQNx = 0, x = c(Apt2 — Aot + Ag3).
If A = 0, then QNx = 0. It follows from (M) that |lx|| < Mi(2|An| + |A] + |Ai)). If
A =1, thenx = 0. For A € (0,1), we have

c(Ant? - Apt + Ags)

1-A t
= —V(gﬂl - k(pz)(/ (l’ - S)ZN(C(AHSZ - Aus + Alg)) dS) (Autz - A]zt + Alg).
0

That is,

1-A ¢
2= _W((pl - kgoz)(/ (t- S)ZN(C(AHS2 —Aps+ Agz)) ds>.
0

By (Hyo), we know that |c| < M;. So, Q23 is bounded. O

Theorem 4.7 Assume that Ay # 0 and (H,), (Hs), (Hio) hold and

2| Ay
Ap(4|An| + Az + [Az])’

16111+ llelly + Il <

where A, is given by (4.4). Then FBVP (1.1) has at least one solution.

The proof is similar to that of Theorem 3.8.
The example below illustrates Theorem 4.7.

Consider

1
x"(t) = — + Asinx(t) + Asinx'(¢) + Ax"(t), te(0,1),

NG
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where A =1/113,414, along with the functional conditions

1

¢1(x) = 7x(0) + 44/(0) + 2x"(0) + 12/ x(s)ds =0,
0
1
¢2(x) = x(0) + &' (0) + x”(0) + 18/ x(s)ds =0,
0
1 1

¢3(x) = —4x(0) — 2x'(0) — 596”(0) + 6/ x(s)ds = 0.

0

In this case ¢;(£2) = ¢2(£%) = 8, ¢3(£%) = 1, $1(2) = $2(¢) = 10, ¢3(¢) = 1, and ¢ (1) = ¢(1) =19,
¢3(1) =2,sothat k =1. Also, A =0and Ay;; =1, Ay = -3, Az = -2, and

KerL = {c(Ant? — At + Agz) :c e R} = {c(£ +3t-2) :c e R}.
Subsequently,
1
@1 (%) — koo (x) = 6x(0) + 3x'(0) + x”(0) — 6/ x(s)ds
0

and

t ~ 5 ~ t ~ )
¢1</0 (t-5s) Nx(s)ds) k(j)z(/(; (t-5s) Nx(s)ds)

1 s
_ N2
= 6]0 ./o (s—1)°Nx(r)dt ds

1
=2 / a- s)?’f(s,x(s),x/(s),x”(s)) ds.
0

We can easily check (¢ — ko) (—£) = 1.
The following estimates hold for x”(¢) < —M:

1 1
tx(t),x(t),x"(t)) = — + Asinx(t) + Asina’(t) + Ax"(t) < — + 24 — AM,,
f( (£),%'(2) ()) 7i (1) (1) (1) i 0
and hence

‘ 2 _ ! 2
q)l(/o (t-s) Nx(s)ds) k¢g<f0 (t-s) Nx(s)ds)

1
-2 / a- S)Sf(s,x(s),x/(s),x”(s)) ds
0

1
> —2/(; (l—s)3<% +2A —AMQ) ds

provided My > 2 + ;sii.
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If x”(£) > My, then

f(t,x(t),x/(t),x”(t)) = 1 + Asinx(¢) + Asinx'(¢) + Ax"(¢)

NG

1
> — —2A + AM,,

NG

and hence

t ~ 5 ~ t ~ )
¢1</0 (t-s) Nx(s)ds) kd)g(/(; (t—s) Nx(s)ds)

1
= —2[ 1- s)Bf(s,x(s),x/(s),x”(s)) ds
0

1
<—2/0 (1—s)3<% —24 +AM0) ds

64 1
=—— +A- =AM,
35 2

<0

provided M, > 2.
Therefore, if we choose My > 2 + %, then (Hy) holds.
Let now ¢ € R and x.(¢) = ¢(¢? + 3t — 2). Then

Nx(2) = it +Asin(x.(2)) + Asin(x(£)) + 2Ac

7

and
¢ 1
(1 — ko) (/(; (¢ —s)2Nx.(s) ds> = —% —24 /0 (1 -s)>(sin(xc(s)) + sin(x.(s)) +2c) ds.

Then, repeating the computation leading to the choice of Mj, we obtain that |c| > M; =
My/2 results in

c(pr — kepo) (/0 (t — 5)*Nx,(s) ds)

64 !
= C<_£ - ZA/ (1 - 5)>(sin(xc(s)) + sin(x(s)) + 2c) ds) <0,
0
that is, (Hjo) holds.
Finally, note that k; = 25, ky = 21, k3 = 25/2, so that / = 525. Hence Ap =1 + 16//|An| =
8,401. Then

2|An|

16111 + llclli + |4l = 3A < 2/75,609 = .
Ap(4|Aul + |Ar] + [As])

All the conditions of Theorem 4.7 are verified.

The following corollaries are stated without proof.
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Corollary 4.8 Let Ay; =0, Ajy # 0 and assume that (H,) and the following conditions
hold:

|Ap]

1611y + llclly + 1l < ;
P Ap(2|A| + | Ags])

(H11) There exists a constant My > 0 such that if |x'(¢)| > M, then

t
(¢ —k<ﬂz)< JREEEST ds> 40,
0
(H1z) There exists a constant My > 0 such that if |c| > My, then either
t
clgr ~ k<ﬂ2)</ (t —$)’N(c(-Aps + Ar)) ds) >0,
0
or
t
c(pr — kgo) (/ (t- S)ZN(C(—AHS + Alg)) ds) <0.
0

Then FBVP (1.1) has at least one solution.

Corollary 4.9 Let Ay; = A3 =0, A1z # 0 and assume that (H,) and the following condi-
tions hold:

2
bl + llc|li + |14]l1 < —;
D11 + llelly + (14l A

(Hi13) There exists a constant Mg > 0 such that if |x(t)| > My, then

(@ —/«m)( / (¢ - 5)2Ni(s) ds> ~0;
0

(Hia) There exists a constant My > 0 such that if |c| > MY, then either

cor — kes) ( /0 (t —5)*N(cA3) dS> >0,

or

12
clon —k§02)< | (t—s>2N<cA13)ds) <o.
0
Then FBVP (1.1) has at least one solution.

5 Conclusion

This paper is a study of third-order functional boundary value problems at resonance; it
improves and generalizes some of the existent results. We present several generalizations
to the existing results and improvements to the method based on Mawhin’s coincidence

degree theory.
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