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1 Introduction
A boundary value problem is said to be at resonance if the corresponding homogeneous
boundary value problem has a non-trivial solution. Boundary value problems at resonance
have been studied by many authors. We refer the readers to [–] and the references cited
therein. In [], the authors discussed the second-order differential equation

x′′(t) = f
(
t, x(t), x′(t)

)
, t ∈ (, ),

with functional boundary conditions

�(x) = , �(x) = ,

where �,� are linear functionals on C[, ] satisfying the general resonance condition
�(t)�() = �()�(t). (The authors also studied the non-resonant scenario under con-
dition (A): �(t)�() �= �()�(t).) To be specific, the following resonant cases received
attention:

(A) �(t),�(),�() = , �(t) �= ;
(A) �(t),�(),�(t) = , �() �= ;
(A) �(),�(t),�() = , �(t) �= ;
(A) �(t),�(),�(t) = , �() �= ;
(A) �(),�(t),�(),�(t) = .

The cases (A) and (A) result in ker L = {c : c ∈R}, and (A) and (A) correspond to ker L =
{ct : c ∈ R}. The case (A) describes a resonance with ker L = {ct + c : c, c ∈ R}. In [],
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the authors extended the results of [] as well as [, ] in several respects including the
study of the case ker L = {c(at + b) : c ∈R}, where a, b �= .

This paper is a study of third-order functional boundary value problems (FBVPs) at res-
onance. It improves and generalizes the results of [, ] and the results of [] applicable to
third-order problems. We consider

⎧
⎨

⎩
x′′′(t) = f (t, x(t), x′(t), x′′(t)), t ∈ (, ),

ϕ(x) = ϕ(x) = ϕ(x) = ,
(.)

where ϕi : C[, ] → R, i = , , , are bounded linear functionals. To the best of our
knowledge, this is the first paper devoted to a third-order FBVP at resonance. We present
several generalizations to the existing results and improvements to the method based on
Mawhin’s coincidence degree theory.

The framework of this paper is as follows. In Section , we present some notations and
the fundamentals of coincidence degree theory. In Section , we study problem (.) under
the conditions

ϕi
(
tj) = , i = , , , j ∈ {, , }, (.)

respectively. In Section , we show the existence of a solution for problem (.) under the
condition

ϕ(t)
ϕ(t)

=
ϕ(t)
ϕ(t)

=
ϕ()
ϕ()

. (.)

(Here, if ϕ(tj) =  for some j ∈ {, , }, then also ϕ(tj) = .)

2 Preliminaries
For convenience, we denote

� =

∣
∣∣∣
∣∣
∣

ϕ(t) ϕ(t) ϕ()
ϕ(t) ϕ(t) ϕ()
ϕ(t) ϕ(t) ϕ()

∣
∣∣∣
∣∣
∣
, �(y) =

∣
∣∣∣
∣∣
∣

ϕ(
∫ t

 (t – s)y(s) ds) ϕ(t) ϕ()
ϕ(

∫ t
 (t – s)y(s) ds) ϕ(t) ϕ()

ϕ(
∫ t

 (t – s)y(s) ds) ϕ(t) ϕ()

∣
∣∣∣
∣∣
∣
,

�(y) =

∣
∣∣
∣∣
∣∣

ϕ(t) ϕ(
∫ t

 (t – s)y(s) ds) ϕ()
ϕ(t) ϕ(

∫ t
 (t – s)y(s) ds) ϕ()

ϕ(t) ϕ(
∫ t

 (t – s)y(s) ds) ϕ()

∣
∣∣
∣∣
∣∣
,

�(y) =

∣∣
∣∣∣
∣∣

ϕ(t) ϕ(t) ϕ(
∫ t

 (t – s)y(s) ds)
ϕ(t) ϕ(t) ϕ(

∫ t
 (t – s)y(s) ds)

ϕ(t) ϕ(t) ϕ(
∫ t

 (t – s)y(s) ds)

∣∣
∣∣∣
∣∣
.

From the last three determinants we can define and derive the following three relations:

�(Lx) =

∣∣∣
∣∣
∣∣

ϕ(–x′′()t – x′()t – x()) ϕ(t) ϕ()
ϕ(–x′′()t – x′()t – x()) ϕ(t) ϕ()
ϕ(–x′′()t – x′()t – x()) ϕ(t) ϕ()

∣∣∣
∣∣
∣∣

= –x′′()�, (.)
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�(Lx) =

∣∣
∣∣∣
∣∣

ϕ(t) ϕ(–x′′()t – x′()t – x()) ϕ()
ϕ(t) ϕ(–x′′()t – x′()t – x()) ϕ()
ϕ(t) ϕ(–x′′()t – x′()t – x()) ϕ()

∣∣
∣∣∣
∣∣

= –x′()�, (.)

and �(Lx) = –x()�. Also, �ij, i, j = , , , �k(y)ij, i, k = , , , j ∈ {, , } \ {k}, are the
cofactors of ϕi(t–j) in �, �k(y), k = , , , respectively.

We introduce some notations and a theorem. For more details, see [].
Let X and Y be real Banach spaces and L : dom L ⊂ X → Y be a Fredholm operator of

index zero, P : X → X, Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L, X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q. (.)

It follows that

L|dom L∩Ker P : dom L ∩ Ker P → Im L

is invertible. We denote the inverse by KP .
If � is an open bounded subset of X, dom L ∩ � �= ∅, the map N : X → Y is called L-

compact on � if QN(�) is bounded and KP(I – Q)N : � → X is compact. We rely on
Mawhin’s theorem for coincidences [].

Theorem . Let L : dom L ⊂ X → Y be a Fredholm operator of index zero and N : X → Y
be L-compact on �. Assume that the following conditions are satisfied:

() Lx �= λNx for every (x,λ) ∈ [(dom L \ Ker L) ∩ ∂�] × (, );
() Nx /∈ Im L for every x ∈ Ker L ∩ ∂�;
() deg(JQN |Ker L,� ∩ Ker L, ) �= , where Q : Y → Y is a projection such that

Im L = Ker Q, and J : Im Q → Ker L is an isomorphism.
Then the equation Lx = Nx has at least one solution in dom L ∩ �.

We work in X = C[, ] with the norm ‖x‖ = max{‖x‖∞,‖x′‖∞,‖x′′‖∞}, where ‖x‖∞ =
maxt∈[,] |x(t)|. We define Y = L[, ] with the norm ‖y‖ =

∫ 
 |y(t)|dt.

In this paper, we always suppose that the following condition holds:

(C) There exist constants ki > , i = , , , such that |ϕi(x)| ≤ ki‖x‖, x ∈ X and the function
f (t, u, v, w) satisfies the Carathéodory conditions, that is, f (·, u, v, w) is measurable for each
fixed (u, v, w) ∈R

, f (t, ·, ·, ·) is continuous for a.e. t ∈ [, ].

3 Solvability of (1.1) with condition (1.2)
Case I. ϕi() = , i = , , .

Clearly, � = . In this case, we assume that there exists j ∈ {, , } such that �j �= . In
what follows, we choose and fix such j.

Lemma . There exists a function g ∈ Y such that �(g) = .

Proof Suppose the contrary. Then

�
(
tn) =

∣∣∣
∣∣
∣∣

ϕ(t) ϕ(t) ϕ(
∫ t

 (t – s)sn ds)
ϕ(t) ϕ(t) ϕ(

∫ t
 (t – s)sn ds)

ϕ(t) ϕ(t) ϕ(
∫ t

 (t – s)sn ds)

∣∣∣
∣∣
∣∣

= , n = , , . . . .
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Hence

∣
∣∣
∣∣
∣∣

ϕ(t) ϕ(t) ϕ(tn+)
ϕ(t) ϕ(t) ϕ(tn+)
ϕ(t) ϕ(t) ϕ(tn+)

∣
∣∣
∣∣
∣∣

= , n = , , . . . .

It follows from �j �=  and ϕi() = , i = , , , that there exist constants a and b such that

ϕj
(
ti) = aϕk

(
ti) + bϕl

(
ti) = (aϕk + bϕl)

(
ti), i = , , , . . . ,

where k, l ∈ {, , }, k, l �= j, k �= l. Hence ϕj(x) = (aϕk +bϕl)(x), x ∈ X. This is a contradiction
because ϕ,ϕ,ϕ are linearly independent on X. Hence, there exists a function h ∈ Y with
�(h) �=  and, as a result, g = 

�(h) h ∈ Y with �(g) = . �

Define operators L : dom L ⊂ X → Y , N : X → Y as follows:

Lx(t) = x′′′(t), Nx(t) = f
(
t, x(t), x′(t), x′′(t)

)
,

where dom L = {x ∈ X : x′′′ ∈ Y ,ϕi(x) = , i = , , }.
If x ∈ dom L with Lx = , then x = at + bt + c, a, b, c ∈R and ϕi(x) = , i = , , , that is,

aϕ
(
t) + bϕ(t) = ,

aϕ
(
t) + bϕ(t) = ,

aϕ
(
t) + bϕ(t) = .

Since �j �= , we have a = b = . So, x ≡ c, that is, Ker L = {c : c ∈R}.

Lemma . Im L = {y ∈ Y : �(y) = }.

Proof If x ∈ dom L, Lx = y, then there exist constants a, b, c such that the following equal-
ities hold:

x(t) =



∫ t


(t – s)y(s) ds + at + bt + c,

ϕ(x) =


ϕ

(∫ t


(t – s)y(s) ds

)
+ aϕ

(
t) + bϕ(t) = ,

ϕ(x) =


ϕ

(∫ t


(t – s)y(s) ds

)
+ aϕ

(
t) + bϕ(t) = ,

ϕ(x) =


ϕ

(∫ t


(t – s)y(s) ds

)
+ aϕ

(
t) + bϕ(t) = .

So, y satisfies �(y) = .
Inversely, if y ∈ Y with �(y) = , we let

x(t) =



∫ t


(t – s)y(s) ds –

�(y)j

�j
t –

�(y)j

�j
t.
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Obviously, x′′′(t) = y(t). Considering �(y)j = –�(y)j, �(y)j = �(y)j, �j = �(y)j and

ϕj(x) =


ϕj

(∫ t


(t – s)y(s) ds

)
–

�(y)j

�j
ϕj

(
t) –

�(y)j

�j
ϕj(t),

we have

ϕj(x) =


�j

[
ϕj

(
t)�(y)j – ϕj(t)�(y)j + ϕj

(∫ t


(t – s)y(s) ds

)
�(y)j

]

=


�j
�(y) = .

Clearly, ϕi(x) = , i �= j, i ∈ {, , }, which implies that x ∈ dom L and, consequently, y ∈
Im L. �

Define the operators P : X → X, Q : Y → Y by

Px = x(), Qy = �(y)g.

Clearly, P, Q are projectors such that (.) hold.
Define the operator KP : Y → X by

KP y =



∫ t


(t – s)y(s) ds –

�(y)j

�j
t –

�(y)j

�j
t.

Lemma . KP = (L|dom L∩Ker P )–.

Proof Let x ∈ dom L ∩ Ker P. Then ϕi(x) = , i = , , , and x() = . So, we get

KP Lx(t) =



∫ t


(t – s)Lx(s) ds –

�(Lx)j

�j
t –

�(Lx)j

�j
t

= x(t) –
x′′()


t – x′()t –

�(Lx)j

�j
t –

�(Lx)j

�j
t.

It follows from (.), (.) that �(Lx)j = –x′′()�j, �(Lx)j = –x′()�j. So, KP Lx = x.
Inversely, y ∈ Im L results in �(y) = . As the proof of Lemma ., ϕi(KP y) = , i = , , .

Clearly, (KP y)′′′ = y. Thus, KP y ∈ dom L and LKP y = y, y ∈ Im L. �

We introduce the constants l = k|�| + k|�| + k|�| and

l = max{kk, kk, kk}. (.)

The latter is frequently used in the remainder of the paper.
The next assumption is fulfilled in the main results by virtue of appropriate assumptions

on f (t, ·, ·, ·):
(H) For any r > , there exists a function hr ∈ Y such that |f (t, x(t), x′(t), x′′(t))| ≤ hr(t),

x ∈ X , ‖x‖ ≤ r.
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Lemma . If (H) holds and � ⊂ X is bounded, then N is L-compact on �.

Proof Take r ∈ R large enough such that ‖x‖ ≤ r, x ∈ �. Then

∣
∣�(Nx)

∣
∣ ≤ (

k|�| + k|�| + k|�|
)
∥∥
∥∥

∫ t


(t – s)Nx(s) ds

∥∥
∥∥ ≤ l‖hr‖.

So, ‖QNx‖ ≤ l‖hr‖‖g‖, which shows that QN(�) is bounded. For y ∈ Y , we have

‖KP y‖ ≤ ‖y‖ +
l

|�j|‖y‖ +
l

|�j|‖y‖ =
(

 +
l

|�j|
)

‖y‖,

where, for convenience, we define, using (.), the constant

AP =  +
l

|�j| . (.)

Then

∥∥KP (I – Q)Nx
∥∥ ≤ AP

∥∥(I – Q)Nx
∥∥

 ≤ AP

(
 + l‖g‖

)‖hr‖.

Thus, KP (I – Q)N(�) is bounded.
For  ≤ t < t ≤ , x ∈ �, we have

∣∣(KP (I – Q)Nx
)′′(t) –

(
KP (I – Q)Nx

)′′(t)
∣∣ =

∣∣∣
∣

∫ t

t

(I – Q)Nx(s) ds
∣∣∣
∣

≤
∫ t

t

hr(s) ds + l‖hr‖

∫ t

t

∣
∣g(s)

∣
∣ds,

that is, (KP (I – Q)N)′′(�) is equicontinuous on [, ] as well as (KP (I – Q)N)′(�) and
(KP (I – Q)N)(�) by the mean value theorem. Therefore, by the Arzela-Ascoli theorem,
KP (I – Q)N(�) is compact. �

In order to obtain the main results, we impose the following conditions:

(H) There exist nonnegative functions a, b, c, d ∈ Y such that |f (t, u, v, w)| ≤ a(t)+b(t)|u|+
c(t)|v| + d(t)|w|, t ∈ [, ], u, v, w ∈R;

(H) There exists a constant M >  such that �(Nx) �=  if |x(t)| > M, t ∈ [, ];
(H) There exists a constant M >  such that if |c| > M, then one of the following two

inequalities holds:

c�(Nc) > , (.)

or

c�(Nc) < . (.)

(Here Nc = f (t, c, , ), c ∈R.)
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Lemma . Assume that (H), (H) hold and let

AP

(‖b‖ + ‖c‖ + ‖d‖
)

<



, (.)

where AP satisfies (.). Then � = {x ∈ dom L \ Ker L : Lx = λNx,λ ∈ (, )} is bounded.

Proof Since x ∈ �, then �(Nx) = . By (H), there exists t ∈ [, ] such that |x(t)| ≤
M. Now,

∥∥(I – P)x
∥∥ =

∥∥KP L(I – P)x
∥∥ = ‖KP Lx‖ ≤ AP‖Lx‖

and

∣∣Px(t)
∣∣ =

∣∣x(t) – (I – P)x(t)
∣∣ ≤ M + AP‖Lx‖.

Thus, ‖Px‖ = |Px(t)| ≤ M + AP‖Lx‖. It follows from x = Px + (I – P)x and (H) that

‖x‖ ≤ M + AP‖Lx‖ < M + AP‖Nx‖

≤ M + AP

(‖a‖ +
(‖b‖ + ‖c‖ + ‖d‖

)‖x‖).

So,

‖x‖ ≤ M + AP‖a‖

 – AP (‖b‖ + ‖c‖ + ‖d‖)
.

Therefore, � is bounded by (.). �

Lemma . Assume that (H) holds. Then � = {x ∈ Ker L : Nx ∈ Im L} is bounded.

Proof If x ∈ �, then x ≡ c and Q(Nc) = , that is, �(Nc) = . By (H), it follows that
|c| ≤ M. Thus, � is bounded. �

Lemma . Assume that (H) holds. Then

� =
{

x : ρλx + ( – λ)�(Nx) = , x ∈ Ker L,λ ∈ [, ]
}

is bounded, where ρ = { , if (.) holds,
–, if (.) holds.

Proof Let x ∈ �. Then x ≡ c ∈ R and ρλc + ( – λ)�(Nc) = . If λ = , then �(Nc) =
. By (H), |c| ≤ M. If λ = , then c = . If λ ∈ (, ), then c = – –λ

λρ
�(Nc). Hence, c =

– –λ
λρ

c�(Nc). If |c| > M, by (H), we obtain

c = –
 – λ

λρ
c�(Nc) < ,

which is a contradiction. Therefore, |c| ≤ M and � is bounded. �
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Theorem . Assume that (H)-(H) and (.) hold. Then problem (.) has at least one
solution.

Proof Let � ⊃ � ∪ � ∪ � be bounded. It follows from Lemmas . and . that
Lx �= λNx, x ∈ (dom L \ Ker L) ∩ ∂�, λ ∈ (, ) and Nx /∈ Im L, x ∈ Ker L ∩ ∂�. Let

H(x,λ) = λρx + ( – λ)JQNx,

where J : Im Q → Ker L is an isomorphism defined by J(cg) = c, c ∈ R. By Lemma ., we
know H(x,λ) �= , x ∈ ∂�∩Ker L, λ ∈ [, ]. Since the degree is invariant under a homotopy,

deg(JQN |Ker L,� ∩ Ker L, ) = deg
(
H(·, ),� ∩ Ker L, 

)
= deg

(
H(·, ),� ∩ Ker L, 

)

= deg(ρ I,� ∩ Ker L, ) �= .

By Theorem ., Lx = Nx has a solution in dom L ∩ �. �

Case II. ϕi(t) = , i = , , .
In this case, assume there exists j ∈ {, , } such that �j �= . With an adjustment of the

method of Lemma ., we can assert the existence of a function g ∈ Y such that �(g) = .
Clearly, � =  and Ker L = {ct : c ∈ R}. Similar to the proof of Lemma ., we can show

that Im L = {y ∈ Y : �(y) = }.
Define the operators P : X → X, Q : Y → Y by

Px = x′()t, Qy = �(y)g.

Obviously, P and Q are continuous linear projectors satisfying (.).
Define the operator KP : Y → X as

KP y =



∫ t


(t – s)y(s) ds –

�(y)j

�j
t –

�(y)j

�j
.

As above, we can obtain that KP = (L|dom L∩Ker P )– and ‖KP y‖ ≤ AP‖y‖, where

AP =  +
l

|�j| . (.)

Suppose that the following conditions hold:

(H) There exists M >  such that �(Nx) �= , if |x′(t)| > M, t ∈ [, ];
(H) There exists M >  such that if |c| > M, then either

c�
(
N(ct)

)
> , (.)

or

c�
(
N(ct)

)
< . (.)
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Lemma . Assume that conditions (H), (H) hold and let

AP

(‖b‖ + ‖c‖ + ‖d‖
)

<



, (.)

where AP satisfies (.). Then the set

� =
{

x ∈ dom L\Ker L : Lx = λNx,λ ∈ (, )
}

is bounded.

Proof If x ∈ �, then �(Nx) = . By (H), there exists a constant t ∈ [, ] such that
|x′(t)| ≤ M. Since x(t) = Px(t) + (I – P)x(t), x′(t) = x′() + ((I – P)x)′(t) and

∥
∥(I – P)x

∥
∥ =

∥
∥KP L(I – P)x

∥
∥ = ‖KP Lx‖ ≤ AP‖Lx‖ < AP‖Nx‖,

we have

∣∣x′()
∣∣ ≤ M +

∥∥(I – P)x
∥∥ ≤ M + AP‖Nx‖.

So,

‖x‖ ≤ ‖Px‖ +
∥
∥(I – P)x

∥
∥ ≤ M + AP‖Nx‖

≤ M + AP

(‖a‖ +
(‖b‖ + ‖c‖ + ‖d‖

)‖x‖).

Thus,

‖x‖ ≤ M + AP‖a‖

 – AP (‖b‖ + ‖c‖ + ‖d‖)
,

which proves that � is bounded. �

Lemma . Assume that (H) holds. Then the set

� = {x ∈ Ker L : Nx ∈ Im L}

is bounded.

Proof Since x ∈ �, x = ct, c ∈R and �(N(ct)) = . By (H), we have |c| ≤ M. So, ‖x‖ =
|c| ≤ M, that is, � is bounded. �

Lemma . Assume that (H) holds. Then the set

� =
{

x ∈ Ker L : ρλx + ( – λ)JQNx = ,λ ∈ [, ]
}

is bounded, where J : Im Q → Ker L, J(cg)(t) = ct, c ∈ R, and ρ = { , if (.) holds,
–, if (.) holds.
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Proof If x ∈ �, then x = ct, c ∈R and λρc + ( – λ)JQ(N(ct)) = . So,

λρc + ( – λ)�
(
N(ct)

)
= .

If λ = , then �(N(ct)) = . By (H), |c| ≤ M. If λ = , then c = . If λ ∈ (, ), c =
– –λ

λρ
�(N(ct)). So,

c = –
 – λ

λρ
c�

(
N(ct)

)
.

If |c| > M, by (H), we obtain c < , a contradiction. So, |c| ≤ M, that is, � is
bounded. �

Under assumption (H), N is L-compact on a bounded set � as in the proof of
Lemma ..

Theorem . Assume that (H), (H), (H) and (.) hold. Then FBVP (.) has at least
one solution.

The proof is similar to that of Theorem ..
Case III. ϕi(t) = , i = , , .
In this case, assume that there exists j ∈ {, , } such that �j �= .
Similarly, there exists a function g ∈ Y such that �(g) = .
Obviously, � =  and Ker L = {ct : c ∈ R}. Similar to the proof of Lemma ., we can

obtain Im L = {y ∈ Y : �(y) = }.
Define the operators P : X → X, Q : Y → Y as

Px =



x′′()t, Qy = �(y)g.

Clearly, P and Q are continuous linear projectors. Introduce the operator KP : Y → X
by

KP y =



∫ t


(t – s)y(s) ds –

�(y)j

�j
t –

�(y)j

�j
.

As above, it is easy to show that KP = (L|dom L∩Ker P )– and ‖KP y‖ ≤ AP‖y‖, where

AP =  +
l

|�j| . (.)

By the same method we used in Lemma ., we can show that N is L-compact on �.
To prove the main result, we need the following hypotheses:

(H) There exists M >  such that �(Nx) �=  if |x′′(t)| > M, t ∈ [, ];
(H) There exists M such that if |c| > M, then either c�(N(ct)) >  or c�(N(ct)) < .

Lemma . Assume that (H), (H) hold. In addition, assume that

AP

(‖b‖ + ‖c‖ + ‖d‖
)

<



, (.)
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where AP is given by (.). Then the set

� =
{

x ∈ dom L\Ker L : Lx = λNx,λ ∈ (, )
}

is bounded.

Proof For x ∈ �, we have �(Nx) = . By (H), there exists t ∈ [, ] such that |x′′(t)| ≤
M. Since x = Px + (I – P)x, ‖(I – P)x‖ ≤ AP‖Lx‖ < AP‖Nx‖,

∣
∣(Px)′′(t)

∣
∣ =

∣
∣x′′(t) –

(
(I – P)x

)′′(t)
∣
∣ ≤ M +

∥
∥(I – P)x

∥
∥

and (Px)′′(t) = x′′(), we get

∣
∣x′′()

∣
∣ =

∣
∣(Px)′′(t)

∣
∣ ≤ M +

∥
∥(I – P)x

∥
∥ ≤ M + AP‖Lx‖.

Combining the inequalities above, we get

‖x‖ < M + AP

(‖a‖ +
(‖b‖ + ‖c‖ + ‖d‖

)‖x‖).

Thus,

‖x‖ ≤ M + AP‖a‖

 – AP (‖b‖ + ‖c‖ + ‖d‖)
.

In view of (.), � is bounded. �

Similarly, if (H) and (H) hold, we can prove that � = {x ∈ Ker L : Nx ∈ Im L} and
� = {x ∈ Ker L : ρλx + ( – λ)JQNx = ,λ ∈ [, ]}, with an isomorphism J : Im Q →
Ker L, J(cg)(t) = ct, c ∈R, are bounded.

Theorem . Assume that (H), (H), (H) and (.) hold. Then FBVP (.) has at least
one solution.

4 Solvability of (1.1) with condition (1.3)
We define, for convenience,

ϕ(t)
ϕ(t)

=
ϕ(t)
ϕ(t)

=
ϕ()
ϕ()

= k, �j �= , j ∈ {, , }. (.)

By the same method as we used in the proof of Lemma . (see also []), there exists
g ∈ Y such that

(ϕ – kϕ)
(∫ t


(t – s)g(s) ds

)
= .

It is easy to see that

Ker L =
{

c
(
�t – �t + �

)
: c ∈ R

}
.
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Lemma .

Im L =
{

y ∈ Y : ϕ

(∫ t


(t – s)y(s) ds

)
= kϕ

(∫ t


(t – s)y(s) ds

)}
. (.)

Proof In fact, if x ∈ dom L, Lx = y, then

x(t) =



∫ t


(t – s)y(s) ds + at + bt + c

and ϕi(x) = , i = , , . So, we have



ϕ

(∫ t


(t – s)y(s) ds

)
+ aϕ

(
t) + bϕ(t) + cϕ() = ,



ϕ

(∫ t


(t – s)y(s) ds

)
+ aϕ

(
t) + bϕ(t) + cϕ() = .

In view of (.),

ϕ

(∫ t


(t – s)y(s) ds

)
= kϕ

(∫ t


(t – s)y(s) ds

)
.

On the other hand, if y ∈ Y satisfies the identity on the right-hand side of (.), we choose

x(t) =



∫ t


(t – s)y(s) ds –

�(y)

�
t –

�(y)

�
, if � �= ,

x(t) =



∫ t


(t – s)y(s) ds –

�(y)

�
t –

�(y)

�
, if � = ,� �= ,

x(t) =



∫ t


(t – s)y(s) ds –

�(y)

�
t –

�(y)

�
t, if � = � = ,� �= .

Obviously, Lx = y. If � �= , then

ϕ(x) =


ϕ

(∫ t


(t – s)y(s) ds

)
–

�(y)

�
ϕ(t) –

�(y)

�
ϕ().

Considering � = �(y), �(y) = �(y), �(y) = –�(y) and �(y) = , we get

ϕ(x) =


�

[
ϕ

(∫ t


(t – s)y(s) ds

)
�(y) – ϕ(t)�(y) + ϕ()�(y)

]

=


�
�(y) = .

Similarly, ϕ(x) = – 
�

�(y) = , if � �=  and ϕ(x) = 
�

�(y) = , if � �= . It is easy
to check ϕ(x) = ϕ(x) = .

Thus, x ∈ dom L, that is, y ∈ Im L. So, (.) holds. �

Define operators P : X → X, Q : Y → Y by

Px(t) =
�x′′() – �x′() + �x()

�
 + �

 + �


(
�t – �t + �

)
,
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Qy(t) = (ϕ – kϕ)
(∫ t


(t – s)y(s) ds

)
g(t),

where g is introduced at the beginning of the section. Moreover, J : Im Q → Ker L is defined
by

J(cg)(t) = c
(
�t – �t + �

)
. (.)

We define KP : Y → X as follows:

KPy(t) =



∫ t


(t – s)y(s) ds –

�(y)

�
t –

�(y)

�

+
��(y) – ��(y)

�(�
 + �

 + �
)

(
�t – �t + �

)
, if � �= ,

KPy(t) =



∫ t


(t – s)y(s) ds –

�(y)

�
t –

�(y)

�

+
��(y)

�(�
 + �

)
(–�t + �), if � = ,� �= ,

KPy(t) =



∫ t


(t – s)y(s) ds –

�(y)

�
t –

�(y)

�
t, if � = � = ,� �= .

Lemma . KP = (L|dom L∩Ker P)– and

‖KPy‖ ≤ AP‖y‖, AP =  +
l

|�j| , �j �= , j ∈ {, , }. (.)

Proof If � �= , for x ∈ dom L ∩ Ker P, considering �(Lx) = –x′′()� – x′()�,
�(Lx) = x′′()� – x()�, �x′′() – �x′() + �x() = , we have

KPLx(t) =



∫ t


(t – s)Lx(s) ds –

�(Lx)

�
t –

�(Lx)

�

+
��(Lx) – ��(Lx)

�(�
 + �

 + �
)

(
�t – �t + �

)

= x(t).

Inversely, if y ∈ Im L, then �i(y) = , i = , , . This, together with �(y) = �(y),
�(y) = –�(y), � = �(y), � = , implies that

ϕ(KPy) =


ϕ

(∫ t


(t – s)y(s) ds

)
–

�(y)

�
ϕ(t) –

�(y)

�
ϕ()

+
��(y) – ��(y)

�(�
 + �

 + �
)

[
�ϕ

(
t) – �ϕ(t) + �ϕ()

]

=


�

[
ϕ

(∫ t


(t – s)y(s) ds

)
�(y) – ϕ(t)�(y) + ϕ()�(y)

]

+
��(y) – ��(y)

�(�
 + �

 + �
)

�

=


�
�(y) +

��(y) – ��(y)

�(�
 + �

 + �
)

� = .
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Obviously, ϕ(KPy) = ϕ(KPy) = . So, KPy ∈ dom L. By a simple calculation, we can ob-
tain KPy ∈ Ker P and LKPy = y. Therefore, KP = (L|dom L∩Ker P)–. If � = , � �=  or
� = � = , � �= , we can similarly get the result.

If � �= , then

‖KPy‖ ≤ ‖y‖ +
l

|�| · ‖y‖ +
l

|�| · ‖y‖

+
(|�| + |�| + |�|)(|�| + |�|)

|�|(�
 + �

 + �
)

l · ‖y‖

≤
(

 +
l

|�|
)

‖y‖.

If � = , � �= , then

‖KPy‖ ≤ ‖y‖ +
 · l

|�| · ‖y‖ +
 · l

|�| · ‖y‖ +
(|�| + |�|)|�|
|�|(�

 + �
)

l · ‖y‖

≤
(

 +
l

|�| +
l

|�|
)

‖y‖ =
(

 +
l

|�|
)

‖y‖.

Similarly, if � = � = , � �= , then

‖KPy‖ ≤
(

 +
l

|�|
)

‖y‖. �

Lemma . Assume that (H) holds and � ⊂ X is bounded. Then N is L-compact on �.

Proof For x ∈ �, there exists a constant r >  such that ‖x‖ ≤ r. By (H), we get

‖QNx‖ =
∣∣
∣∣(ϕ – kϕ)

(∫ t


(t – s)f

(
s, x(s), x′(s), x′′(s)

)
ds

)∣∣
∣∣‖g‖

≤ (k + kk)
∥
∥∥
∥

∫ t


(t – s)f

(
s, x(s), x′(s), x′′(s)

)
ds

∥
∥∥
∥‖g‖

≤ (k + kk)‖hr‖‖g‖,

that is, QN(�) is bounded. Hence,

∥
∥KP(I – Q)Nx

∥
∥ ≤ AP

(‖Nx‖ + ‖QNx‖
) ≤ AP

(
 + (k + kk)‖g‖

)‖hr‖.

So, KP(I – Q)N(�) is bounded.
By the same method as used in the proof of Lemma ., we can demonstrate that KP(I –

Q)N(�) is compact. Thus N is L-compact. �

When � �= , we assume that the following conditions hold:

(H) There exists a constant M >  such that if |x′′(t)| > M, then

(ϕ – kϕ)
(∫ t


(t – s)Nx(s) ds

)
�= ;
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(H) There exists a constant M >  such that if |c| > M, either

c(ϕ – kϕ)
(∫ t


(t – s)N

(
c
(
�s – �s + �

))
ds

)
> , (.)

or

c(ϕ – kϕ)
(∫ t


(t – s)N

(
c
(
�s – �s + �

))
ds

)
< . (.)

Lemma . Assume that � �= , (H), (H) and

‖b‖ + ‖c‖ + ‖d‖ <
|�|

AP(|�| + |�| + |�|) (.)

hold. Then the set

� =
{

x ∈ dom L\Ker L, Lx = λNx,λ ∈ (, )
}

is bounded.

Proof Since x ∈ �, then QNx = . By (H), there exists t ∈ [, ] such that |x′′(t)| ≤ M.
Since x = Px + (I – P)x,

∥∥(I – P)x
∥∥ < AP‖Nx‖, (.)

and x′′(t) = (Px)′′(t) + ((I – P)x)′′(t), it follows that

∣∣(Px)′′(t)
∣∣ =

∣∣x′′(t) –
(
(I – P)x

)′′(t)
∣∣ < M + AP‖Nx‖.

Considering

(Px)′′(t) =
�x′′() – �x′() + �x()

�
 + �

 + �


· �,

we have
∣
∣∣
∣
�x′′() – �x′() + �x()

�
 + �

 + �


∣
∣∣
∣ ≤ 

�

(
M + AP‖Nx‖

)
.

This, together with (.) and (H), means

‖x‖ ≤ ‖Px‖ +
∥
∥(I – P)x

∥
∥

≤ M + AP‖Nx‖

|�|
(
|�| + |�| + |�|

)
+ AP‖Nx‖

=
M

|�|
(
|�| + |�| + |�|

)
+

(
|�| + |�| + |�|

|�| + 
)

AP‖Nx‖

≤ M

|�|
(
|�| + |�| + |�|

)

+
(

(|�| + |�| + |�|)
|�|

)
AP

[‖a‖ +
(‖b‖ + ‖c‖ + ‖d‖

)‖x‖].
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So,

‖x‖ ≤ M(|�| + |�| + |�|) + AP‖a‖(|�| + |�| + |�|)
|�| – AP(|�| + |�| + |�|)(‖b‖ + ‖c‖ + ‖d‖)

.

Therefore, � is bounded due to (.). �

Lemma . Assume that � �=  and (H) holds. Then the set � = {x ∈ Ker L : Nx ∈ Im L}
is bounded.

Proof For x ∈ �, we have x = c(�t – �t + �) and QNx = . By (H), we get that
|c| ≤ M. So, � is bounded. �

Let ρ = { , if (.) holds,
–, if (.) holds.

Lemma . Assume that � �=  and (H) holds. The set

� =
{

x ∈ Ker L : λρx + ( – λ)JQNx = ,λ ∈ [, ]
}

is bounded, where J : Im Q → Ker L is defined by (.).

Proof If x ∈ �, then λρx + ( – λ)JQNx = , x = c(�t – �t + �).
If λ = , then QNx = . It follows from (H) that ‖x‖ ≤ M(|�| + |�| + |�|). If

λ = , then x ≡ . For λ ∈ (, ), we have

c
(
�t – �t + �

)

= –
 – λ

λρ
(ϕ – kϕ)

(∫ t


(t – s)N

(
c
(
�s – �s + �

))
ds

)(
�t – �t + �

)
.

That is,

c = –
 – λ

λρ
(ϕ – kϕ)

(∫ t


(t – s)N

(
c
(
�s – �s + �

))
ds

)
.

By (H), we know that |c| ≤ M. So, � is bounded. �

Theorem . Assume that � �=  and (H), (H), (H) hold and

‖b‖ + ‖c‖ + ‖d‖ <
|�|

AP(|�| + |�| + |�|) ,

where Ap is given by (.). Then FBVP (.) has at least one solution.

The proof is similar to that of Theorem ..
The example below illustrates Theorem ..
Consider

x′′′(t) =
√
t

+ A sin x(t) + A sin x′(t) + Ax′′(t), t ∈ (, ),
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where A = /,, along with the functional conditions

φ(x) = x() + u′() + x′′() + 
∫ 


x(s) ds = ,

φ(x) = x() + x′() + x′′() + 
∫ 


x(s) ds = ,

φ(x) = –x() – x′() –



x′′() + 
∫ 


x(s) ds = .

In this case φ(t) = φ(t) = , φ(t) = , φ(t) = φ(t) = , φ(t) = , and φ() = φ() = ,
φ() = , so that k = . Also, � =  and � = , � = –, � = –, and

Ker L =
{

c
(�t – �t + �

)
: c ∈R

}
=

{
c
(
t + t – 

)
: c ∈R

}
.

Subsequently,

φ(x) – kφ(x) = x() + x′() + x′′() – 
∫ 


x(s) ds

and

φ

(∫ t


(t – s)Nx(s) ds

)
– kφ

(∫ t


(t – s)Nx(s) ds

)

= –
∫ 



∫ s


(s – τ )Nx(τ ) dτ ds

= –
∫ 


( – s)f

(
s, x(s), x′(s), x′′(s)

)
ds.

We can easily check (φ – kφ)(–t) = .
The following estimates hold for x′′(t) < –M:

f
(
t, x(t), x′(t), x′′(t)

)
=

√
t

+ A sin x(t) + A sin x′(t) + Ax′′(t) <
√
t

+ A – AM,

and hence

φ

(∫ t


(t – s)Nx(s) ds

)
– kφ

(∫ t


(t – s)Nx(s) ds

)

= –
∫ 


( – s)f

(
s, x(s), x′(s), x′′(s)

)
ds

> –
∫ 


( – s)

(
√
s

+ A – AM

)
ds

= –



– A +



AM

> 

provided M >  + 
A .
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If x′′(t) > M, then

f
(
t, x(t), x′(t), x′′(t)

)
=

√
t

+ A sin x(t) + A sin x′(t) + Ax′′(t)

>
√
t

– A + AM,

and hence

φ

(∫ t


(t – s)Nx(s) ds

)
– kφ

(∫ t


(t – s)Nx(s) ds

)

= –
∫ 


( – s)f

(
s, x(s), x′(s), x′′(s)

)
ds

< –
∫ 


( – s)

(
√
s

– A + AM

)
ds

= –



+ A –



AM

< 

provided M > .
Therefore, if we choose M >  + 

A , then (H) holds.
Let now c ∈R and xc(t) = c(t + t – ). Then

Nxc(t) =
√
t

+ A sin
(
xc(t)

)
+ A sin

(
x′

c(t)
)

+ Ac

and

(φ – kφ)
(∫ t


(t – s)Nxc(s) ds

)
= –




– A
∫ 


( – s)(sin

(
xc(s)

)
+ sin

(
x′

c(s)
)

+ c
)

ds.

Then, repeating the computation leading to the choice of M, we obtain that |c| > M =
M/ results in

c(φ – kφ)
(∫ t


(t – s)Nxc(s) ds

)

= c
(

–



– A
∫ 


( – s)(sin

(
xc(s)

)
+ sin

(
x′

c(s)
)

+ c
)

ds
)

< ,

that is, (H) holds.
Finally, note that k = , k = , k = /, so that l = . Hence AP =  + l/|�| =

,. Then

‖b‖ + ‖c‖ + ‖d‖ = A < /, =
|�|

AP(|�| + |�| + |�|) .

All the conditions of Theorem . are verified.
The following corollaries are stated without proof.
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Corollary . Let � = , � �=  and assume that (H) and the following conditions
hold:

‖b‖ + ‖c‖ + ‖d‖ <
|�|

AP(|�| + |�|) ;

(H) There exists a constant M′
 >  such that if |x′(t)| ≥ M′

, then

(ϕ – kϕ)
(∫ t


(t – s)Nx(s) ds

)
�= ;

(H) There exists a constant M′
 >  such that if |c| > M′

, then either

c(ϕ – kϕ)
(∫ t


(t – s)N

(
c(–�s + �)

)
ds

)
> ,

or

c(ϕ – kϕ)
(∫ t


(t – s)N

(
c(–�s + �)

)
ds

)
< .

Then FBVP (.) has at least one solution.

Corollary . Let � = � = , � �=  and assume that (H) and the following condi-
tions hold:

‖b‖ + ‖c‖ + ‖d‖ <


AP
;

(H) There exists a constant M′′
 >  such that if |x(t)| ≥ M′′

 , then

(ϕ – kϕ)
(∫ t


(t – s)Nx(s) ds

)
�= ;

(H) There exists a constant M′′
 >  such that if |c| > M′′

 , then either

c(ϕ – kϕ)
(∫ t


(t – s)N(c�) ds

)
> ,

or

c(ϕ – kϕ)
(∫ t


(t – s)N(c�) ds

)
< .

Then FBVP (.) has at least one solution.

5 Conclusion
This paper is a study of third-order functional boundary value problems at resonance; it
improves and generalizes some of the existent results. We present several generalizations
to the existing results and improvements to the method based on Mawhin’s coincidence
degree theory.
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