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Abstract
In this paper, we study the existence and multiplicity of positive solutions for a class of
systems of fractional differential equation with parameters. By applying the
Krasnosel’skii fixed point theorem for a cone map, we conclude to the existence of at
least one and two solutions for our considered system.
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1 Introduction
Fractional differential equations can describe some phenomena in various fields of en-
gineering and scientific, disciplines such as control theory, chemistry, physics, biology,
economics, mechanics and electromagnetic. Especially in recent years, a large number
of papers dealt with the existence of positive solutions of boundary value problems for
nonlinear differential equations of fractional order; for details, see [–]. In addition, the
existence of positive solutions to fractional differential equations and their systems, espe-
cially coupled systems, were well studied by many authors; for details, see [–].

In [], Su studied the existence of solutions for a coupled system of fractional differential
equations

⎧
⎪⎪⎨

⎪⎪⎩

Dα
+ u(t) = f (t, v(t), Dγ

+ v(t)),  < t < ,

Dβ

+ v(t) = g(t, u(t), Dη

+ u(t)),  < t < ,

u() = u() = v() = v(),

where  < α,β < , γ ,η > , α – η ≥ , β – γ ≥ , f , g : [, ] × R → R are given functions
and D+ is the standard Riemann-Liouville fractional derivative.

In [], Dunninger and Wang considered the existence and multiplicity of positive radial
solutions for elliptic systems of the form

⎧
⎪⎪⎨

⎪⎪⎩

�u + λk(|x|)f (u, v) = ,

�v + μk(|x|)g(u, v) = ,

u|∂� = v|∂� = ,
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where (u, v) ∈ C(�) × C(�), with � = {x ∈R
N : R < |x| < R, R, R > } an annulus with

boundary ∂�.
Motivated by [] and [], in this paper, we consider the system of fractional differential

equations with parameters

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dpx(t) + λw(t, x(t), y(t)) = , t ∈ J = [, ],  < p ≤ ,

Dqy(t) + λh(t, x(t), y(t)) = , t ∈ J ,  < q ≤ ,

Dq x() = Dp x() = Dγ x() = , x() = αx(η),

Dq y() = Dp y() = Dγ y() = , y() = αy(ξ ),

()

where Dp is the standard Riemann-Liouville derivative. Moreover, in the rest of this paper
we always suppose that the following assumptions hold.

(A) (i) w, h : [, ] × [, +∞) × [, +∞) → [, +∞) are continuous;
(ii) λ and λ are positive parameters;

(iii) qi ∈ (, ), pi ∈ (, ), γi ∈ (, ), η, ξ ∈ (, ) (i = , ),  < αη
p– < ,

 < αξ
p– < .

(A) w(t, x, y), h(t, x, y) >  for x, y > , t ∈ J .
By applying the Krasnosel’skii fixed point theorem for a cone map, we obtained the ex-

istence of at least one and two positive solutions for the system ().

2 Preliminaries
For the sake of convenience, we introduce following notations:

w = lim
(x,y)→

max
t∈[,]

w(t, x, y)
x + y

,

w∞ = lim
(x,y)→∞

min
t∈[,]

w(t, x, y)
x + y

,

h = lim
(x,y)→

max
t∈[,]

h(t, x, y)
x + y

,

h∞ = lim
(x,y)→∞

min
t∈[,]

h(t, x, y)
x + y

.

Theorem A ([]) Let X be a Banach space, and let K ⊂ X be a cone. Assume �, � are
two open bounded subsets of X with  ∈ �, � ⊂ �, and let T : K ∩ (� \ �) → K be a
completely continuous operator such that

(i) ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂�, and ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂�;
or

(ii) ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂�, and ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂�.
Then T has a fixed point in K ∩ (� \ �).

Definition  ([]) We call Dpw(x) = 

(m–p) ( d

dt )m ∫ t


w(t)
(t–s)p–m+ dt, p > , m = [p] +  is the

Riemann-Liouville fractional derivative of order p. [p] denotes the integer part of num-
ber p.

Definition  ([]) We call Ipw(x) = 

(α)

∫ t
 (t – s)p–w(s) ds, t > , p >  is Riemann-

Liouville fractional integral of order p.
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Lemma  ([]) Let p > , then, for ∀Ci ∈ R, i = , , , . . . , m, m = [p] + , we have

IpDpx(t) = x(t) + Ctp– + Ctp– + · · · + Cmtp–m.

Lemma  Suppose that ϕ ∈ C(J) and (A) holds, then the unique solution of the linear
boundary value problem

⎧
⎨

⎩

Dpx(t) + ϕ(t) = , t ∈ J ,  < p ≤ ,

Dq x() = Dp x() = Dγ x() = , x() = αx(η),
()

is provided by

x(t) =
∫ 


G(t, s)ϕ(s) ds,

where G(t, s) is the Green’s function defined by

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tp–

(–αηp–)
(p) [( – s)p– – α(η – s)p–] – (t–s)p–


(p) ,  ≤ s ≤ t ≤ η ≤ ,
tp–

(–αηp–)
(p) [( – s)p– – α(η – s)p–],  ≤ t ≤ s ≤ η ≤ ,
tp–

(–αηp–)
(p) ( – s)p– – (t–s)p–


(p) ,  ≤ η ≤ s ≤ t ≤ ,
tp–

(–αηp–)
(p) ( – s)p–,  ≤ η ≤ t ≤ s ≤ .

()

Proof Let x(t) = –Ipϕ(t) + Ctp– + Ctp– + Ctp– + Ctp–, then

Dq x(t) = –Ip–qϕ(t) + C

(p)tp–q–


(p – q)
+ C


(p – )tp–q–


(p – q – )

+ C

(p – )tp–q–


(p – q – )
+ C


(p – )tp–q–


(p – q – )
,

Dp x(t) = –Ip–pϕ(t) + C

(p)tp–p–


(p – p)
+ C


(p – )tp–p–


(p – p – )

+ C

(p – )tp–p–


(p – p – )
+ C


(p – )tp–p–


(p – p – )
,

Dγ x(t) = –Ip–γϕ(t) + C

(p)tp–γ–


(p – γ)
+ C


(p – )tp–γ–


(p – γ – )

+ C

(p – )tp–γ–


(p – γ – )
+ C


(p – )tp–γ–


(p – γ – )
,

Dq x() =  implies that C = . In fact, if t = , we see that tp–q– = , tp–q– = ,
tp–q– = , tp–q– = 

t+q–p is not well defined. Similarly, Dp x() =  implies that C = 
and Dγ x() =  implies that C = . Thus, x(t) = –Ipϕ(t) + Ctp–. Now, by using boundary
condition x() = αx(η), we get C = 

–αηp– (Ipϕ() – αIpϕ(t)). Hence, we get the solution
as follows:

x(t) = –Ipϕ(t) +
tp–

 – αηp–

(
Ipϕ() – αIpϕ(t)

)

=
tp–

( – αηp–)
(p)

[∫ 


( – s)p–ϕ(s) ds – α

∫ η


(η – s)p–ϕ(s) ds

]
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–



(p)

∫ t


(t – s)p–ϕ(s) ds

=
∫ 


G(t, s)ϕ(s) ds.

Then G(t, s) can easily be obtained. �

Notation  Similarly, we can get

y(t) =
tq–

( – αξ q–)
(q)

[∫ 


( – s)q–ϕ(s) ds – α

∫ ξ


(ξ – s)q–ϕ(s) ds

]

–



(q)

∫ t


(t – s)q–ϕ(s) ds

=
∫ 


G(t, s)ϕ(s) ds

and

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tq–

(–αξq–)
(q) [( – s)q– – α(ξ – s)q–] – (t–s)q–


(q) ,  ≤ s ≤ t ≤ ξ ≤ ,
tq–

(–αξq–)
(q) [( – s)q– – α(ξ – s)q–],  ≤ t ≤ s ≤ ξ ≤ ,
tq–

(–αξq–)
(q) ( – s)q– – (t–s)q–


(q) ,  ≤ ξ ≤ s ≤ t ≤ ,
tq–

(–αξq–)
(q) ( – s)q–,  ≤ ξ ≤ t ≤ s ≤ .

In view of Lemma , the system () is equivalent to the Fredholm integral system of

⎧
⎨

⎩

x(t) = λ
∫ 

 G(t, s)w(s, x(s), y(s)) ds,

y(t) = λ
∫ 

 G(t, s)h(s, x(s), y(s)) ds,

where Gi(t, s) is the Green’s function defined by Lemma .
Define X = {x(t) | x ∈ C(J)}, endowed with the norm ‖x‖ = maxt∈J |x(t)|, further the norm

for the product space X ×X, we define as ‖x+y‖ = ‖x‖+‖y‖. Obviously, (X,‖·‖) is a Banach
space. We define the cone K ⊂ X × X by

K =
{

(x, y) ∈ X × X : x, y ≥ , min
t∈J

[
x(t) + y(t)

] ≥ θ
∥
∥(x, y)

∥
∥
}

,

θ = min
{
θ = δp–, θ = δq–}.

Define an operator T : X × X → X × X as

T(x, y)(t) =
(

λ

∫ 


G(t, s)w

(
s, x(s), y(s)

)
ds,λ

∫ 


G(t, s)h

(
s, x(s), y(s)

)
ds

)

=
(
T(x, y), T(x, y)

)
.

The solutions of the system () and the fixed points of operator T coincide with each other.

Lemma  The Green’s function Gi(t, s) (i = , ) are continuous on J × J and satisfy the
following properties:
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() Gi(t, s) ∈ C(J × J) and Gi(t, s) ≥ , ∀t, s ∈ J ;
() maxt∈J Gi(t, s) = Gi(, s);
() mint∈[δ,–δ] Gi(t,s)

Gi(,s) ≥ θi(s), δ ∈ (, ).

Proof () If  ≤ s ≤ t ≤ η ≤ , then

G(t, s) =
tp–

( – αηp–)
(p)
[
( – s)p– – α(η – s)p–] –

(t – s)p–


(p)

≥ tp–[( – s)p– – αη
p–( – s

η
)p–] – ( – αη

p–)tp–( – s
t )p–

( – αηp–)
(p)

≥ tp–[( – s)p– – αη
p–( – s)p–] – ( – αη

p–)tp–( – s
t )p–

( – αηp–)
(p)

=
tp–[( – s)p– – ( – s

t )p–]

(p)

.

Since s ≤ t, G(t, s) ≥ .
If  ≤ t ≤ s ≤ η ≤ , then

G(t, s) =
tp–

( – αηp–)
(p)
[
( – s)p– – α(η – s)p–]

≥ tp–[( – s)p– – αη
p–( – s

η
)p–]

( – αηp–)
(p)

≥ tp–( – αη
p–)( – s)p–

( – αηp–)
(p)

=
tp–( – s)p–


(p)
.

Hence G(t, s) ≥ .
If  ≤ η ≤ s ≤ t ≤ , then

G(t, s) =
tp–( – s)p–

( – αηp–)
(p)
–

(t – s)p–


(p)

=
tp–( – s)p– – ( – αη

p–)(t – s)p–

( – αηp–)
(p)

≥ tp–( – s)p–αη
p–

( – αηp–)
(p)
≥ .

If  ≤ η ≤ t ≤ s ≤ , then

G(t, s) =
tp–( – s)p–

( – αηp–)
(p)
≥ .

Similarly, we can obtain G(t, s) ≥ . Thus, Gi(t, s) ≥  for every t, s ∈ J .
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() If  ≤ s ≤ t ≤ η ≤ , then

G(, s) =
( – s)p– – αη

p–( – s
η

)p– – ( – αη
p–)( – s)p–

( – αηp–)
(p)

≥ ( – s)p– – αη
p–( – s

η
)p– – ( – αη

p–)( – s
η

)p–

( – αηp–)
(p)

≥ ( – s)p– – ( – s
η

)p–

( – αηp–)
(p)

and

G(t, s) =
tp–[( – s)p– – αη

p–( – s
η

)p–] – ( – αη
p–)( – s

t )p–

( – αηp–)
(p)

≤ ( – αη
p–)[( – s

η
)p– – ( – s

t )p–]
( – αηp–)
(p)

≤ ( – αη
p–)[( – s)p– – ( – s

t )p–]
( – αηp–)
(p)

.

Therefore, G(t, s) ≤ G(, s).
If  ≤ t ≤ s ≤ η ≤ , then

G(, s) =
( – s)p– – α(η – s)p–

( – αηp–)
(p)

≥ tp–[( – s)p– – α(η – s)p–]
( – αηp–)
(p)

= G(t, s).

If  ≤ η ≤ s ≤ t ≤ , then

G(, s) =
( – s)p– – ( – αη

p–)( – s)p–

( – αηp–)
(p)

=
αη

p–( – s)p–

( – αηp–)
(p)

and

G(t, s) =
tp–( – s)p– – tp–( – s

t )p–( – αη
p–)

( – αηp–)
(p)

≤ ( – s)p– – ( – s
t )p–( – αη

p–)
( – αηp–)
(p)

≤ ( – s
t )p–αη

p–

( – αηp–)
(p)

≤ ( – s)p–αη
p–

( – αηp–)
(p)
= G(, s).
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If  ≤ η ≤ t ≤ s ≤ , then

G(, s) =
( – s)p–

( – αηp–)
(p)
≥ tp–( – s)p–

( – αηp–)
(p)
= G(t, s).

Similarly, we can obtain G(t, s) ≤ G(, s).
() If  ≤ s ≤ t ≤ η ≤ , then

G(, s) ≤ ( – s)p–

( – αηp–)
(p)

and

G(t, s) ≥ tp–[( – s)p– – α(η – s)p–] – tp–( – αη
p–)( – s

t )p–

( – αηp–)
(p)

≥ tp–[( – s)p– – αη
p–( – s

t )p– – ( – αη
p–)( – s

t )p–]
( – αηp–)
(p)

=
tp–[( – s)p– – ( – s

t )p–]
( – αηp–)
(p)

.

Let σ be a positive number such that mint∈[δ,–δ] G(t, s) ≥ σG(, s). Then we can obtain

σ ≤ tp–( – s)p– – (t – s)p–

( – s)p– = tp– –
(

t – s
 – s

)p–

≤ tp–.

If  ≤ t ≤ s ≤ η ≤ , then

G(, s) ≤ ( – s)p–

( – αηp–)
(p)

and

G(t, s) ≥ tp–( – s)p–


(p)
.

Let σ be a positive number such that mint∈[δ,–δ] G(t, s) ≥ σG(, s). Then we can obtain
σ ≤ tp–( – αη

p–).
If  ≤ η ≤ s ≤ t ≤ , then

G(, s) ≤ ( – s)p–

( – αηp–)
(p)

and

G(t, s) ≥ tp–( – s)p–αη
p–

( – αηp–)
(p)
.

Let σ be a positive number such that mint∈[δ,–δ] G(t, s) ≥ σG(, s). Then we can obtain
σ ≤ tp–αη

p–.
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If  ≤ η ≤ t ≤ s ≤ , then

G(, s) ≤ ( – s)p–

( – αηp–)
(p)

and

G(t, s) =
tp–( – s)p–

( – αηp–)
(p)
.

Let σ be a positive number such that mint∈[δ,–δ] G(t, s) ≥ σG(, s). Then we can obtain
σ ≤ tp–.

Define θ = min{σ,σ,σ,σ}. Then mint∈[δ,–δ] G(t,s)
G(,s) ≥ θ(s), δ ∈ (, ). Similarly, we can

prove mint∈[δ,–δ] G(t,s)
G(,s) ≥ θ(s), δ ∈ (, ). �

Lemma  If (A) holds, then T(K) ⊂ K and T : K → K is a completely continuous opera-
tor.

Proof The continuity of T is obvious. To prove T(K) ⊂ K , let us choose (x, y) ∈ K . Since
Gi(t, s) ≤ Gi(, s) for  ≤ s ≤ , and Gi(t, s) ≥ θGi(, s) for δ ≤ t ≤  – δ, we have

min
t∈[δ,–δ]

T(x, y)(t) ≥ λδ
p–

∫ 


G(, s)w

(
s, x(s), y(s)

)
ds

≥ δp–λ

∫ 


G(, s)w

(
s, x(s), y(s)

)
ds

≥ δp–∥∥T(x, y)
∥
∥.

Similarly,

min
t∈[δ,–δ]

T(x, y)(t) ≥ δq–∥∥T(x, y)
∥
∥.

Thus,

min
t∈[δ,–δ]

(
T(x, y)(t) + T(x, y)(t)

) ≥ min
t∈[δ,–δ]

T(x, y)(t) + min
t∈[δ,–δ]

T(x, y)(t)

≥ θ
∥
∥
(
T(x, y), T(x, y)

)∥
∥.

Since Gi(t, s) ≥ , ∀t, s ∈ J and (A) holds, we conclude that T(K) ⊂ K . It is not difficult to
show that T is uniformly bounded. Combining this with the Arzelà-Ascoli Theorem, we
see that T : K → K is a completely continuous operator. �

3 Main results and proofs
Theorem  Assume that (A) holds, then, for all λi > , i = , , the system () has at least
one positive solution in the following cases:

(a) w = h = , and either w∞ = ∞ or h∞ = ∞ (superlinear).
(b) w∞ = h∞ = , and either w = ∞ or h = ∞ (sublinear).
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Proof (a) Since w = h = , we may choose H >  such that w(t, x, y) ≤ ε(x + y) and
h(t, x, y) ≤ ε(x + y) for  < x + y ≤ H, t ∈ J , where the constant ε >  satisfies

ελ

∫ 


G(, s) ds ≤ , ελ

∫ 


G(, s) ds ≤ .

Set � = {(x, y) : (x, y) ∈ X × X,‖(x, y)‖ < H}. If (x, y) ∈ K ∩ ∂�, ‖(x, y)‖ = H, we have

T(x, y)(t) ≤ λ

∫ 


G(t, s)w

(
s, x(s), y(s)

)
ds

≤ ελ

∫ 


G(t, s)

(
x(s) + y(s)

)
ds

≤ ελ
(‖x‖ + ‖y‖)

∫ 


G(, s) ds

≤ ‖(x, y)‖


.

Similarly, T(x, y)(t) ≤ ‖(x,y)‖
 . Hence,

∥
∥T(x, y)

∥
∥ =

∥
∥T(x, y), T(x, y)

∥
∥ =

∥
∥T(x, y)

∥
∥ +

∥
∥T(x, y)

∥
∥ ≤ ∥

∥(x, y)
∥
∥

for (x, y) ∈ K ∩ ∂�. If we further assume that w∞ = ∞, then there exists Ĥ >  such that
w(t, x, y) ≥ β(x + y) for (x + y) ≥ Ĥ , t ∈ J , where β >  is chosen so that λβ

∫ 
 G(, s) ds ≥ .

Let H = max{H, δ–pĤ} and set � = {(x, y) : (x, y) ∈ X × X,‖(x, y)‖ < H}. If (x, y) ∈ K ∩
∂�, we have mint∈[δ,–δ](x(t) + y(t)) ≥ δp–‖(x, y)‖ ≥ Ĥ and for ∀t[δ,  – δ],

min
t∈[δ,–δ]

T(x, y)(t) ≥ min
t∈[δ,–δ]

λ

∫ 


G(t, s)w

(
s, x(s), y(s)

)
ds

≥ λβ

∫ –δ

δ

G(t, s)
(
x(s) + y(s)

)
ds

≥ λβδp–∥∥(x, y)
∥
∥

∫ 


G(, s) ds

≥ ∥
∥(x, y)

∥
∥.

Therefore, ‖T(x, y)‖ = ‖T(x, y), T(x, y)‖ = ‖T(x, y)‖ + ‖T(x, y)‖ ≥ ‖(x, y)‖ for (x, y) ∈ K ∩
∂�. An analogous estimate holds for h∞ = ∞.

Now by Theorem A, T has a fixed point (x, y) ∈ K ∩ ∂(� \�) such that H ≤ ‖(x, y)‖ ≤
H and the system () has a positive solution.

(b) If w = ∞, we choose H >  so that w(t, x, y) ≥ β̃(x + y) for  < x + y ≤ H, t ∈ J ,
where β̃ satisfies λβ̃δp– ∫ 

 G(, s) ds ≥ . Let � = {(x, y) : (x, y) ∈ X × X,‖(x, y)‖ < H}, if
(x, y) ∈ K ∩ ∂�, ‖(x, y)‖ = H, and for ∀t ∈ [δ,  – δ],

min
t∈[δ,–δ]

T(x, y)(t) ≥ min
t∈[δ,–δ]

λ

∫ 


G(t, s)w

(
s, x(s), y(s)

)
ds

≥ λβ̃

∫ –δ

δ

G(t, s)
(
x(s) + y(s)

)
ds
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≥ λβ̃δp–∥∥(x, y)
∥
∥

∫ 


G(, s) ds

≥ ∥
∥(x, y)

∥
∥.

Therefore, ‖T(x, y)‖ = ‖T(x, y), T(x, y)‖ = ‖T(x, y)‖ + ‖T(x, y)‖ ≥ ‖(x, y)‖ for (x, y) ∈ K ∩
∂� An analogous estimate holds for h = ∞.

Set w∗(t) = max≤x+y≤t w(t, x, y) and h∗(t) = max≤x+y≤t h(t, x, y). Then w∗ and h∗ are
nondecreasing in their respective arguments. Moreover, from w∞ = h∞ = , we see that
limt→∞ w∗(t)

t = , limt→∞ h∗(t)
t = . Therefore, there is an H > H such that w∗(t) ≤ εt,

h∗(t) ≤ εt for t ≥ H, where the constant ε >  satisfies

ελ

∫ 


G(, s) ds ≤ , ελ

∫ 


G(, s) ds ≤ .

Set � = {(x, y) : (x, y) ∈ X × X,‖(x, y)‖ < H}. If (x, y) ∈ K ∩ ∂�, ‖(x, y)‖ = H, we have

T(x, y)(t) ≤ λ

∫ 


G(t, s)w

(
s, x(s), y(s)

)
ds

≤ λ

∫ 


G(t, s)w∗(H) ds

≤ ελH

∫ 


G(, s) ds

≤ ‖(x, y)‖


.

Similarly, T(x, y)(t) ≤ ‖(x,y)‖
 . Hence,

∥
∥T(x, y)

∥
∥ =

∥
∥T(x, y), T(x, y)

∥
∥ =

∥
∥T(x, y)

∥
∥ +

∥
∥T(x, y)

∥
∥ ≤ ∥

∥(x, y)
∥
∥

for (x, y) ∈ K ∩ ∂�.
Applying Theorem A, we conclude to the existence of a positive solution (x, y) ∈ K ∩

(� \ �) for the system (). �

Theorem  Assume that (A) and (A) hold.
(a) If w = h = w∞ = h∞ = , then there is a positive constant σ such that () has at

least two positive solutions for all λ,λ ≥ σ.
(b) If w = ∞ or h = ∞, and either w∞ =  or h∞ = , then there is a positive constant

σ such that the system () has at least two positive solutions for all λ,λ ≥ σ.

Proof (a) For (x, y) ∈ K and ‖(x, y)‖ = l, let

m(l) = min

{

λ

∫ –δ

δ

G(, s)w
(
s, x(s), y(s)

)
ds,λ

∫ –δ

δ

G(, s)h
(
s, x(s), y(s)

)
ds

}

.

By assumption m(l) >  for l > . Choose two numbers  < H < H, and let

σ = max

{
H

m(H)
,

H

m(H)

}

,

�i =
{

(x, y) : (x, y) ∈ X × X, and
∥
∥(x, y)

∥
∥ < Hi

}
(i = , ).
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Then, for λ,λ ≥ σ, (x, y) ∈ K ∩ ∂�i (i = , ), and ‖(x, y)‖ = Hi, we have

min
t∈[δ,–δ]

T(x, y)(t) ≥ λβ̃

∫ –δ

δ

G(t, s)w
(
s, x(s), y(s)

)
ds ≥ λm(Hi) ≥ Hi


(i = , ).

Similarly, mint∈[δ,–δ] T(x, y)(t) ≥ Hi
 (i = , ). This implies that ‖T(x, y)‖ ≥ Hi = ‖(x, y)‖

for (x, y) ∈ K ∩ ∂�i (i = , ). Since w = h = w∞ = h∞ = , it follows from the proof
of Theorem (a) and (b), respectively, we can choose H < H

 and H > H such that
‖T(x, y)‖ ≤ ‖(x, y)‖ for (x, y) ∈ K ∩∂�i (i = , ), where �i = {(x, y) : (x, y) ∈ X ×X,‖(x, y)‖ <
Hi} (i = , ).

Applying Theorem A to �, � and �, � we get a positive solution (x, y) such that
H ≤ ‖(x, y)‖ ≤ H and another positive solution (x, y) such that H ≤ ‖(x, y)‖ ≤ H.
Since H < H, these two solutions are distinct.

(b) For (x, y) ∈ K and ‖(x, y)‖ = L, let

M(L) = max

{

λ

∫ 


G(, s)w

(
s, x(s), y(s)

)
ds,λ

∫ 


G(, s)h

(
s, x(s), y(s)

)
ds

}

.

Then M(L) >  for L > . Choose two numbers  < H < H, let σ = min{ H
M(H) , H

M(H) }
and set �i = {(x, y) : (x, y) ∈ X × X,‖(x, y)‖ < Hi} (i = , ). Then, for λ,λ ≤ σ and
(x, y) ∈ K ∩ ∂�i (i = , ), ‖(x, y)‖ = Hi, we have T(x, y)(t) ≤ λM(Hi) ≤ Hi

 (i = , ),
and, T(x, y)(t) ≤ Hi

 (i = , ), which implies ‖T(x, y)‖ ≤ Hi = ‖(x, y)‖ for (x, y) ∈ K ∩ ∂�i

(i = , ). Since either w = ∞ or h = ∞, and either w∞ = ∞ or h∞ = ∞, it follows
from the proof of Theorem (a) and (b), we can choose H < H

 and H > H such that
‖T(x, y)‖ ≥ ‖(x, y)‖ for (x, y) ∈ K ∩∂�i (i = , ), where �i = {(x, y) : (x, y) ∈ X ×X,‖(x, y)‖ <
Hi} (i = , ).

Once again, we conclude to the existence of two distinct positive solutions. �

Theorem  Assume (A) and (A) hold.
(a) If w = h =  or w∞ = h∞ = , then there is a positive constant σ such that () has at

least two positive solutions for all λ,λ ≥ σ.
(b) If w = ∞ or h = ∞, or if w∞ = ∞ or h∞ = ∞, then there is a positive constant σ

such that the system () has at least two positive solutions for all λ,λ ≤ σ.

Example  Consider the system of fractional differential equation provided by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D 
 x(t) + [x(t) + y(t)] = , t ∈ [, ],

D 
 y(t) + [x(t) + y(t)] = , t ∈ [, ],

D 
 x() = D 

 x() = D 
 x() = , x() = 

 x( 
 ),

D 
 x() = D 

 x() = D 
 x() = , y() = 

 y( 
 ),

()

where for ∀x, y > , w(t, x(t), y(t)) = [x(t)+y(t)] > , h(t, x(t), y(t)) = [x(t)+y(t)] > , q = 
 ,

q = 
 ∈ (, ); p = 

 , p = 
 ∈ (, ); γ = 

 , γ = 
 ∈ (, ); λ = , λ = , α = 

 , α = 
 ,

η = 
 , ξ = 

 , and αη
p– = 

p , αξ
p– = 

p ∈ (, ). By direct calculation we obtain w =
h =  and w∞ = h∞ = ∞. Then, by Theorem (a), the system () has at least one positive
solution.
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Example  Consider the system of fractional differential equation provided by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D 
 x(t) + 

√
x(t) + y(t) = , t ∈ [, ],

D 
 y(t) + 

√
x(t) + y(t) = , t ∈ [, ],

D 
 x() = D 

 x() = D 
 x() = , x() = x( 

 ),

D 
 x() = D 

 x() = D 
 x() = , y() = y( 

 ),

()

where ∀x, y > , w(t, x(t), y(t)) = 
√

x(t) + y(t) > , h(t, x(t), y(t)) = 
√

x(t) + y(t) > , q = q =

 ∈ (, ); p = p = 

 ∈ (, ); γ = γ = 
 ∈ (, ); λ = λ = , α = α = , η = ξ = 

 , and
αη

p– = αξ
p– = 

p– ∈ (, ). By direct calculation we see that w = h = ∞ and w∞ =
h∞ = . Then, by Theorem (b), the system () has at least one positive solution.

4 Conclusions
In this research, by using the Krasnosel’skii fixed point theorem for a cone map, we stud-
ied the existence and multiplicity of positive solutions for a class of systems of fractional
differential equations with parameters, and we obtained the existence of at least one and
two solutions for our considered system.
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