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Abstract
In this paper, we introduce a new concept of coupled non-separated boundary
conditions and solve a coupled system of fractional differential equations
supplemented with these conditions. The existence results obtained in the given
configuration are not only new but also yield some new special results corresponding
to particular values of the parameters involved in the problem. For the illustration of
the existence and uniqueness result, an example is constructed.
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1 Introduction
Fractional differential equations have gained considerable importance due to their varied
applications in many problems of physics, chemistry, biology, applied sciences and engi-
neering. The tools of fractional calculus are found to be of great support in developing
a more realistic mathematical modeling of the applied problems in terms of fractional
differential equations. Fractional-order models are regarded as better than the classical
ones (based on differential equations) as fractional derivatives can take care of the hered-
itary properties of materials and processes involved in the problem at hand. For details
and explanations, we refer the reader to the texts [–]. In particular, a great interest has
been shown by many authors in the subject of fractional-order boundary value problems
(BVPs), and a variety of results for BVPs equipped with different kinds of boundary con-
ditions have been obtained, for instance, see [–] and the references cited therein.

Coupled systems of fractional-order differential equations constitute an interesting and
important field of research in view of their applications in many real world problems such
as anomalous diffusion [], disease models [–], ecological models [], synchroniza-
tion of chaotic systems [–], etc. For some theoretical works on coupled systems of
fractional-order differential equations, we refer the reader to a series of papers [–].

In this paper, we consider a new boundary value problem of coupled Caputo type frac-
tional differential equations:

{
cDαx(t) = f (t, x(t), y(t)), t ∈ [, T],  < α ≤ 
cDβy(t) = g(t, x(t), y(t)), t ∈ [, T],  < β ≤ ,

(.)
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subject to the following non-separated coupled boundary conditions:

⎧⎨
⎩x() = λy(T), x′() = λy′(T),

y() = μx(T), y′() = μx′(T),
(.)

where cDα , cDβ denote the Caputo fractional derivatives of order α and β , respectively,
f , g : [, T] × R × R → R are appropriately chosen functions, and λi, μi, i = , , are real
constants with λiμi �= , i = , .

Here we emphasize that our problem is new in the sense of non-separated coupled
boundary conditions introduced here. To the best of our knowledge, fractional-order cou-
pled system (.) has yet to be studied with the boundary conditions (.). In consequence,
our findings of the present work will be a useful contribution to the existing literature on
the topic. The existence and uniqueness results for the given problem are new, though they
are proved by applying the well-known method based on Banach’s contraction principle
and Leray-Schauder’s alternative.

The rest of the contents of the paper is organized as follows. In Section , we recall
some basic definitions of fractional calculus and present an auxiliary lemma, which plays
a pivotal role in obtaining the main results presented in Section . We also discuss an ex-
ample for illustration of the existence-uniqueness result. The paper concludes with some
interesting observations.

2 Preliminaries
First of all, we recall some basic definitions of fractional calculus.

Definition . The fractional integral of order r with the lower limit zero for a function
f is defined as

Irf (t) =


�(r)

∫ t



f (s)
(t – s)–r ds, t > , r > ,

provided the right-hand side is point-wise defined on [,∞), where �(·) is the gamma
function, which is defined by �(r) =

∫ ∞
 tr–e–t dt.

Definition . The Riemann-Liouville fractional derivative of order r > , n –  < r < n,
n ∈N, is defined as

Dr
+f (t) =


�(n – r)

(
d
dt

)n ∫ t


(t – s)n–r–f (s) ds,

where the function f (t) has an absolutely continuous derivative up to order (n – ).

Definition . The Caputo derivative of order r for a function f : [,∞) → R can be
written as

cDrf (t) = Dr
+

(
f (t) –

n–∑
k=

tk

k!
f (k)()

)
, t > , n –  < r < n.
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Remark . If f (t) ∈ Cn[,∞), then

cDrf (t) =


�(n – r)

∫ t



f (n)(s)
(t – s)r+–n ds = In–rf (n)(t), t > , n –  < r < n.

Now we present an auxiliary lemma which plays a key role in the sequel.

Lemma . Let φ, h ∈ C([, T],R) and λiμi �= , i = , . Then the solution of the linear
fractional differential system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cDαx(t) = φ(t), t ∈ [, T],  < α ≤ ,
cDβy(t) = h(t), t ∈ [, T],  < β ≤ ,

x() = λy(T), x′() = λy′(T),

y() = μx(T), y′() = μx′(T),

(.)

is equivalent to the system of integral equations

x(t) =
μ

 – λμ

(
λT(μλ + )

 – λμ
+ λt

)
B +

λ

 – λμ

(
T(μ + μ)λ

 – λμ
+ t

)
A

+
λ

 – λμ
(A + μB) +

∫ t



(t – s)α–

�(α)
φ(s) ds (.)

and

y(t) =
μ

 – λμ

(
Tμ(λ + λ)

 – λμ
+ t

)
B +

λ

 – λμ

(
Tμ(λμ + )

 – λμ
+ μt

)
A

+
μ

 – λμ
(λA + B) +

∫ t



(t – s)β–

�(β)
h(s) ds, (.)

where

A =
∫ T



(T – s)β–

�(β)
h(s) ds, B =

∫ T



(T – s)α–

�(α)
φ(s) ds,

A =
∫ T



(T – s)β–

�(β – )
h(s) ds, B =

∫ T



(T – s)α–

�(α – )
φ(s) ds.

Proof We know that the general solution of fractional differential equations in (.) can
be written as

x(t) = a + at +
∫ t



(t – s)α–

�(α)
φ(s) ds, (.)

y(t) = b + bt +
∫ t



(t – s)β–

�(β)
h(s) ds, (.)

where ai, b, i = , , are arbitrary real constants.
Using the boundary conditions in (.) and (.), we have

x() = λy(T) ⇒ a = λ(b + bT + A),

y() = μx(T) ⇒ b = μ(a + aT + B),
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x′() = λy′(T) ⇒ a = λ(b + A),

y′() = μx′(T) ⇒ b = μ(a + B).

From the last two relations we find

a =
λ

 – λμ
(μB + A) and b =

μ

 – λμ
(B + λA).

Substituting a and b in the first two relations, we find

a =
λ

 – λμ
[μTa + μB + Tb + A]

=
λ

 – λμ

[
μTλ

 – λμ
(μB + A) + μBf + A +

Tμ

 – λμ
(B + λA)

]

=
λ

 – λμ

[
Tμ(μλ + )

 – λμ
B +

Tλ(μ + μ)
 – λμ

A + A + μB

]
,

and

b = μa + μaT + μB

=
λμ

 – λμ

[
Tμ(μλ + )

 – λμ
B +

Tλ(μ + μ)
 – λμ

A + A + μB

]

+
μTλ

 – λμ
[μB + A] + μB

=
Tμμ

 – λμ

(
λ + λ

 – λμ

)
B +

Tμλ

 – λμ

(
λμ + 
 – λμ

)
A

+
λμ

 – λμ
A +

μ

 – λμ
B.

Inserting the values of ai, bi, i = , , in (.) and (.), we get solutions (.) and (.). The
converse follows by direct computation. This completes the proof. �

3 Main results
Let us introduce the space X = {u(t)|u(t) ∈ C([, T],R)} endowed with the norm ‖u‖ =
sup{|u(t)|, t ∈ [, T]}. Obviously, (X,‖ · ‖) is a Banach space. Then the product space (X ×
X,‖(u, v)‖) is also a Banach space equipped with the norm ‖(u, v)‖ = ‖u‖ + ‖v‖.

In view of Lemma ., we define the operator T : X × X → X × X by

T(u, v)(t) =

(
T(u, v)(t)
T(u, v)(t)

)
,

where

T(u, v)(t)

=
μ

 – λμ

(
λT(μλ + )

 – λμ
+ λt

)
Bf +

λ

 – λμ

(
T(μ + μ)λ

 – λμ
+ t

)
Ag

+
λ

 – λμ
(Ag + μBf ) +

∫ t



(t – s)α–

�(α)
f
(
s, x(s), y(s)

)
ds,



Alsulami et al. Boundary Value Problems  (2017) 2017:68 Page 5 of 11

and

T(u, v)(t)

=
μ

 – λμ

(
Tμ(λ + λ)

 – λμ
+ t

)
Bf +

λ

 – λμ

(
Tμ(λμ + )

 – λμ
+ μt

)
Ag

+
μ

 – λμ
(λAg + Bf ) +

∫ t



(t – s)β–

�(β)
g
(
s, x(s), y(s)

)
ds,

Ag =
∫ T



(T – s)β–

�(β)
g
(
s, x(s), y(s)

)
ds, Bf =

∫ T



(T – s)α–

�(α)
f
(
s, x(s), y(s)

)
ds,

Ag =
∫ T



(T – s)β–

�(β – )
g
(
s, x(s), y(s)

)
ds, Bf =

∫ T



(T – s)α–

�(α – )
f
(
s, x(s), y(s)

)
ds.

For convenience, we put

M =
|μ|

| – λμ|
( |λ|(|μ||λ| + )

| – λμ| + |λ|
)

Tα

�(α)

+
( |λ||μ|

| – λμ| + 
)

Tα

�(α + )
, (.)

M =
|λ|

| – λμ|
(

(|μ| + |μ|)|λ|
| – λμ| + 

)
Tβ

�(β)
+

|λ|
| – λμ|

Tβ

�(β + )
, (.)

M =
|μ|

| – λμ|
( |μ|(|λ| + |λ|)

| – λμ| + 
)

Tα

�(α)
+

|μ|
| – λμ|

Tα

�(α + )
, (.)

M =
|λ|

| – λμ|
( |μ|(|λ||μ| + )

| – λμ| + |μ|
)

Tβ

�(β)

+
( |λ||μ|

| – λμ| + 
)

Tβ

�(β + )
. (.)

In the first result, we prove the existence and uniqueness of solutions of boundary value
problem (.)-(.) via Banach’s contraction principle.

Theorem . Assume that:

(H) f , g : [, T] × R × R → R are continuous functions and there exist positive constants
� and � such that for all t ∈ [, T] and xi, yi ∈R, i = , , we have

∣∣f (t, x, x) – f (t, y, y)
∣∣ ≤ �

(|x – y| + |x – y|
)
,∣∣g(t, x, x) – g(t, y, y)

∣∣ ≤ �
(|x – y| + |x – y|

)
.

If

(M + M)� + (M + M)� < ,

where Mi, i = , , , , are given by (.)-(.), then system (.)-(.) has a unique solution.
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Proof Define supt∈[,T] f (t, , ) = N < ∞ and supt∈[,T] g(t, , ) = N < ∞ and r >  such
that

r >
(M + M)N + (M + M)N

 – (M + M)� – (M + M)�
.

We show that TBr ⊂ Br , where Br = {(u, v) ∈ X × X : ‖(u, v)‖ ≤ r}.
By assumption (H), for (u, v) ∈ Br , t ∈ [, T], we have

∣∣f (t, u(t), v(t)
)∣∣ ≤ ∣∣f (t, u(t), v(t)

)
– f (t, , )

∣∣ +
∣∣f (t, , )

∣∣
≤ �

(∣∣u(t)
∣∣ +

∣∣v(t)
∣∣) + N

≤ �
(‖u‖ + ‖v‖) + N ≤ �r + N,

and

∣∣g(
t, u(t), v(t)

)∣∣ ≤ �
(‖u‖ + ‖v‖) + N ≤ �r + N,

which lead to

∣∣T(u, v)(t)
∣∣ ≤ |μ|

| – λμ|
( |λ|(|μ||λ| + )

| – λμ| + |λ|
)

Tα

�(α)
(�r + N)

+
|λ|

| – λμ|
(

(|μ| + |μ|)|λ|
| – λμ| + 

)
Tβ

�(β)
(�r + N)

+
|λ|

| – λμ|
(

Tβ

�(β + )
(�r + N) + |μ| Tα

�(α + )
(�r + N)

)

+
Tα

�(α + )
(�r + N)

= (M� + M�)r + MN + MN.

Hence

∥∥T(u, v)
∥∥ ≤ (M� + M�)r + MN + MN.

In the same way, we can obtain that

∥∥T(u, v)
∥∥ ≤ (M� + M�)r + MN + MN.

Consequently,

∥∥T(u, v)
∥∥ ≤ [

(M + M)� + (M + M)�
]
r + (M + M)N + (M + M)N ≤ r.

Now, for (u, v), (u, v) ∈ X × X and for any t ∈ [, T], we get

∣∣T(u, v)(t) – T(u, v)(t)
∣∣

≤ |μ|
| – λμ|

( |λ|(|μ||λ| + )
| – λμ| + |λ|

)
Tα

�(α)
�

(‖u – u‖ + ‖v – v‖
)
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+
|λ|

| – λμ|
(

(|μ| + |μ|)|λ|
| – λμ| + 

)
Tβ

�(β)
�

(‖u – u‖ + ‖v – v‖
)

+
|λ|

| – λμ|
Tβ

�(β + )
�

(‖u – u‖ + ‖v – v‖
)

+
|λ||μ|

| – λμ|
Tα

�(α + )
�

(‖u – u‖ + ‖v – v‖
)

+
Tα

�(α + )
�

(‖u – u‖ + ‖v – v‖
)

= (M� + M�)
(‖u – u‖ + ‖v – v‖

)
,

and consequently we obtain

∥∥T(u, v) – T(u, v)
∥∥ ≤ (M� + M�)

(‖u – u‖ + ‖v – v‖
)
. (.)

Similarly,

∥∥T(u, v)(t) – T(u, v)
∥∥ ≤ (M� + M�)

(‖u – u‖ + ‖v – v‖
)
. (.)

It follows from (.) and (.) that

∥∥T(u, v) – T(u, v)
∥∥ ≤ [

(M + M)� + (M + M)�
](‖u – u‖ + ‖v – v‖

)
.

Since (M + M)� + (M + M)� < , therefore, T is a contraction operator. So, by Banach’s
fixed point theorem, the operator T has a unique fixed point, which is the unique solution
of problem (.)-(.). This completes the proof. �

The second result is based on the Leray-Schauder alternative.

Lemma . (Leray-Schauder alternative [], p.) Let F : E → E be a completely continu-
ous operator (i.e., a map restricted to any bounded set in E is compact). Let

E(F) =
{

x ∈ E : x = λF(x) for some  < λ < 
}

.

Then either the set E(F) is unbounded or F has at least one fixed point.

Theorem . Assume that:

(H) f , g : [, T]×R×R→R are continuous functions and there exist real constants ki,γi ≥
 (i = , , ) and k > , γ >  such that ∀xi ∈R (i = , ), we have

∣∣f (t, x, x)
∣∣ ≤ k + k|x| + k|x|,∣∣g(t, x, x)
∣∣ ≤ γ + γ|x| + γ|x|.

If

(M + M)k + (M + M)γ <  and (M + M)k + (M + M)γ < ,
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where Mi, i = , , , , are given by (.)-(.), then system (.)-(.) has at least one solu-
tion.

Proof First we show that the operator T : X × X → X × X is completely continuous. By
the continuity of functions f and g , the operator T is continuous.

Let 	 ⊂ X × X be bounded. Then there exist positive constants L and L such that

∣∣f (t, u(t), v(t)
)∣∣ ≤ L,

∣∣h(
t, u(t), v(t)

)∣∣ ≤ L, ∀(u, v) ∈ 	.

Then, for any (u, v) ∈ 	, we have

∣∣T(u, v)(t)
∣∣ ≤ |μ|

| – λμ|
( |λ|(|μ||λ| + )

| – λμ| + |λ|
)

Tα

�(α)
L

+
|λ|

| – λμ|
(

(|μ| + |μ|)|λ|
| – λμ| + 

)
Tβ

�(β)
L

+
|λ|

| – λμ|
(

Tβ

�(β + )
L + |μ| Tα

�(α + )
L

)
+

Tα

�(α + )
L

= ML + ML,

which implies that

∥∥T(u, v)
∥∥ ≤ ML + ML.

Similarly, we get

∥∥T(u, v)
∥∥ ≤ ML + ML.

Thus, it follows from the above inequalities that the operator T is uniformly bounded,
since ‖T(u, v)‖ ≤ (M + M)L + (M + M)L.

Next, we show that T is equicontinuous. Let t, t ∈ [, T] with t < t. Then we have

∣∣T
(
u(t), v(t)

)
– T

(
u(t), v(t)

)∣∣
≤ L|λ||μ|

| – λμ| (t – t) +
L|λ|

| – λμ| (t – t)

+ L

∣∣∣∣ 
�(α)

∫ t


(t – s)α– ds –


�(α)

∫ t


(t – s)α– ds

∣∣∣∣
≤ L|λ||μ|

| – λμ| (t – t) +
L|λ|

| – λμ| (t – t)

+ L

{


�(α)

∫ t



[
(t – s)α– – (t – s)α–]ds +


�(q)

∫ t

t

(t – s)q– ds
}

≤ L|λ||μ|
| – λμ| (t – t) +

L|λ|
| – λμ| (t – t)

+
L

�(α + )
[
(t – t)α +

∣∣tα
 – tα


∣∣].
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Analogously, we can obtain

∣∣T
(
u(t), v(t)

)
– T

(
u(t), v(t)

)∣∣
≤ L|μ|

| – λμ| (t – t) +
L|λ||μ|
| – λμ| (t – t) +

L

�(β + )
[
(t – t)β +

∣∣tβ
 – tβ


∣∣].

Therefore, the operator T(u, v) is equicontinuous, and thus the operator T(u, v) is com-
pletely continuous.

Finally, it will be verified that the set E = {(u, v) ∈ X × X|(u, v) = λT(u, v),  ≤ λ ≤ } is
bounded. Let (u, v) ∈ E , with (u, v) = λT(u, v). For any t ∈ [, T], we have

u(t) = λT(u, v)(t), v(t) = λT(u, v)(t).

Then

∣∣u(t)
∣∣ ≤ M

(
k + k|u| + k|v|

)
+ M

(
γ + γ|u| + γ|v|

)
= Mk + Mγ + (Mk + Mγ)|u| + (Mk + Mγ)|v|

and

∣∣v(t)
∣∣ ≤ M

(
k + k|u| + k|v|

)
+ M

(
γ + γ|u| + γ|v|

)
= Mk + Mγ + (Mk + Mγ)|u| + (Mk + Mγ)|v|.

Hence we have

‖u‖ ≤ Mk + Mγ + (Mk + Mγ)‖u‖ + (Mk + Mγ)‖v‖

and

‖v‖ ≤ Mk + Mγ + (Mk + Mγ)‖u‖ + (Mk + Mγ)‖v‖,

which imply that

‖u‖ + ‖v‖ ≤ (M + M)k + (M + M)γ +
[
(M + M)k + (M + M)γ

]‖u‖
+

[
(M + M)k + (M + M)γ

]‖v‖.

Consequently,

∥∥(u, v)
∥∥ ≤ (M + M)k + (M + M)γ

M
,

where M = min{ – [(M + M)k + (M + M)γ],  – [(M + M)k + (M + M)γ]}, which
proves that E is bounded. Thus, by Lemma ., the operator T has at least one fixed point.
Hence boundary value problem (.)-(.) has at least one solution. The proof is com-
plete. �
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Example . Consider the following system of fractional boundary value problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cD/x(t) = 
(t+)

|x(t)|
+|x(t)| +  + 

 sin y(t) + √
t+

, t ∈ [, ],
cD/y(t) = 

π
sin(πx(t)) + |y(t)|

(+|y(t)|) + 
 , t ∈ [, ],

x() = 
 y(), x′() = 

 y′(),

y() = 
 x(), y′() = 

 x′().

(.)

Here α = β = /, λ = /, λ = /, μ = /, μ = /, f (t, u, v) = 
(t+)

|u|
+|u| +  + 

 sin v,
and h(t, u, v) = 

π
sin(πu)+ |v|

(+|v|) + 
 . With the given data, we find that M ≈ .,

M ≈ ., M ≈ ., M ≈ .. Note that |f (t, u, u) – f (t, v, v)| ≤


 |u – u|+ 
 |v – v|, |g(t, u, u) – g(t, v, v)| ≤ 

 |u – u|+ 
 |v – v|, and (M + M)� +

(M + M)� ≈ . < . Thus all the conditions of Theorem . are satisfied, and
consequently, its conclusion applies to problem (.).

4 Conclusions
In this work, we have established the existence and uniqueness results for a nonlinear
coupled system of Caputo type fractional differential equations supplemented with non-
separated coupled boundary conditions. Our results are not only new in the given set-
ting but also lead to some new interesting situations for specific values of the param-
eters involved in the problem. For instance, if we choose λ =  = λ and μ = – = μ

or vice versa, our results correspond to a boundary value problem of nonlinear cou-
pled fractional differential equations subject to a combination of coupled periodic and
anti-periodic boundary conditions of the form: x() = y(T), x′() = y′(T), y() = –x(T),
y′() = –x′(T) or x() = –y(T), x′() = –y′(T), y() = x(T), y′() = x′(T). Further, by tak-
ing λ =  = –λ and –μ =  = μ, we obtain the results for the coupled system with the
boundary conditions: x() = y(T), x′() = –y′(T), y() = –x(T), y′() = x′(T), while the re-
sults for the boundary conditions x() = –y(T), x′() = y′(T), y() = x(T), y′() = –x′(T)
can be obtained by letting –λ =  = λ and μ =  = –μ. In the case of x() = , y() = 
(λ =  = μ), x′() = λy′(T), y′() = μx′(T), our results correspond to a problem with
coupled flux type conditions. Thus, the work established in this article is of quite a gen-
eral nature and covers a variety of special cases associated with particular values of the
parameters involved in the problem.
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