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Abstract

In this paper, we study the positive periodic solutions of a kind of p-Laplacian neutral
differential equation with a singularity. By applying the continuation theorem and
some analytic techniques, we shall establish several new criteria for the existence of
positive periodic solutions for the considered problem. Some recent results in the
literature are generalized and improved. Three examples are given to illustrate the
effectiveness of our results.
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1 Introduction

In the past years, the study of periodic solutions for some types of p-Laplacian neutral
differential equations has attracted much attention from researchers; see [1-12] and the
references cited therein. For example, in [11] and [12], Zhu and Lu studied the periodic
solutions for p-Laplacian neutral functional differential equations as follows:

(0p(x(@) — cx(t - 1)) = g(t,x(t - (1)) +elt) (1.1)
and
(p (x(2) — cx(t - 8))/)/ =f (£, %(2))x(¢) + Z Big(t,x(t — (1)) + p(2), (1.2)
j=1
respectively.

On the basis of work of [11] and [12], Wang and Zhu [7] further discussed existence of
periodic solutions for a fourth-order p-Laplacian neutral functional differential equation
of the form:

(0p(x(®) — cx(t = 8))")" = f(x(0))¥' (&) + gt, x(t — (2, [¥]oc)) +e(8), (1.3)

where p > 1, ¢, : R > R, @,(u) = |ulP~u for u # 0 and ¢,(0) = 0; f € CR,R); g, 7 €
C(R?,R) with g(t + T,-) = g(t,-); Tt + T) = t(t); e € C(R,R) with e(t + T) = e(t); T > 0,
|c| #1 and § are given constants.
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In recent years, by applying the method of coincidence degree, many good results of
the existence of positive periodic solutions for some types of differential equations with a
singularity have been obtained; see [13—22] and the references cited therein. For example,
Wang in [21] studied the periodic solutions for the Liénard equation with a singularity and

a deviating argument, which extends the results of Zhang in [22]
X" (t) +f(x(t))x/(t) +g(t,x(t - o)) =0, (1.4)

where g : R x (0, +00) — R is an L2-Carathéodory funtion, g(¢,x) is a T-periodic function
in the first argument and can be singular at x = 0.

As usual, we say that g has a singularity of repulsive type, if
lirg+ g(t,x) = —oo, uniformly for a.e. t € (—00, +00),
and g has a singularity of attractive type, if

xl_i)rgg(t, x) = +00, uniformly for a.e. ¢ € (—00, +00).

Compared with the classical p-Laplacian neutral differential problems or the singu-
lar problems, p-Laplacian neutral differential problems with singular effects have been
scarcely studied, not to mention the high-order p-Laplacian neutral differential equations
with a singularity. This motivated us to carry out a study. In this paper, we consider the
following high-order p-Laplacian neutral differential equation with a singularity and a de-

viating argument:

[0 ((x(2) — ex(t = 1)) "™)] ™ + £ (x(0))x () + g (& x(¢ — 7)) = (), (15)

where ¢, : R — R, ¢, (1) = |ulP~2u, p > 2; m is a positive integer; c is a constant with |¢| < 1;
0<y,t<T;f:R— Ris continuous, g: [0, T] x (0,+00) — R is a continuous function
and can be singular at u = 0, e(¢) is T-periodic with fOT e(t)dt = 0.

Remark 1.1 Obviously, if there is no singularity, (1.1) is the specially case of (1.5). The
equations in [1, 3—6, 10] are also the specially cases of (1.5) if m =1 and there are no singu-
larities. So we extend the result in [1, 3-7, 9-11]. Therefore, we extend the corresponding

results in literature to the high-order case and the singular case.

The paper is organized as follows. Section 2 is devoted to introducing some definitions
and recalling some preliminary results that will be extensively used. The existence results
will be obtained in Section 3. Finally, two examples are given to illustrate the effectiveness

of our result in Section 4.

2 Preliminaries
Let

Cr={x|xeCRR),x(t+T)=x(s)}
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with the norm |x|o = max(o, 17 [%(¢)], and
C%" = {x |x € CI(R,R),x(t +T) Ex(t)}

with the norm ||x|| = max{|x|o, |*'|o}.
Define a linear operator

A: Cr— Cr, (Ax)(t) = x(t) — cx(t - v).

Lemma 2.1 ([23]) If|c| <1, then A has continuous bounded inverse on X, and

(1) A7) < 5, Ve e X

@ [y A NO1de < 2 [T F(0)]de, ¥f € X.

Lemma 2.2 ([24]) Let T > 0 be a constant, x € C"(R,R), m > 2, and x(t + T) = x(¢),
1xD o = maxejo,r) [x?(2)|, then there are M;(m) > O independent of x such that

T
0], < Mo [0, 1212 m
0

where if m is an even integer,

Moy 1(m) = T"5/=Boy_4s/122m - 4s)!, s=1,2,...,% -1,

m=2s

_ +1m—2s—1

Mi(m) =\ May(m) = E0= (mT—2S)! P, s=1...5 -1,

Mm—l(m) = %’
if m is an odd integer,
(_D%*lTWI—ZS—ZB 1

M25+1(m)=Wm’ZH» 5=0,1,...,75~ =2,

Mi(m) = My(m) = T" >\ /=Boyn_4s2/1202m — 45— 2)}, s=1,2,..., 51 -2,
M,y1(m) = %’

and By,_2s, Bam—asy Bm-2s-1, Bam-as—2 are Bernoulli numbers, which can be calculated by the
following recursion formula:

-1 i
_ _Zi=0 C1l9+1Bi

Bo=1, B, P

where C,,, is the number of combinations.

Lemma 2.3 ([25]) Let X and Y be two real Banach spaces, L : D(L) C X — Y be a Fred-
holm operator with index zero, Q C X be an open bounded set, and N : Q C X — Y be
L-compact on Q. Suppose that all of the following conditions hold:

(1) Lx#ANx,Vx € 02N D(L), VA € (0,1);

(2) QNx#0,Vx e aQ2NkerL;

(3) deg{JON,Q2NkerL,0} #0, where ] :Im Q — ker L is an homeomorphism map.
Then the equation Lx = Nx has at least one solution on D(L) N Q.
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In order to use the continuation theorem to study the positive T-periodic solutions for

equation (1.5), we consider the following system:

ul™(t) = [A7 9, ()](0),

@2.1)
VM (£) = —f (u(t)u () - g(t, ult - 1)) + e(t),

T

where g > 1 is a constant with 1/p + 1/q = 1. Clearly, if x(¢) = (u(£), v(t))' is a T-periodic

solution of system (2.1), then u(¢) must be a T-periodic solution of equation (1.5). Thus,
the problem of finding a positive T-periodic solution for (1.5) reduces to finding one for
(2.1).

Define

X={x=wv)" e CHR,R?):x(t+ T) =x(t)}
with the norm ||x||x = max{||«[; v},
Y={x=@v)" € C(R,R?):x(t+T)=x(t)}

with the norm ||x||y = max{|u|o; |v|o}. Clearly, X and Y are two Banach spaces.

Define the linear operator

T

L: DIL)cX—Y,  Lx=u"™v"), (2.2)
and
N: DIN)CX-—Y,
-1 (2.3)
0= (—f(u(t))u’([g —Z(:VL]:Z i )+ e(t)) o Tel

where

D(L) = {x € C"(R,R?),x(t + T) = x(t)},

D(N) = {x:(u,v)T €X:u(t)>0,te]0, T]}.

Then we can see that equation (2.1) can be converted to the abstract equation Lx = Nx.

Moreover, from the definition of L, we can have
T
kerL =R?, and ImL= {y € Y,/ y(s)ds = 0}.
0

Clearly, L is a Fredholm operator with index zero.
Let projectors P: X — kerL and Q: Y — Y/ImL be defined by

T
Px=x(0);  Qy= % /0 y(s)ds,
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and let K represent the inverse of Lye; pnp(r). Obviously, ker Q = ImL = R? and

() (¢ Zl‘ 9(0)¢! m%l), /0 (t=9)""y(s)ds, (2.4)

where x?(0) (i =1,2,...,m — 1) are defined by the equation

AX =D,
where
1 0 0 ... 0 0
a 1 0 ... 0 O
Cy C1 1 ... 0 O
A= ,
Cu-3 Cmd Cps ... 1 0
Cm-2 Cwm-3 Cy—sa ... C 1
X = (x(m—l)(o)’ x(m—2)(0)’ cee ’x”(o) x/(o))T = (dlr day..., dm—Z: dm—l)T; di = _% fOT(T -

s)'y(s)ds,i=1,2,...,m-1,and ¢; = (/+1 o/ =L2. m=2.
For the sake of convenience, we list the followmg assumptions:

[H1] There exist positive constants D; and Dy with D; < D such that
(1) for each positive continuous T -periodic function x(t) satisfying fOT gt x(t)dt=0
then there exists a positive point ¢ € [0, T] such that

Dy <x(0) < Dy;

(2) g(x) <0 forall x € (0,D;) and g(x) > O for all x > D,, where g(x) = fo g(t,x)dt,
x>0.
[Hy] g(t,%) = @(L, %) + go(x) for all u € (0, +00), where gy : (0,+00) — R is a continuous
function, g1 : [0, T'] x [0, +00) — R is a continuous function and

(1) there exist positive constants mg and m1; such that
g(t,x) <mox! + my, forall (¢,x) € [0, T] x (0, +00);

2) folgo(x) dx = —0c0
[H3] There exist positive constants «, 8 such that

fx) <ax!?+p, forallxe (0,+00).

3 Main results
Theorem 3.1 Suppose that conditions [H,]-[H3] hold and

MYm) T2 (1 + |c|)2mo T + )
@ [P )




Li and Kong Boundary Value Problems (2017) 2017:54 Page 6 of 17

then there exist positive constants A1, Ay, As and p, which are independent of ) such
that

Ay < u(t) <A, [vlo <As,
where u(t) is any solution to the equation Lx = ANx, X € (0,1).
Proof Consider the following operator equation:

Lx=MNx, Ae€(0,1),

where L and N is defined by (2.2) and (2.3), respectively.
Define

Q= {(u,v)—r € X: min u(f)>0,Lx=ANx, A € (0,1)}.
te(0,T]
If x = (u,v)" € 4, then (u,v) satisfies

u"(t) = A[A p,(W](2),

(3.1)
v (t) = —Af (u(t))u/ (t) — Ag(t, u(t — 7)) + re(t).

From the first equation of (3.1), we get v(t) = (pp(k‘l(Au)(m)(t)), and combining with the
second equation of (3.1) yields

((pp ((Au)(”‘)(t)))(m) + )J’f(u(t))u’(t) + )J’g(t, u(t - r)) = Me(t). (3.2)
Integrating equation (3.2) on the interval [0, 7], we have
T
f g(t, u(t - r)) dt=0. (3.3)
0

It follows from condition (1) in assumption [H;] that there exist positive constants Dy, D,
and o € [0, T'] such that

Dy <u(o) < Dy, (3.4)

then we get

u(o) + /[ u'(s)ds

lulo = max |u()| < max
te[0,T] te[0,T]

T
§D2+/ |u/(s)|ds. (3.5)
0
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Multiplying both sides of (3.2) by (Au)(¢) and integrating on the interval [0, T], we get

T T
/ |(Aw)™ (0)|” dt < (1+|c|)|u|0/ If (u(®)) || e | dt
0 0
T
+(1+ |c|)|u|o/(; g (£, ult - 1)) dt
T
+(1+ |c|)|u|o/(; le(2)| dt,
which combining with [H3] yields
T T ,
/0 |(Aw)™ (0)|” dt < (1+|c|)|u|0/0 (c|u@®)]" + B)|u/ (t)| dt
T
+(1+ |c|)|u|0/0 lg(&,u(t —1))| dt + (1+ |cl)|ulolelo T
T T
< (1+ |c|)a|u|€71/0 ‘u'(t)‘dt+ (1+ |c|),3|u|0/0 ’u/(t)|dt
T
+ (1 + |c|)|u|o/(; ’g(t, u(t — t))’dt+ (1 + |c|)|u|o|e|0T. (3.6)
Write

L ={te[0,T]:g(t, u(t— 7)) > 0};

I-={te[0,T):g(t,u(t - r)) <0}.

Then it follows from (3.3) and [H>](1) that

T
/ |g(t,u(t—r))|dt=/g(t,u(t—r))dt—/g(t,u(t—r))dt
0 I, I

= 2/1+g(t, u(t —7))dt

T T
§2mof up’l(t—t)dt+2/ my dt
0 0

<2moT\ul]™ +2Tm,. (3.7)
Substituting (3.7) into (3.6), combining with (3.5) and Lemma 2.2, we can have
T
/ |(Aw)™ ()] dt
0
1 T
<2(L+lcl)moTlulg + (1+ lcl)orlully / |u(¢)| dt
0

T
+(1+ |c|)/3|u|0/ | ()| dt +2(1 + |c|)m Tlulo + (1 + |c|)lelo Tulo
0

D2 T p
<201+ |c|)moTp+le<m>< s [ i) dt>
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+(1+ |c|)aT1’Mp(m)(

p-1
/|u (t)|dt) f|u )(¢)| dt
+(1+|c|),3T2M§(m)<TM( /|u (t)|dt) / 1™ (1) de

+ 2(1 + |C|)m1T2M1(m)<TAfI)12(m) +f0 |u(W’)(t)| dt)

+(1+|c|)|e|0T2M1(m)( D: +/T|u<’">(t)|dt>. (3.8)
TM(m)  Jo

It follows from conclusion (2) of Lemma 2.1 and by applying the Holder inequality that

/\m ydt_/\ HAw) ™) () dit

- [ 1Awye (t)ldt'

(3.9)

—lel

From the above inequality, we consider the following two cases:

Case 1 If fo [(Au)" ()| dt = 0, then fo |u™(t)|dt = 0, it follows from (3.5) and
Lemma 2.2 that

T
latlo SD2+/ |u/(s)|ds <Dy + T|u|
0

T
< D, + TM; (m) / | (¢)| dt
0

=D,. (3.10)

Case2 If foT |(Au)"(¢)| dt > 0, then substituting (3.9) into (3.8), we can have

/0 Ty(Au)“")(t)\’” dt
52(1+|c|)moTP+1Mi’(m)<T A%(m) foT|(fiu_)(l":|(t)|dt p
P+ ICI)aT”M{’(m)< . Aff(m) o |(f‘;u_>(|’j|(t)l dt)’“ o |(Au_)(|’z)|(t)| dt
+(1+|c|)ﬂT2M%(m)(TMDf(m)+foT'(A” M( ldt) Jo 14w |C|<)|dt
+2(L+ [cl)m T2z\41(m)<mf1 . Jo |(fiu_)<r:|(t)| dt)
+(L+ ICI)IeIOTZMl(m)( . Aiz(m) Jy |(Au)<|mc>|(t)| dt)' o
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Furthermore,

Dy [y AW ™ @)\ de\?
(TMl(mf 1= c| )

1 T 4 sL=lel) \?
- Aw)™ d) <1 TMI—> 3.12
(1~ lel)p (/o ()] e +/‘0 |(Au) ) (2)| dt 1

By classical elementary inequalities, we see that there exists a /(p) > 0 which is dependent

on p only, such that

Q+x)f <1+ @ +p)x, x€(0,p)]. (313)
% I(p), then [ |(Au)" (¢)| dt < % It follows from (3.5), (3.9) and
Lemma 2.2 that
T
julo < Ds + Tz\41(m)/0 U™ (0)| < Dy + @ M. (3.14)
—jOTM;u (,(,, l)‘l 5= {(p), then it follows from (3.12) and (3.13) that
Dy fy IAw)™ (@)l dt\?
<TM1(m) T )
1 1-
(/ ™ |dt)p<1+ (p + 1) 7y |c|))
'C')” S 1A @) de
) (foT (AP Oldey 0+ D) gy pl
S S e (/ s “”dt) ' (315)

Substituting (3.15) into (3.11) and by applying the Hélder inequality, we can see that

T
/ |(Aw)™ (B)|” dt
0

- MEm) T (1 + |c|)2mo T + )
B @ = lelp

2p2;3p+1 -1 T p’%l
M (m)D(f(f |+C |';'f LT+ 1) +ep], ( /0 (A @) dt)

T
/ |(Aw)"™) ()] dt
0

2312 T ;
P 'C'Ef _TT:;Ml ) ( fo |(Aw™ @) dt)

QDT MyIDs + 2T + o T] ([ laior ‘”)1%
0

—c

+ (1+1el) TDy (21 + lelo).- (3.16)
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MY (m) T2 (14 ]el)2mo T . -
It follows from 21 (1(_;";,‘)( 0T+ 1 and p > 2 that there exists a positive constant
M, > 0 such that

T
/ |(Aw) "™ @)|” dt < M.
0
Then by (3.9), we can see that

/ T|u<m>(t)| dt < Jo I(Aw)"™(0)| dt
0 - 1-|c|

T (7 [(Au)™ (O de)?
1-|c|

—= = Msj, 3.17
< M (3.17)

which together with (3.5) and Lemma 2.2 yields

T
o <Da+ [ /(9] ds <Dy Tl
0
T
<D, + TM,(m) / | (8)| dt
0

<Dy + TMl(m)Mg = My,

Therefore, in both Case 1 and Case 2, we obtain

|lulo < M. (3.18)

From the second equation of (3.1), we can get

T T g
/ |V<m)(t)|dtgx[/ lf(u(t))||u’(t)|dt+/ g (tult - 1))| at
0 0 0

T
+/0 |e(t)|dt],

from which by applying [H3] and (3.7), we have

T
/ ‘V(m)(t)‘ dt < }L[aT|u|giz‘u,‘0 + ﬂT}u"O + 27}’10T|M|€71
0

+2Tm; + |e|0T]. (3.19)

By Lemma 2.2, (3.17) and (3.18), we obtain

T
/ Ve (0)| dt < A[aT|u|€_2|b/‘0 +BT|u |, + 2mo Tulh”
0

+2Tmy + |e|o T]
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<A[a TME > My (m)Ms + BTMy(m)Ms + 2mo TMY
+2Tm; + |e|oT]. (3.20)

Moreover, integrating the first equation of (3.1) on the interval [0, 7], we have
T 2
f )| w(t)dt =0,
0
which implies that there exists n € [0, T] such that v(n) = 0. Thus,

v =

0’

t T
/ V(s)ds + v(n)' < / |v/(s)’ ds < T|1/
n 0

by Lemma 2.2 and (3.20), we can obtain

[vlp = max ‘v(t)|
te[0,T]

<TV|, < TMl(m)/OT|v(m)(t)| dt
< ATMy (m)[ TMY > My (m)Ms + BTMy (m)Ms + 2mo TMY,
+2Tm + |e|0T]
< TMy (m) [ TV My (m)Ms + BTM, (m)Ms + 2mo TMY '
+2Tmy + lelo T ]
= As. (3.21)

On the other hand, from the second equation of (3.1) and [H,], we can see that

W (¢ +7) = =M (u(t + 7))/ (¢ +7)

— @it + 7, u®) +go(u(®))]
+ re(t +1). (3.22)

Furthermore, multiplying both sides of equation (3.22) by u/(¢), we have

VOt + ) (8) = —Af (u(t + 7)) (£ + T)ud (8)
=gt + 7, u(®)) + go (u(®)) ]/ (£)
+de(t +T)u/(2). (3.23)

Let o € [0, T] be as in (3.4). For any ¢ € [0, T], integrating equation (3.23) on the interval
[o,t], we get

u(t) t
)»/ go(u)duz)»/ go(u(t))u’(t)dt

(o)

= _/tv(m)(t +0)u'(t) dt - )L/tf(u(t + r))u'(t + 1)U/ () dt

_A/tgl(t+ T,u(t))u/(t) dt+)»/te(t+ )u'(t) dt,
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which together with (3.20) yields

u(t)
/ go(u)du
u(t)

(r

A

=A

/go(u(t))u’(t)dt‘
T T

5/ ’v(m)(t+r)“u'(t)‘dt+kf [f(u(t+r))Hu’(t+r)Hu/(t)’dt
0 0

T T
+A/ ’gl(t+r,u(t))||u’(t)‘dt+)»/ |e(t+t)||u/(t)|dt
0 0

< Au'| [« TME > My(m)Ms + BTMy(m)Ms + 2mo MY, + 2Ty + leloT]
T T
+A|u’|§f V(u(t+r))|dt+k|u/|0/ |g1(t+r,u(t))|dt
0 0

T
+ AU e(t+1)|dt.
°Jo

Furthermore, set

Fy, = max |f(u and Gy, = max t,u
Ma \u\smv( | Ma tE[O,T],\u\sMng( )

)

then we have

u(t)
/( ) go(u)du

A < M|u| [ TME > My(m)Ms + BTM: (m)Ms)

+ A | [2mo TME™ + 2Tmy + lelo T]

+A|u’|§TI—)V14 +)x|u/|0TGM4 +A|u’|OT|e|0,

by (3.17) and Lemma 2.2, we obtain

u(t)
/( : go(u)du

< My(m)Ms[a TM > My (m)Ms + B TM, (m)Ms]

+ My (m)M3[2mo TMY " + 2Ty + lelo T
2

+ [Ml(}’l’l)Mg] TFM4 +M1(W1)M3 TGM4

+ My (m)M3Tle|o

< +00. (3.24)

According to condition (2) in [H;], we see that there exists a constant M5 > 0 such that,
fortelo,T],

In a similar way, we can handle the case of £ € [0,0].
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Let us define
0<A; =min{D;,Ms}, and A, =max{D,, M,}.
Then by (3.4), (3.10), (3.18) and (3.25), we can obtain
Ap < ult) < As. (3.26)

Clearly, A; and A, are independent of L. Therefore, the proof of Theorem 3.1 is com-
plete. d

Theorem 3.2 Assume that all the conditions in Theorem 3.1 hold, then system (1.5) has at

least one positive T-periodic solution.

Proof Set
T Ay
Q=13x=(u,v) eX:7<u(t)<A2+1,|v|0<A3+l .

From (2.3) and (2.4), one can easily see that 2 is an open bounded subset of X and N is
L-compact on Q. Then the conditions (1) and (2) of Lemma 2.3 are satisfied.
In the following, we prove that condition (3) of Lemma 2.3 also holds.

Now, we let

_ A1+Ay
w:Bx=B<”)=(” 2 )
v v

Define a linear isomorphism

J: ImQ— kerl, ](u,v):(v),
—u

and define
H(u,x) = uBx + (1 - n)JQNx, V(x,u) € (2NkerL) x [0,1].

Then we can get

(A1+42) _ T '
K(u,x) = (“ “ MT) Rl (f" i s ; undt)' (3.27)
Qv T \@-1leh)™ [y ¢qv)dt

In order to prove the condition (3) of Lemma 2.3 is also satisfied, firstly, we prove that
K(u,x) is a homotopic mapping. By way of contradiction, i.e., suppose that there exist
o €[0,1] and xo = (Zg) € 3(22 NkerL) such that K(w9,%0) = 0. Then, substituting wo and
%o into (3.27), we have

10 (A1+A2) =

Moty — H2 + (1 - po)g(uo)

K(po,%0) = e : (3:28)
MoVo + 1-—\4‘/’4("0)
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It follows from K(4q,%0) = O that

1-puo
Vo + ——@,(vo) =0,
MoVo 1—|c] <Pq( 0)
which together with pg € [0,1] gives v = 0. Thus, we can get ug = % or Ay + 1. Further-
more, it follows from [H;](2) that g(%) <0andg(As +1) > 0, substituting ug = % orAs+1

into (3.28), we can obtain

(A1 +A5) _
Lot — ’“‘01#2 (1= 110)g(u0) < 0 (3.29)
and
A+ A _
potto - "D 1t > 0. (3:30)

From (3.29) and (3.30), we have K(t9,%0) # 0, which is a contradiction. Therefore K(u,x)
is a homotopic mapping and x" K (i1,) # 0. For all (x, 1) € (32 NkerL) x [0,1], we get
deg(JQN, Q2 NkerL,0) = deg(K(O,x), QNkerl, 0)
= deg(K(1,%), 2 NkerL,0)

= deg(Bx, 2 NkerL,0)

= Z sgn(det B (x))

xeB~1(0)

=1+0.

Thus, the condition (3) of Lemma 2.3 is also satisfied. Therefore, we can conclude that
equation (1.5) has at least one positive T-periodic solution. d

4 Examples
In this section, we provide two examples to illustrate our main result.

Example 4.1 Consider the following third-order p-Laplacian neutral functional differen-

tial equation:

ENNE 4
(l(o-5(-5)) )+ (e )0

1 1 1
— (1 +sindt)ud(t - 1) - ———— = — sin4t. 4.1
+64( +sin4)u’(t — 1) B0-0 16 sin (4.1)

Conclusion Problem (4.1) has at least one positive 7t |2-periodic solution.
Proof Corresponding to (1.5), we have

u

f(u(t)) = +3, wuec(0,+00), e(t) = % sin 4t,

6 + u?
1

— m, uec (0,+OO).

g(t, u(t — r)) = 61_4(1 +sind)u®(t - 1)

Page 14 of 17
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Then we can have and choose

m=3, p=4, y=£, C=1, T=£,
4 3 2
1 1
@=c B=3 mo =0 D =1, Dy =9

Page 15 of 17

Moreover, by Lemma 2.2 we have M;(3) = T/12. Thus, the conditions [H;]-[H3] are satis-

fied. Meanwhile, we also have

MYm) T2 (1 + |c))2mo T + )

G ~0.026 < 1.

Hence, by applying Theorem 3.1-3.2, we can see that equation (4.1) has at least one positive

7 /2-periodic solution.

O

Example 4.2 Consider the following fourth-order p-Laplacian neutral functional differ-

ential equation:

1 o (4N \ @) u4(t) )
(e((0-5(-3)) )+ (s +2)0

1 1 .
— 8in 2t.

1
—(L+sin20)’(t-1) - ———— =
+64( +sin28)u’(t - 1) I Es)

Conclusion Problem (4.2) has at least one positive 7t -periodic solution.

Proof Corresponding to (1.5), we have

(4.2)

u* 1
t)=—+9, € (0, +00), t) = — sin2t,
CO) ue( b el)= s
gtu(t-1)) = i(1 +sin28)ul(t-1) - o u € (0,+00).
’ 64 wt-r1) ’
Then we can choose
4 4 1 T
m=4, = = c=—, =7,
P Y% 10
1 B=9 1 D=1 Dy, =9
= -, =3, mo = - =1, = .
(24 3 0 32 1 2
Moreover, by Lemma 2.2, we get M;(4) = 3 4%. Thus, the conditions [H;]-[H3] are satis-
fied. Meanwhile, we also have
M (m)T?1(1 2myT
Lom T2 L le)@moT +0) o

A= lel)p

Hence, by applying Theorem 3.1-3.2, we can see that equation (4.2) has at least one positive

7 -periodic solution.

O
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Example 4.3 Consider the following fourth-order p-Laplacian neutral functional differ-

ential equation:

B\ \ @
(<p2<(x(t) - %x(t— %)) )) +9u/(t)

1 i 1 1 .
+ — (1 +sindt)u(t —t) — ———— = — sin4t. (4.3)
64 u(t—t) 32

Conclusion Problem (4.3) has at least one positive 7 -periodic solution.

Proof Corresponding to (1.5), we have

S(u(@®) =9, ue(0,+0), e(t) = 1 sin4¢,

32
(Lu(t-1)) = i(1 +sin4d)u(t — ) o u € (0, +00)
A " 64 w(t—1)’ e
Then we can choose
4 2 T ! T
m = y =4, = —, c=—, = —,
P V=13 10 2
0 B=9 L D=1 Dy, =9
=Y =7 my=—, =1, =
(24 0 32 1 2
Moreover, by Lemma 2.2, we get M;(4) = 24%. Thus, the conditions [H;]-[H3] are satis-
fied. Meanwhile, we also have
M (m)T*71(1 2myT
Yom T (L e)@mT +0) o

A= lel)p

Hence, by applying Theorem 3.1-3.2, we can see that equation (4.3) has at least one positive
7 -periodic solution. d
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