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Abstract
A viscoelastic wave equation with strong damping and strong time-dependent delay
in the internal feedback is considered. Under the assumption |μ2| <

√
1 – dμ1, we

establish the general decay of energy of the problem by using the energy
perturbation method.
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1 Introduction
In this paper, we consider the following viscoelastic wave equation with a strong damping
and a strong time-dependent delay in the internal feedback:

utt(x, t) – �u(x, t) +
∫ t


g(t – s)�u(s) ds – μ�ut(x, t) – μ�ut

(
x, t – τ (t)

)
= , (.)

where x ∈ �, and � ⊆ R
n (n ≥ ) is a bounded domain with smooth boundary ∂�. The

function g(t) is the relaxation function. μ, μ are constants and τ (t) >  denotes the time-
dependent delay.

We consider the following initial conditions:
⎧⎨
⎩

u(x, ) = u(x), ut(x, ) = u(x), x ∈ �,

ut(x, t) = f(x, t), x ∈ �, t ∈ [–τ (), ),
(.)

and the following boundary conditions:

u =  on ∂� ×R
+. (.)

Recently the control of wave equations with time delay effects has become an active
area of research. The delay effects often appear in many practical problems and may turn
a well-behaved system into a wild one. The presence of delay can be a source of instability.
Here we mention the work of Nicaise and Pignotti []. In this work the authors considered
a wave equation with time delay of the form

utt – �u + μut + μut(t – τ ) = .
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Under the assumption  < μ < μ, they proved exponential stability of the system. For vis-
coelastic wave equation with time delay, Kirane and Said-Houari [] studied the following
equation:

utt – �u +
∫ t


g(t – s)�u(s) ds + μut + μut(t – τ ) = ,

and obtained the global well-posedness of solutions and established the energy decay un-
der the assumption  < μ ≤ μ. Liu [] considered a wave with time-dependent delay

utt – �u +
∫ t


g(t – s)�u(s) ds + μut + μut

(
t – τ (t)

)
= ,

and established the general decay of the system under |μ| <
√

 – dμ. Dai and Yang []
considered the same equation as in [] and improved the above results under weaker con-
ditions. In this work, the authors obtained the global well-posedness without any restric-
tions on μ, μ, and established an exponential decay result of energy in the case μ = .
Benaissa et al. [] investigated a wave equation with nonlinear time delay of the form

utt – �u +
∫ t


h(t – s)�u(s) ds + μg

(
ut(t)

)
+ μg

(
ut(t – τ )

)
= .

They proved the global existence of solution under assumption of a relation between the
weight of the delay term in the feedback and the weight of the term without delay. In
addition, they obtained the general decay of energy. Liu and Zhang [] considered a wave
equation with past history and time delay in internal feedback

utt – α�u +
∫ t

–∞
μ(t – s)�u(s) ds + μut + μut(t – τ ) + f (u) = h.

They proved the global well-posedness without any restrictions on μ, μ. Furthermore,
they also proved the exponential decay of energy with  < |μ| < μ. Kafini et al. [] con-
sider a nonlinear damped second-order evolution equation with delay

utt + Au + G(ut) + μG
(
ut(t – τ )

)
= F(u),

and they proved that the energy of the solutions blows up in finite time under some suitable
assumptions. Recently, Alabau-Boussouira et al. [] studied a wave equation with past
history and time delay

utt – �u +
∫ ∞


μ(s)�u(t – s) ds + kut(t – τ ) = .

They showed that the system is exponentially stable if the coefficient of delay k is small
enough. They also established the stability in the case τ =  and k < . For some more
results concerning the wave equation with a weak time delay term under an appropriate
assumption between μ and μ, one can refer to Benaissa et al. [], Datko et al. [], Liu
[], Nicaise and Pignotti [–], Nicaise et al. [], Nicaise and Valein [], Xu et al. [],
and the references therein. With respect to waves with strong time delay there is just little
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published work. The only one we found is duo to Messaoudi et al. []. In this work, they
investigated the following equation:

utt – �u – μ�ut – μ�ut(t – τ ) = ,

and proved the well-posedness under the assumption |μ| ≤ μ and established exponen-
tial decay of energy under the assumption |μ| < μ. Moreover, they also studied a wave
equation with distributed delay.

In the absence of time delay, problems similar to (.) have been extensively studied
and there are many results in the literature, most of which are mainly concerned with
global well-posedness, asymptotic behavior and blow-up. See, for example, Berrimi and
Messaoudi [], Cavalcanti et al. [, ], Han and Wang [, ], Liu [], Messaoudi et
al. [–], Tatar [].

Motivated by [], we study in the present work the asymptotic behavior for system (.)-
(.). Since the delay is dependent on time, this makes the work different from []. The
main objective of the present work is to establish a general decay result from which the
exponential decay and polynomial decay are only special cases.

The plan of this paper is as follows. In Section , we give some assumptions and our
main results. In Section , we establish the general decay result of the energy by using the
energy perturbation method.

2 Assumptions and main results
Lq(�) ( ≤ q ≤ ∞) and H(�) denote the Lebesgue integral and Sobolev spaces. ‖ · ‖B is
the norm in the space B, we write ‖ · ‖ instead of ‖ · ‖ for q = .

For the relaxation function g , we assume g : R+ → R
+ is a nonincreasing C function

satisfying

g() > ,  –
∫ ∞


g(s) ds = l > , (.)

and there exists a nonincreasing differentiable function ζ : R+ →R
+ satisfying, for t ≥ ,

ζ (t) > , g ′(t) ≤ –ζ (t)g(t) (.)

and

∫ ∞


ζ (t) dt = ∞.

Concerning the delay τ (t), we assume

 < τ ≤ τ (t) ≤ τ, ∀t > , (.)

where the constants τ and τ are two positive constants. We assume further that

τ (t) ∈ W ,∞(, T) and τ ′(t) ≤ d < , ∀T , t > . (.)



Feng Boundary Value Problems  (2017) 2017:57 Page 4 of 11

The weak solutions of (.)-(.) are defined as follows: for given initial data (u, u) ∈
H

(�) × L(�), we call a function U = (u, ut) ∈ C(R+, H
(�) × L(�)) a weak solution to

the problem (.)-(.) if U() = (u, u) and

(utt ,ω) + (∇u,∇ω) +
∫ t


g(t – s)

(
�u(s),ω

)
ds

+ μ(∇ut ,∇ω) + μ
(∇ut

(
t – τ (t)

)
,∇ω

)
= ,

for all ω ∈ H
(�).

The global well-posedness of problem (.)-(.) will be given in the following theorem.

Theorem . Let μ ≤ μ, and assume the assumptions (.)-(.) hold. If the initial data
(u, u) ∈ (H

(�) × L(�)), f ∈ H(� × (–τ (), )), then problem (.)-(.) has a unique
weak solution (u, ut) ∈ C(, T ; H

(�) × L(�)) such that, for any T > ,

u ∈ L∞(
, T ; H

(�)
)
, ut ∈ L∞(

, T ; L(�)
)
.

Remark . By using the classical Faedo-Galerkin method, see, e.g., [], we can prove the
theorem and we omit the proof here.

The energy functional of problem (.)-(.) is defined by

E(t) =


∥∥ut(t)

∥∥ +



(
 –

∫ t


g(s) ds

)∥∥�u(t)
∥∥ +




(g ◦ �u)

+
ξ



∫ t

t–τ (t)
e–λ(t–s)∥∥∇ut(s)

∥∥ ds, (.)

where ξ >  is a constant to be determined later, the constant λ > , as below, has been
introduced in [],

λ <

τ

∣∣∣∣log
|μ|√
 – d

∣∣∣∣,

and we have

(g ◦ v)(t) =
∫ t


g(t – s)

∥∥v(t) – v(s)
∥∥ ds.

Our main stability result is the following theorem.

Theorem . Assume the assumptions (.)-(.) hold. Let |μ| <
√

 – dμ. Let (u, ut) be
the weak solutions of problem (.)-(.) with the initial data (u, u) ∈ (H

(�) × L(�)),
f ∈ H(�× (–τ (), )). Then there exist two constants β >  and γ >  such that the energy
E(t) satisfies

E(t) ≤ β exp

(
–γ

∫ t


ζ (s) ds

)
, for all t ≥ . (.)
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3 Proof of Theorem 2.2
In this section, we shall study the general decay of energy to problem (.)-(.) to prove
Theorem .. For this purpose, we need the following technical lemmas.

Lemma . Under the assumptions of Theorem ., the energy functional E(t) satisfies, for
any t ≥ ,

E′(t) ≤ 

(
g ′ ◦ ∇u

)
(t) –




g(t)
∥∥∇u(t)

∥∥ +
(

ξ


– μ +

|μ|

√

 – d

)∥∥∇ut(t)
∥∥

+
[ |μ|


√

 – d –
ξ


( – d)e–λτ

]∥∥∇ut
(
t – τ (t)

)∥∥

–
λξ



∫ t

t–τ (t)
e–λ(t–s)∥∥∇ut(s)

∥∥ ds. (.)

Proof Differentiating (.) and using (.), (.)-(.) and integration by parts, we have

E(t) =
∫

�

ututt dx –



g(t)‖∇u‖ +
(

 –
∫ t


g(s) ds

)∫
�

∇u · ∇ut dx +


(
g ′ ◦ ∇u

)

+
∫ t


g(t – s) ds ·

∫
�

∇u · ∇ut dx –
∫

�

∇ut(t) ·
∫ t


g(t – s)∇u(s) ds dx

+
ξ


‖∇ut‖ –

ξ


e–λτ (t)( – τ ′(t)

)∥∥∇ut
(
t – τ (t)

)∥∥

–
λξ



∫ t

t–τ (t)
e–λ(t–s)∥∥∇ut(s)

∥∥ ds

≤ –μ‖∇ut‖ –



g(t)‖∇u‖ +


(
g ′ ◦ ∇u

)
+

ξ


‖∇ut‖

– μ

∫
�

∇ut · ∇ut
(
t – τ (t)

)
dx –

ξ


( – d)e–λτ

∥∥∇ut
(
t – τ (t)

)∥∥

–
λξ



∫ t

t–τ (t)
e–λ(t–s)∥∥∇ut(s)

∥∥ ds. (.)

It follows from Young’s inequality that

–μ

∫
�

∇ut · ∇ut
(
t – τ (t)

)
dx ≤ |μ|


√

 – d

∥∥∇ut(t)
∥∥ +

|μ|


√
 – d

∥∥∇ut
(
t – τ (t)

)∥∥,

which, together with (.) gives us (.). The proof is done. �

Lemma . Under the assumptions of Theorem ., then the functional φ(t) defined as

φ(t) =
∫

�

u(t)ut(t) dx, (.)

satisfies the requirement that there exist positive constants c, c and c such that, for any
t ≥ ,

φ′(t) ≤ –
l

∥∥∇u(t)

∥∥ + c
∥∥∇ut(t)

∥∥ + c
∥∥∇ut

(
t – τ (t)

)∥∥ + c(g ◦ ∇u)(t). (.)
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Proof By using (.), we can get

φ′(t) =
∫

�

uttu dx + ‖ut‖

= ‖ut‖ +
∫

�

u(t) ·
(

�u –
∫ t


g(t – s)�u(s) ds + μ�ut + μ�ut

(
t – τ (t)

))
dx

= ‖ut‖ – ‖∇u‖ +
∫

�

∇u(t) ·
∫ t


g(t – s)

(∇u(s) – ∇u(t)
)

ds dx

+
∫ t


g(s) ds · ‖∇u‖ + μ

∫
�

u · �ut dx – μ

∫
�

∇u · ∇ut
(
t – τ (t)

)
dx

≤ ‖ut‖ – l‖∇u‖ +
∫

�

∇u(t) ·
∫ t


g(t – s)

(∇u(s) – ∇u(t)
)

ds dx
︸ ︷︷ ︸

:=I

+ μ

∫
�

u · �ut dx
︸ ︷︷ ︸

:=I

– μ

∫
�

∇u · ∇ut
(
t – τ (t)

)
dx

︸ ︷︷ ︸
:=I

. (.)

By using Young’s inequality and Hölder’s inequality, we shall see below, for any δ > ,

I ≤ δ‖∇u‖ +


δ

∫
�

(∫ t


g(t – s)

(∇u(s) – ∇u(t)
)

ds
)

dx

≤ δ‖∇u‖ +


δ

∫ t


g(s) ds(g ◦ ∇u)(t)

≤ δ‖∇u‖ +
 – l
δ

(g ◦ ∇u)(t), (.)

I ≤ δ‖∇u‖ +
μ


δ

‖∇ut‖, (.)

I ≤ δ‖∇u‖ +
μ


δ

∥∥∇ut
(
t – τ (t)

)∥∥,

which, together with (.)-(.), implies, for any δ > ,

φ′(t) ≤ ‖ut‖ – (l – δ)‖∇u‖ +
μ


δ

‖∇ut‖ +
μ


δ

∥∥∇ut
(
t – τ (t)

)∥∥ +
 – l
δ

(g ◦ ∇u)(t).

(.)

Now taking δ >  small enough such that

l – δ >
l


,

we can get the desired estimate (.) with

c =

λ

+
μ


δ

, c =
μ


δ

, c =
 – l
δ

,

hereafter the positive constant λ represents the Poincaré’s constant, i.e., λ‖u‖ ≤ ‖∇u‖
for u ∈ H

(�). The proof is hence complete. �
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Lemma . We define the functional ψ(t) as

ψ(t) = –
∫

�

ut(t) ·
∫ t


g(t – s)

(
u(t) – u(s)

)
ds dx. (.)

Under the assumptions of Theorem ., the functional ψ(t) satisfies, for any δ > ,

ψ ′(t) ≤ –
(∫ t


g(s) ds – δ

)
‖ut‖ + δ

∥∥∇ut(t)
∥∥ + δ

∥∥∇ut
(
t – τ (t)

)∥∥

+ c(g ◦ �u)(t) – c
(
g ′ ◦ �u

)
(t), (.)

where c and c are positive constants.

Proof It follows from (.) and integration by parts that

ψ ′(t) = –
∫

�

utt ·
∫ t


g(t – s)

(
u(t) – u(s)

)
ds dx

–
∫

�

ut

[
ut

∫ t


g(t – s) ds +

∫ t


g ′(t – s)

(
u(t) – u(s)

)
ds

]
dx

=
∫

�

(
–�u +

∫ t


g(t – s)�u(s) ds – ∇ut – μ�ut

(
t – τ (t)

))

×
∫ t


g(t – s)

(
u(t) – u(s)

)
ds dx –

∫ t


g(s) ds‖ut‖

–
∫

�

ut

∫ t


g ′(t – s)

(
u(t) – u(s)

)
ds dx

=
(

 –
∫ t


g(s) ds

)∫
�

∇u(t) ·
∫ t


g(t – s)

(∇u(t) – ∇u(s)
)

ds dx

+
∫

�

(∫ t


g(t – s)

(∇u(s) – ∇u(t)
)

ds
)

dx –
∫ t


g(s) ds‖ut‖

–
∫

�

ut

∫ t


g ′(t – s)

(
u(t) – u(s)

)
ds dx

+ μ

∫
�

∇ut(t) ·
∫ t


g(t – s)

(∇u(t) – ∇u(s)
)

ds dx

+ μ

∫
�

∇ut
(
t – τ (t)

) ·
∫ t


g(t – s)

(∇u(t) – ∇u(s)
)

ds dx. (.)

By using Hölder’s inequality, Young’s inequality and the Poincaré inequality, we can obtain,
for any δ > ,

μ

∫
�

∇u
∫ t


g(t – s)

(∇u(t) – ∇u(s)
)

ds dx ≤ δ‖∇ut‖ +
μ

 ( – l)
δ

(g ◦ ∇u)(t), (.)

μ

∫
�

∇ut
(
t – τ (t)

) ·
∫ t


g(t – s)

(∇u(t) – ∇u(s)
)

ds dx

≤ δ
∥∥∇ut

(
t – τ (t)

)∥∥ +
μ

( – l)
δ

(g ◦ ∇u)(t), (.)
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–
∫

�

ut

∫ t


g ′(t – s)

(
u(t) – u(s)

)
ds dx

≤ δ‖ut‖ +


δ

(∫ t



(
–g ′(t – s)

)∥∥u(t) – u(s)
∥∥ds

)

≤ δ‖ut‖ –
Cg()
δλ

(
g ′ ◦ �u

)
(t), (.)

and

∫
�

(∫ t


g(t – s)

(∇u(s) – ∇u(t)
)

ds
)

dx ≤  – l
λ

(g ◦ ∇u)(t),

which, combined (.)-(.) with (.), gives us (.). The proof is therefore com-
plete. �

Now we define the Lyapunov functional F(t) by

F(t) := E(t) + εφ(t) + εψ(t), (.)

where ε and ε are positive constants to be taken later. First we know that, for ε >  and
ε >  small enough, there exist two positive constants β and β such that, for any t > ,

βE(t) ≤ F(t) ≤ βE(t). (.)

Proof of Theorem . For any t > , we get, for any t ≥ t,

∫ t


g(s) ds ≥

∫ t


g(s) ds := g.

It follows from (.), (.) and (.) that, for any t ≥ t,

F ′(t) ≤ –
(∫ t


g(s) ds – δ

)
ε

∥∥ut(t)
∥∥ –

(
l

ε – δε

)∥∥∇u(t)
∥∥

+
(

ξ


– μ +

|μ|

√

 – d
+ cε + δε

)∥∥∇ut(t)
∥∥

+
[ |μ|


√

 – d –
ξ


( – d)e–λτ + cε + δε

]∥∥∇ut
(
t – τ (t)

)∥∥

+
(




– cε

)(
g ′ ◦ ∇u

)
(t) + (cε + cε)(g ◦ ∇u)(t)

–
λξ



∫ t

t–τ (t)
e–λ(t–s)∥∥∇ut(s)

∥∥ ds. (.)

Obviously, eλτ →  as λ → . Because of the continuity of the set of real numbers, we
pick λ >  small enough such that there exists a positive constant ξ such that

eλτ |μ|√
 – d

< ξ < μ, (.)
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which implies

|μ|

√

 – d
– μ +

ξ


<  and

|μ|


√
 – d –

ξ

eλτ
( – d) < . (.)

It follows from (.) and (.) that the energy functional (.) is nonincreasing.
Now we take δ >  small enough such that, for t ≥ t,

∫ t


g(s) ds – δ ≥ 


g.

At this point, for any fixed δ > , we choose ε >  so small that (.) holds, and further

ε < min

{


c
,
μ

δ
–

ξ

δ
–

|μ|
δ

√
 – d

,
ξ

δ
( – d)e–λτ –

|μ|
δ

√
 – d

}
,

which yields




– cε >



,
ξ


– μ +

|μ|

√

 – d
+ δε <

ξ


–

μ


+

|μ|

√

 – d

and

|μ|


√
 – d –

ξ


( – d)e–λτ + δε <

|μ|


√
 – d –

ξ


( – d)e–λτ .

In the sequel, for any fixed δ >  and ε > , we take ε >  small so that (.) holds, and
further

δε

l
< ε < min

{
μ

c
–

ξ

c
–

|μ|
c

√
 – d

,
ξ

c
( – d)e–λτ –

|μ|
c

√
 – d

}
,

which gives us

l

ε – δε >

l


ε,
ξ


–

μ


+

|μ|

√

 – d
+ cε <

ξ


–

μ


+

|μ|

√

 – d

and

|μ|


√
 – d –

ξ


( – d)e–λτ + cε <

|μ|


√
 – d –

ξ


( – d)e–λτ .

From the above we know that, for positive constants α and α,

F ′(t) ≤ –αE(t) + α(g ◦ ∇u)(t), ∀t ≥ t. (.)

Multiplying (.) by ζ (t) and using (.), we can get, for any t ≥ t,

ζ (t)F ′(t) ≤ –αζ (t)E(t) + αζ (t)(g ◦ �u)(t)

≤ –αζ (t)E(t) – α
(
g ′ ◦ �u

)
(t)

≤ –αζ (t)E(t) – αE′(t), (.)
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where α > . Denote E(t) = ζ (t)F(t) + αE(t), then it is easy to see that E(t) is equivalent
to the energy E(t), i.e., there exist two positive constants β and β such that

βE(t) ≤ E(t) ≤ βE(t). (.)

Thus we can infer that, for any t ≥ t,

E ′(t) ≤ –
α

β
ζ (t)E(t),

which, integrating over (t, t) with respect to t, yields, for any t ≥ t,

E(t) ≤ E(t) exp

(
–

α

β

∫ t

t

ζ (s) ds
)

. (.)

Therefore (.) follows from (.) by renaming the constants, and by the continuity and
boundedness of E(t) and ζ (t). The proof is hence complete. �

Remark . If taking ζ (t) = γ and ζ (t) = γ ( + t)–, and γ a positive constant, we can
obtain the exponential decay and polynomial decay of problem (.)-(.), respectively.
Thus the exponential decay and polynomial decay is a particular case of (.). We also find
some other examples to illustrate several rates of energy decay; see, for example, [, ].
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