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Abstract
In this paper, a kind of αth (3 < α ≤ 4) order differential equation with two-point
boundary conditions is considered. The existence result of a sign-changing solution is
given by the topological degree theory and the fixed point index theory.
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1 Introduction
Fractional differential equations have gained much importance and attention due to the
fact that they have been proved to be valuable tools in the modeling of many phe-
nomena in engineering and sciences such as physics, mechanics, economics and biol-
ogy; see [–]. In recent years, there has been a great deal of research on the existence
and/or uniqueness of solution to boundary value problems for fractional-order differ-
ential equations. By means of Leray-Schauder degree theory, fixed point theorem on
cone, a monotone iterative method combined with lower and upper solutions or by in-
troducing height functions of the nonlinear term on some bounded sets and consider-
ing integrations of these height functions, several local existence and multiplicity results
of solutions are obtained, for details, please refer to [–] and the references therein.
In [–], the authors studied the following αth ( < α ≤ ) order differential equa-
tion:

Dα
+ u(t) = f

(
t, u(t)

)
, t ∈ (, ),

with different boundary conditions. By using the Leray-Schauder nonlinear alternative
theorem, fixed point index theory, the properties of cone and fixed point theorems for
a mixed monotone operator, the existence results of positive solutions for singular and
nonsingular nonlinear fractional differential equation boundary value problems are ob-
tained.

To the best of our knowledge, there are less papers studying the existence of sign-
changing solution for the fractional differential equations. The aim of this paper is to
investigate the existence of sign-changing solution for the following Riemann-Liouville
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fractional differential equations with two-point boundary conditions:
⎧
⎨

⎩
Dα

+ u(t) = f (t, u(t)), t ∈ (, ),

u() = u() = u′() = u′() = ,
(.)

where Dα
+ is the standard Riemann-Liouville fractional derivative of order  < α ≤  de-

fined by

Dα
+ u(t) =


�( – α)

(
d
dt

) ∫ t



u(s)
(t – s)α– ds,

� denotes the Euler gamma function, provided that the right side is point wise defined on
(, +∞). The existence result of a sign-changing solution is given by topological degree
theory and fixed point index theory. One can refer for the method and the theoretical
knowledge used in this paper to [–].

2 Preliminaries and some lemmas
Definition . ([, ]) Let E be a real Banach space and A : E → E be a nonlinear oper-
ator. A nonzero solution to the equation x = λAx is called an eigenvector of the nonlinear
operator A; the corresponding number λ is called a characteristic value of A, and λ– is
called a eigenvalue of A.

Definition . ([, ]) Let E, E be real Banach spaces and D ⊂ E contain the outside
of a ball {x|‖x‖ ≤ r}, A : D → E. The operator A is called asymptotically linear, if there is
a continuous linear operator B : E → E such that

lim‖x‖→∞
‖Ax – Bx‖

‖x‖ = .

The operator B involved in the definition of an asymptotically linear operator A is uniquely
determined, it is called the derivative of A at infinity and is denoted by A′(∞).

Lemma . ([]) Let E be a Banach space and P be a total cone in E. Suppose T : P → P
is a bounded linear operator (therefore, T can be uniquely extended to a bounded linear
operator on P – P = E, and the extended operator is denoted by T again) with the spectral
radius r(T) < . If w, w ∈ E such that w ≤ Tw + w, then

w ≤ (I – T)–w,

where (I – T)– is the inverse operator of the operator I – T .

Lemma . ([, ]) Suppose that E is a Banach space, A : E → E is a completely con-
tinuous and asymptotically linear operator. If  is not the eigenvalue of the linear operator
A′(∞), then there exists R >  such that

deg(I – A, BR, θ ) = (–)γ

for any R ≥ R, where BR = {x ∈ E|‖x‖ < R}, γ is the sum of the algebraic multiplicities of
the real eigenvalues of A′(∞) in (, +∞).
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Lemma . ([]) Let E be a Banach space and � be a bounded open set in E with θ ∈ �.
Suppose that A : � → E is a completely continuous operator. If

Au 
= μu, ∀u ∈ ∂�,μ ≥ ,

then the topological degree deg(I – A,�, θ ) = .

Lemma . ([]) Let E be a Banach space, and P be a cone in E, and � be a bounded
open set in E. Suppose that A : P ∩ � → P is a completely continuous operator. If

Au 
= μu, ∀u ∈ P ∩ ∂�,μ ≥ ,

then the fixed point index i(A, P ∩ �, P) = .

Remark . Let E be a Banach space and � be a bounded open set in E with θ ∈ �.
Suppose that A : � → E is a completely continuous operator. If

‖Au‖ < ‖u‖, ∀u ∈ ∂�,

then the topological degree deg(I – A,�, θ ) = . Furthermore, suppose that P is a cone in
E and satisfies

‖Au‖ < ‖u‖, ∀u ∈ ±P ∩ ∂�,

then the fixed point index i(A,±P ∩ �,±P) = .

Given h ∈ C[, ], it follows from [] that the unique solution of the problem

⎧
⎨

⎩
Dα

+ u(t) + h(t) = ,  < t < ,

u() = u() = u′() = u′() = ,

can be expressed uniquely by u(t) =
∫ 

 G(t, s)h(s) ds, where

G(t, s) =


�(α)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(t – s)α– + tα–( – s)α–[(s – t) + (α – )( – t)s
]
,

 ≤ s ≤ t ≤ ,

tα–( – s)α–[(s – t) + (α – )( – t)s
]
,

 ≤ t ≤ s ≤ .

(.)

It is easy to verify that G(t, s) >  for t, s ∈ (, ) and

(α – )tα–( – t)s( – s)α– ≤ �(α)G(t, s) ≤ Mtα–( – t), ∀t, s ∈ [, ], (.)

where M = max{α – , (α – )}.
In the following, we introduce some notations. Let X = C[, ] and

P =
{

x ∈ X|x(t) ≥ , t ∈ [, ]
}

,
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then P is a cone in X. Set e(t) = tα–( – t),

Xe = {x ∈ X| there exists λ >  such that –λe ≤ x ≤ λe},
‖x‖e = inf{λ > | – λe ≤ x ≤ λe}, ∀x ∈ Ee,

then ‖x‖e is called the e-norm of the element x ∈ Xe. It is easy to see that Xe becomes a
Banach space under the norm ‖ · ‖e and Pe = P ∩ Xe is a normal solid cone in Xe (e ∈ ◦

Pe).
Before proving the following lemmas, we need the following conditions:

(H) f : [, ] × (–∞, +∞) → (–∞, +∞) is continuous and f (t, x)x >  for all x ∈ R \ {}
and t ∈ [, ].

(H) limx→∞ f (t,x)
x = β∞(t) uniformly with respect to t ∈ [, ].

Evidently, β∞(t) ∈ C[, ] and β∞(t) ≥  for t ∈ [, ]. Define the operators K , F such
that

Ku(t) =
∫ 


G(t, s)u(s) ds, u ∈ X, t ∈ [, ], (.)

(Fu)(t) = f
(
t, u(t)

)
, t ∈ [, ], u ∈ X, (.)

and A = KF .

Lemma . The operator K defined by (.) satisfies K : X → Xe and K : P \ {θ} → ◦
Pe,

where
◦

Pe= {x ∈ X| there exist α̃ > , β̃ >  such that α̃e ≤ x ≤ β̃e}.

Proof For any u ∈ X, by (.), (.) we have

Ku(t) =
∫ 


G(t, s)u(s) ds ≤ M

�(α)

∫ 



∣
∣u(s)

∣
∣ds · e(t) = λ̃e(t), t ∈ [, ], (.)

Ku(t) =
∫ 


G(t, s)u(s) ds ≥

∫ 


G(t, s)

(
–
∣∣u(s)

∣∣)ds ≥ –λ̃e(t), t ∈ [, ], (.)

where λ̃ = M
�(α)

∫ 
 |u(s)|ds, i.e., K : X → Xe.

Moreover, for u ∈ P \ {θ}, by (.), one can get

Ku(t) ≥ α – 
�(α)

∫ 


s( – s)α–u(s) ds · e(t), t ∈ [, ], (.)

then it follows from (.), (.) that α̃e(t) ≤ Ku(t) ≤ β̃e(t), where

α̃ =
α – 
�(α)

∫ 


s( – s)α–u(s) ds, β̃ =

M

�(α)

∫ 


u(s) ds,

i.e., Ku ∈ ◦
Pe, and so we show that K : Pe \ {θ} → ◦

Pe. �

Lemma . Suppose that (H) holds, then the operator A : Xe → Xe is asymptotically lin-
ear, and the derivative of A at infinity A′(∞) = B, where

Bu(t) =
∫ 


G(t, s)β∞(s)u(s) ds, u ∈ Xe.
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Proof It follows from Lemma . and the definitions of A, B that A, B : Xe → Xe. By (H)
we know that, for any ε > , there exists l >  such that

∣
∣∣
∣
f (t, x)

x
– β∞(t)

∣
∣∣
∣ < ε (.)

for any x with |x| ≥ l and t ∈ [, ].
Set Tl = {x ∈ Xe|‖x‖e ≤ l}, and let

M = sup
x∈Tl

{‖Ax‖e,‖Bx‖e
}

. (.)

For u ∈ Xe, define

φ
(
u(t)

)
=

⎧
⎨

⎩
u(t), |u(t)| ≤ l,

l, |u(t)| ≥ l,

φ
(
u(t)

)
=

⎧
⎨

⎩
l, |u(t)| ≤ l,

u(t), |u(t)| ≥ l.

Then

Au(t) = Aφ
(
u(t)

)
+ Aφ

(
u(t)

)
– Al(t), t ∈ [, ], u ∈ Xe, (.)

Bu(t) = Bφ
(
u(t)

)
+ Bφ

(
u(t)

)
– Bl(t), t ∈ [, ], u ∈ Xe, (.)

where l(t) ≡ l. It follows from (.) that

∥
∥Aφ(u)

∥
∥

e ≤ M, ‖Al‖e ≤ M,
∥
∥Bφ(u)

∥
∥

e ≤ M, ‖Bl‖e ≤ M. (.)

Therefore, by (.), (.) and (.), we have

‖Au – Bu‖e ≤ M +
∥
∥(Aφ)u – (Bφ)u

∥
∥

e. (.)

From (.), we get

∣
∣(Aφ)u(t) – (Bφ)u(t)

∣
∣

=
∣
∣∣∣

∫ 


G(t, s)

[
f
(
s,φ

(
u(s)

))
– β∞(s)φ

(
u(s)

)]
ds

∣
∣∣∣

≤
∫ 


G(t, s)

∣
∣f

(
s,φ

(
u(s)

))
– β∞(s)φ

(
u(s)

)∣∣ds

≤ M

�(α)
ε‖u‖ee(t) (.)

for any u ∈ Xe, from which one deduces that

∥
∥(Aφ)u – (Bφ)u

∥
∥ ≤ M

�(α)
ε‖u‖ee(t),
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and therefore from (.), one can get

lim‖u‖e→∞
‖Au – Bu‖e

‖u‖e
= ,

i.e., the operator A is asymptotically linear, and A′(∞) = B.
In this paper, we always denote by �r = {u ∈ X : ‖u‖e < r} (r > ) the open ball of radius

r and by θ the zero function in Xe. For the concepts and properties on the cone and the
topological degree, one can refer to [, , ]. �

3 Main results
Theorem . Suppose that we have the conditions (H), (H) and the following conditions:

(H) There is p >  such that |u| ≤ p, t ∈ [, ] imply that |f (t, u)| < ηp, where η = �(α)
M

.
(H) supt∈[,] β∞(t) < λ, where λ is the first characteristic value of K defined by (.).

If  is not the characteristic value of B and the sum of the algebraic multiplicities γ of
the real eigenvalues of B in (, +∞) is odd, then the BVP (.) has at least a sign-changing
solution.

Proof Evidently, A : Xe → Xe is completely continuous. By (H) and Lemma ., we know
that A : Pe \ {θ} → ◦

Pe. From (H), for any u ∈ ∂�p, we have

∣∣Au(t)
∣∣

=
∣
∣∣
∣

∫ 


G(t, s)f

(
s, u(s)

)
ds

∣
∣∣
∣

≤
∫ 


G(t, s)

∣
∣f

(
s, u(s)

)∣∣ds

<
Mη

�(α)
tα–( – t) · ‖u‖e

=
Mη

�(α)
· ‖u‖e · e(t)

= ‖u‖e · e(t), (.)

from which one deduces that ‖Au‖e < ‖u‖e, so by Remark ., we get

deg(I – A,�p, θ ) = , (.)

i(A,±Pe ∩ �p,±Pe) = . (.)

From conditions (H) and (H), there exist ε >  small enough and R > p large enough
such that

f (t, u) < (λ – ε)u, for any u ≥ R and t ∈ [, ]. (.)

Let

C = max
≤u≤R,≤t≤

∣
∣f (t, u) – (λ – ε)u

∣
∣ + ,
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then it follows from (.) that

∣
∣f (t, u)

∣
∣ ≤ (λ – ε)|u| + C, ∀u ∈ [, +∞) and t ∈ [, ]. (.)

Let D = {u ∈ Pe : Au = λu,λ ≥ }. In the following, we shall prove that D is bounded. In
fact, if u ∈ D, then by (.), there exists λ ≥  such that

 ≤ u(t) ≤ λu(t) = Au(t)

=
∫ 


G(t, s)f

(
s, u(s)

)
ds

≤ (λ – ε)
∫ 


G(t, s)u(s) ds + C

∫ 


G(t, s) ds

= (λ – ε)(Ku)(t) + φ(t), (.)

where φ(t) = C
∫ 

 G(t, s) ds ∈ Pe. Since r((λ – ε)K) < , from Lemma . we have u(t) ≤
(I – (λ – ε)K)–φ(t), and then by (.), we get

–
CM

�(α)
· e(t) ≤ –φ(t) ≤ (

I – (λ – ε)K
)
u(t) ≤ φ(t) ≤ CM

�(α)
· e(t),

which, together with the definition of ‖ · ‖e, implies that

∥
∥(

I – (λ – ε)K
)
u
∥
∥

e ≤ CM

�(α)
,

and thus

‖u‖e =
∥∥(

I – (λ – ε)B
)–[(I – (λ – ε)B

)
u
]∥∥

e

≤ ∥∥(
I – (λ – ε)B

)–∥∥ · CM

�(α)
. (.)

So D is bounded and then there exists a sufficiently large number R > p such that, for any
R ≥ R, one can get

Au 
= λu, ∀u ∈ Pe ∩ ∂�R and λ ≥ , (.)

which together with Lemma . implies that

i(A, Pe ∩ �R, Pe) = , R ≥ R. (.)

Similar to the proof of (.), there exists R > p such that, for R ≥ R, we have

i
(
A, (–Pe) ∩ �R, –Pe

)
= . (.)

For any R > {R, R}, it follows from (.), (.) and (.) and the excision property of
fixed point index that

i
(
A, (±Pe) ∩ (�R \ �p),±Pe

)
=  –  = . (.)
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Since A has no fixed point on ∂(±Pe \ {θ}), (.) and the permanence of the topological
degree imply that

deg
(
I – A,± ◦

Pe ∩ (�R \ �p), θ
)

= i
(
A, (±Pe) ∩ (�R \ �p),±Pe

)
= . (.)

Let R be large enough, then by Lemma ., (.) and (.), one can obtain

deg
(
I – A,�R \ [

�p ∪ (
(±Pe) ∩ (�R \ �p)

)]
, θ

)

= deg(I – A,�R , θ ) – deg(I – A,�p, θ ) – deg
(
I – A,± ◦

Pe ∩ (�R \ �p), θ
)

= (–)γ –  –  = – 
= , (.)

which implies that A has at least one fixed point x∗ ∈ �R \ [�p ∪ ((±Pe) ∩ (�R \ �p))].
i.e., BVP (.) has at least a sign-changing solution. The proof is completed. �
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